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1 Introduction

Simple models of AdS/CFT duality are valuable laboratories for in-depth understanding of

holography and quantum features of black holes. One such model is the Sachdev-Ye-Kitaev

(SYK) model [5–8] arising recently from the earlier Sachdev-Ye (SY) model [1–4] repre-

senting a system of one dimensional fermions quantized with quenched disorder. A similar

problem is studied in [9]. This model can be studied in the 1/N expansion and at strong

coupling with an IR fixed point and potentially very interesting AdS2 dual. Kitaev [5], has

demonstrated the chaotic behavior of the strongly coupled system (at Large N) in terms of

the Lyapunov exponent and has exhibited some elements of the dual black hole. Recently,

Polchinski and Rosenhaus [8] have evaluated the spectrum of two particle states of the SYK

model by solving the large-N Schwinger-Dyson (SD) equations of the four-point function.

Their solution (and earlier works [5, 7]) employ the emergent conformal symmetry of the

model and correspondingly exhibit characteristic features of the AdS theory. Further the

in-depth studies [10–12] of the model are of definite interest specially in view of the ap-

pearance of the thermal butterfly effect [13–27] characteristic of black holes. In this paper,

inspired by these positive results of [8], we discuss a description of the SYK theory in terms

of explicit 1/N rules given in terms of bi-local propagators and vertices [28] associated with
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O(N) symmetry appearing after the quenched disorder averaging. This collective represen-

tation systematically incorporates arbitrary n-point bi-local correlators and generates the

corresponding SD equations in terms of closed set of observables that provide a holographic

interpretation [28]. For the generic case of N -component Vector/Higher Spin Gravity du-

ality [29, 30] bi-locality provides an explicit implementation of holography [28, 31–35]. The

present SYK system shares analogous features and can be studied along the same line, as

the d = 1 case with an AdS2 dual. The collective fields (bi-local or loop) can be also termed

as ‘precursors’ [36] and their ability to encode bulk information relates to the completeness

of these variables at Large N . We also mention a similarity with another c = 1/2D duality

representing matrix mechanics and non-critical string theory. The overview of our work is

as follows: after reviewing the basic features of the SYK model in the replica formulation

we formulate in section 2 the corresponding bi-local collective theory with explicit 1/N

rules given in terms of propagators and vertices. We use this to consider the n → 0 lim-

iting theory (with n being the replica number) which is a necessary step in transition to

the dual description. In section 3, we present elements of the limiting theory. The bi-local

propagator defining the 1/N diagrams is evaluated in the basis established in [8]. It is seen

to lead the same poles as in [8] with a (non-polynomial) AdS bulk representation. We show

that through introduction of a collective coordinate for time, we eliminate the zero mode

problem and are able to define the theory in the IR limit. The cubic vertex is presented in

detail, and analogous higher vertices are seen to be specified, which can be interpreted as

Witten type rules of the bulk theory. In appendices A and B, it is seen that these vertices

lead to correct two (i.e. 41) and three (i.e. 6) point large-N Green’s functions.

2 Replica collective field theory

In the series of talk [5], Kitaev presented a simplified version of the Sachdev-Ye model,

which nevertheless exhibits holographic features and chaotic behavior. This N -site

fermionic theory is represented by the Hamiltonian

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (2.1)

where χi are Majorana fermions, which satisfy {χi, χj} = δij . The Lagrangian of this

model is given by

L = −1

2

N∑
i=1

χi∂tχi −
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (2.2)

with Euclidean time t. The coupling constant Jijkl are random and the disordered proba-

bility is specified by

P (Jijkl) =

√
N3

12πJ2
exp

(
−
N3J2

ijkl

12J2

)
. (2.3)

1In terms of the fundamental fermions.
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The replica method [7, 26] reduces the problem to the evaluation of

〈lnZ〉J = lim
n→0

(〈Zn〉J − 1

n

)
, (2.4)

where the disordered average is defined by

〈O〉J ≡
∫ N∏

i,j,k,l

dJijkl P (Jijkl)O . (2.5)

The disordered average over the couplings Jijkl in the replica representation is readily

evaluated with the result [7]:

〈Zn〉J =

∫
Dχi T exp

1

2

∫
dt

N∑
i=1

n∑
a=1

χai ∂tχ
a
i +

J2

8N3

∫
dt1dt2

n∑
a,b=1

(
N∑
i=1

χai (t1)χbi(t2)

)4
 ,

(2.6)

where T is a formal time ordering operator, and a, b are the replica indices. Therefore, the

action of the replica SYK model is given by

S = −1

2

n∑
a=1

N∑
i=1

∫
dt χai ∂tχ

a
i −

J2

8N3

n∑
a,b=1

∫
dt1dt2

(
N∑
i=1

χai (t1)χbi(t2)

)4

. (2.7)

As it is seen after the Jijkl-integration, the O(N) symmetry χi → Oijχj becomes visible;

with the site indices i, j of the original version of the model now becoming internal O(N)

indices of the effective one site model. For the O(N) symmetric version of the model, one

can now use the (Lagrangian version of) collective field formulation of the large N limiting

theory [28, 37, 38]. One uses the bi-local (replica) collective field

ψab(t1, t2) ≡
N∑
i=1

χai (t1)χbi(t2) ≡ Ψ(X,Y ) (2.8)

where a compact notation which packages (space-)time t and the replica index a into one

variable X. In this notation, the collective bi-local field is anti-symmetric:

Ψ(X,Y ) = −Ψ(Y,X) (2.9)

and its dynamics is governed by the effective action

Scol =
N

2

∑
X

∂t1Ψ(X,Y )
∣∣
Y→X +

N

2
Tr (log Ψ)− J2N

8

∑
X,Y

[Ψ(X,Y )]4 (2.10)

Here the log term summarizes the entropy of the original degrees of freedom, which are

replaced by the bi-local fields. The special usefulness of these comes from the fact that they

represent a closed set under Large N Schwinger-Dyson equations. In vector type models

one can generally employ bi-local fields of various type, in particular through Gaussian

Hubbard-Stratonovich type transformations, and that has been employed in the present
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model (see [2]). The single collective field representation provides however a compact

formulation which generates the 1/N rules in concrete terms, with 1/N vertices taking

a star-product form. For this one first identifies the background field associated with

variation of Scol

δScol

δΨ(X,Y )
=
N

2
D(Y,X) +

N

2
[Ψ−1

0 ](Y,X)− J2N

2
[Ψ0(X,Y )]3 = 0 (2.11)

Here we have defined a differential operator D(X,Y ) in bi-local space:

D(X,Y ) ≡ δa,bδ(x− y)∂y (2.12)

which is seen to be anti-symmetric:

D(X,Y ) = −D(Y,X) (2.13)

Manipulating this equation, one can obtain a recursion relation for the background field Ψ0:

Ψ0(X,Y ) = −D−1(X,Y )− J2
∑
Z,W

D−1(X,Z)[Ψ0(Z,W )]3Ψ0(W,Y ) . (2.14)

One can use a replica diagonal Ansatz for the background field:

Ψ0(X,Y ) = δa,bψ0(x, y) . (2.15)

In the strong coupling limit J → ∞ required to reach the IR fixed point, one can neglect

the left-hand side of the saddle point equation (2.14) and finds

ψ0(x, y) = −
(

1

4πJ2

) 1
4 sgn(x− y)√

|x− y|
. (2.16)

Therefore, from the replica limit (2.4), one obtains the tree-level free energy as

F(0) =
N

2

∫
dt lnψ0(t, t)− NJ2

8

∫
dt1dt2 ψ

4
0(t1, t2) . (2.17)

Expanding the collective filed around the background field

Ψ(X,Y ) = Ψ0(X,Y ) +

√
2

N
η(X,Y ) , (2.18)

one obtains the vertices for the systematic 1/N expansion

S = NS(0) + S(2) +
1√
N
S(3) +O(N−1) , (2.19)

which can be expressed by a star product defined by A ? B ≡
∫
dt′A(t1, t

′)B(t′, t2). The

quadratic term in the action reads

S(2) = −1

2
Tr (Ψ−1

0 ? η ?Ψ−1
0 ? η)− 3J2

2

∑
X,Y

[Ψ(X,Y )]2[η(X,Y )]2

=
1

2

∑
X1,X2,X3,X4

η(X1, X2)K(X1, X2;X3, X4)η(X3, X4) , (2.20)

– 4 –



J
H
E
P
0
7
(
2
0
1
6
)
0
0
7

where the kernel K(X1, X2;X3, X4) identified as:

K(X1, X2;X3, X4) = −1

2

[
Ψ−1

0 (X4, X1)Ψ−1
0 (X2, X3)−Ψ−1

0 (X4, X2)Ψ−1
0 (X1, X3)

]
− 3J2Ψ0(X1, X2)Ψ0(X3, X4)

1

2
[δX1,X3δX2,X4 + δX1,X4δX2,X3 ] .

(2.21)

The cubic term in the action action

S(3) =

√
2

N

1

3
Tr (Ψ−1

0 ? η ?Ψ−1
0 ? η ?Ψ−1

0 ? η)− J2
∑
X,Y

Ψ0(X,Y )[η(X,Y )]3

 (2.22)

=
1

3

√
2

N

∫ [ 6∏
i=1

dXi

]
V3(X1, X2;X3, X4;X5, X6)η(X1, X2)η(X3, X4)η(X5, X6) ,

specifies the cubic vertex V3(X1, X2;X3, X4;X5, X6), given by

V3(X1, X2;X3, X4;X5, X6)

=
1

23(3!)

[
Ψ−1

0 (X6, X1)Ψ−1
0 (X2, X3)Ψ−1

0 (X4, X5) + (sym)
]

− 3J2

23(3!)
[Ψ0(X1, X2)δ(X3, X5)δ(X4, X6)δ(X5, X1)δ(X6, X2) + (sym)] . (2.23)

Here, we need anti-symmetrization in Xi and Xi+1 (i = 1, 3, 5), and symmetrization among

(X1, X2), (X3, X4) and (X5, X6). This will simplify the calculation because the bi-local

fluctuation is anti-symmetric.

2.1 1/N diagrams

Expressing the quadratic action in terms of (space-)time and replica index explicitly, one

finds that the potential term contains only diagonal piece in replica space. Therefore, one

can separate the quadratic action into the diagonal and off-diagonal parts as

S(2) = −1

2

∫ 4∏
i=1

dti

n∑
a=1

ηaa(t1, t2)K(t1, t2; t3, t4)ηaa(t3, t4)

−
∫ 4∏

i=1

dti
∑
a>b

ηab(t1, t2)K′(t1, t2; t3, t4)ηba(t3, t4) , (2.24)

where

K(t1, t2; t3, t4) =
1

2

[
ψ−1

0 (t4, t1)ψ−1
0 (t2, t3)− ψ−1

0 (t4, t2)ψ−1
0 (t1, t3)

]
+ 3J2ψ0(t1, t2)ψ0(t3, t4)ε(t1, t2; t3, t4) ,

K′(t1, t2; t3, t4) = ψ−1
0 (t4, t1)ψ−1

0 (t2, t3) , (2.25)

with

ε(t1, t2; t3, t4) ≡ 1

2
(δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)) . (2.26)
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a ab b ∼ n2 , a aa a ∼ n

Figure 1. One-loop vacuum diagrams and their n-dependence.

Accordingly, we can define diagonal and off-diagonal bi-local propagators: D(t1, t2; t3, t4)

and D′(t1, t2; t3, t4) respectively. Formally these propagators are defined by

D(t1, t2; t3, t4) = K−1(t1, t2; t3, t4) ,

D′(t1, t2; t3, t4) = K′−1(t1, t2; t3, t4) , (2.27)

and their explicit expressions will be given in the next section. Similarly, the cubic action

is also decomposed as

S(3) =

√
2

N

∫ 6∏
i=1

dti V(3)

n∑
a=1

ηaa(t1, t2)ηaa(t3, t4)ηaa(t5, t6)

+ 2

√
2

N

∫ 6∏
i=1

dti V ′(3)

∑
a>b

[
ηaa(t1, t2)ηab(t3, t4)ηba(t5, t6)

+ ηba(t1, t2)ηaa(t3, t4)ηab(t5, t6) + ηab(t1, t2)ηba(t3, t4)ηaa(t5, t6)
]

+ 3!

√
2

N

∫ 6∏
i=1

dtiV ′′(3)

∑
a>b>c

[
ηab(t1, t2)ηbc(t3, t4)ηca(t5, t6)

+ (permutations of (a, b, c))
]
, (2.28)

where

V(3) =
1

23(3!)

[
ψ−1

0 (t6, t1)ψ−1
0 (t2, t3)ψ−1

0 (t4, t5) + (sym)
]

− 3J2

233!

[
δ(t1,3)δ(t1,5)δ(t2,4)δ(t2,6)ψ0(t1, t2) + (sym)

]
,

V ′(3) = V ′′(3) =
1

23(3!)

[
ψ−1

0 (t6, t1)ψ−1
0 (t2, t3)ψ−1

0 (t4, t5) + (sym)
]
. (2.29)

However, since in the replica trick (2.4) one has to take n → 0 limit, we do not

need to keep track of all contributions in the replica collective theory. In standard local

quantum field theory, this limit leads to the linked cluster theorem, i.e. one needs to

consider only connected diagrams. In the SYK model, this means that one needs only

connected diagrams of the fundamental fermions χi, as discussed in [5, 8]. In our bi-

local collective theory, the n → 0 limit implies that only the replica diagonal propagator

is relevant after this limit. This can be seen from explicit analysis of the diagrams, for

example in figure 1. Two-loop diagrams are given in appendix A. There, the “twisting” of
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inside and outside lines represents diagonalization of the replica indices, i.e. δa,b. In order

for a diagram to have order n contribution, every loop in the diagram must have at least

one twisting. Accordingly, every bi-local propagator has the same replica index for both

lines. This concludes that for O(n), which survives under the replica trick, only replica

diagonal propagator is relevant. For example, the formal expression for the one-loop free

energy is given by

F(1) =
1

2
Tr logK (2.30)

where the trace is taken over the bi-local time.

2.2 Two-point function

The collective action based on the bi-local is known to reproduce systematically the Large

N results of the theory. In particular it can be shown to generate the full set of Large N

Schwinger-Dyson equations [37, 38]. We will now discuss in detail the case of two-point

bi-local correlation function, since it plays a special role as a propagator and also for the

purpose of comparison with earlier results.

The two-point function of diagonal bi-local fluctuation

Ãab2 (t1, t2; t3, t4) ≡
∫

[Dη] ηaa(t1, t2)ηbb(t3, t4)e−S
(2)

(2.31)

satisfy the following Green’s equation:∫
dt5dt6

[
−1

2

[
ψ−1

0 (t6, t1)ψ−1
0 (t2, t5)− ψ−1

0 (t6, t2)ψ−1
0 (t1, t5)

]
−3J2ψ0(t1, t2)ψ0(t5, t6)

1

2
[δ(t1 − t5)δ(t2 − t6) + δ(t1 − t6)δ(t2 − t5)]

]
Aab2 (t5, t6; t3, t4)

=
δa,b
2

[δ(t1 − t3)δ(t2 − t4)− δ(t1 − t4)δ(t2 − t3)] (2.32)

To compare with the result in [8], we subtract a disconnected propagator2 from the two-

point function of bi-local fluctuation.

Ãab2 (t5, t6; t3, t4) ≡ δa,b
2

[ψ0(t5, t4)ψ0(t6, t3)−ψ0(t5, t3)ψ0(t6, t4)]+Γ̃ab2 (t5, t6; t3, t4) (2.33)

We then get a differential equation for the connected propagator3 Γ̃ab2 :∫
dt5dt6

[
−1

2

[
ψ−1

0 (t6, t1)ψ−1
0 (t2, t5)− ψ−1

0 (t6, t2)ψ−1
0 (t1, t5)

]
−3J2ψ0(t1, t2)ψ0(t5, t6)

1

2
[δ(t1 − t5)δ(t2 − t6) + δ(t1 − t6)δ(t2 − t5)]

]
Γ̃ab2 (t5, t6; t3, t4)

= δa,b3J
2[ψ0(t1, t2)]2

1

2
[ψ0(t1, t4)ψ0(t2, t3)− ψ0(t1, t3)ψ0(t2, t4)] (2.34)

2From the point of view of the fermion χai .
3In the point of view of the fermion, Γ̃ab2 is the connected 4-point function.
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a

a

a

a

t1

t2

t3

t4

=

a

a

a

a

t1

t2

t3

t4

-

a

a

a

a

t1

t2

t3

t4

Figure 2. Two-point function of (diagonal) bi-local fluctuation. The double line represents the

full propagator of SYK model.

at2a t1

a

t6

a

t5
a

t4

a

t3

= +

+J2

− + − +


Figure 3. Three-point function of (diagonal) bi-local fluctuation. Different colors (red, blue, black)

of double lines are used for non-planar diagrams. They intersect only at the four-point vertices.

The two-point function Γ̃ab2 represents the 4-point function of the fermion χai ’s (see figure 2).

Amputating the external legs of Γ̃ab2

Γ̃ab2 (t1, t2; t3, t4)≡
∫
du1du2du3du4ψ0(t1, u1)ψ0(t2, u2)ψ0(t3, u3)ψ0(t4, u4)Γab2 (u1, u2;u3, u4),

(2.35)

we can see a correspondence with the 1PI four -point function considered in [8]

Γab2 (t1, t2; t3, t4)

= δa,b3J
2[ψ0(t1, t2)]2

1

2
[δ(t1 − t3)δ(t2 − t4)− δ(t1 − t4)δ(t2 − t3)]

− 3J2

∫
du1du2 [ψ0(t1, t2)]2ψ0(t1, u1)ψ0(t2, u2)Γab2 (u1, u2; t3, t4) (2.36)

In the appendix B, we repeat the similar calculation for the three-point function of the

bi-local fluctuations, and we pick up the connected propagator in the point of view of the

fermion to get Γ̃3. The three-point function Γ̃3 can be compared to the 6-point function of

SYK model (see figure 3).
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3 AdS bulk

From the replica collective field theory in the n→ 0 limit, we have the resulting theory to

be given by the action (2.10). The partition function involving the bi-local field Ψ(t1, t2) is

Z =

∫ ∏
t1,t2

DΨ(t1, t2) µ(Ψ) e−Scol[Ψ] , (3.1)

where the precise measure µ(Ψ) is given for example in [39]. The critical theory is repre-

sented by the action

Sc[Ψ] =
N

2

∫
dt log Ψ(t, t)− J2N

8

∫
dt1dt2 Ψ4(t1, t2) , (3.2)

which exhibits an (emergent) symmetry under t→ f(t) reparametrization and

Ψ(t1, t2)→ Ψf (t1, t2) =
∣∣f ′(t1)f ′(t2)

∣∣ 1
4 Ψ(f(t1), f(t2)) . (3.3)

This symmetry is responsible for the appearance of zero modes in the strict IR critical

theory, a problem which can be addressed as in the quantization of systems with symmetry

modes developed in [40]. We describe this procedure in the following subsection.

3.1 Time as a dynamical variable

The above symmetry mode representing time reparametrization can be elevated to a dy-

namical variable introduced following [40] through the Faddeev-Popov method. We insert

into the partition function (3.1), the functional identity:∫ ∏
t

Df(t)
∏
t

δ

(∫
u ·Ψf

) ∣∣∣∣δ ∫ u ·Ψf

δf

∣∣∣∣ = 1 , (3.4)

so that after an inverse change of the integration variable, it results in a combined repre-

sentation

Z =

∫ ∏
t

Df(t)
∏
t1,t2

DΨ(t1, t2) µ(f,Ψ) δ

(∫
u ·Ψf

)
e−Scol[Ψ,f ] , (3.5)

with a Jacobian.

Consequently f(t) is now introduced as a dynamical degree of freedom, at the same

time the delta function condition projects out a state associated with the wave function

u(t1, t2). This wave function is arbitrary (representing different gauges), it will be chosen

to eliminate the zero mode of the IR. The total action is now

Scol[Ψ, f ] =
N

2

∫
dt
[
∂tΨf (t, t′)

]
t=t′

+ Sc[Ψ] . (3.6)

The action for the dynamical variable f(t) is contained in the first term, and follows after a

background shift (2.18). This we consider in in appendix C within the scheme of an epsilon

– 9 –
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expansion starting from q = 2, where the short distance limit is most directly evaluated,

obtaining the Schwarzian derivative form:

S[f ] = − N

24πJ

∫
dt

[
f ′′′(t)

f ′(t)
− 3

2

(
f ′′(t)

f ′(t)

)2
]
≡ − N

24πJ

∫
dt {f, t} . (3.7)

One can then consider corrections through a ε ≡ (q − 2)/2 expansion. There will also be

corrections induced by the correction (due to J) of the background field. All these are only

expected to change overall coefficient in front of the Schwarzian derivative to α(ε):

S[f ] = − Nα

24πJ

∫
dt {f, t} , (3.8)

whose value can be read of from a numerical evaluation of the specific heat performed in [11].

For physical transparency, we can instead of f(t) introduce T (f) as a dynamical vari-

able. Namely, we change f(t)→ T (f), where T = t. For that, the action (3.8) becomes

S[T ] =
Nα

48πJ

∫
df T ′

(
T ′′

(T ′)2

)2

=
Nα

48πJ

∫
dτ

(T ′′)2

(T ′)3
, (3.9)

Here and in the following, we use τ for the integration variable instead of f , and the prime

denotes τ derivative.

It is useful to perform a canonical quantization of this system and construct a conserved

energy as a conjugate to time. We introduce an auxiliary variable

q(τ) ≡ T ′′

(T ′)3
, (3.10)

and

S[T ] =
Nα

24πJ

∫
dτ

[
T ′′ q − 1

2
(T ′)3q2

]
= − Nα

24πJ

∫
dτ

[
T ′ q′ +

1

2
(T ′)3q2

]
≡ S[T, q] . (3.11)

The conjugate variables are denoted by Πq and ΠT respectively. Then the Hamiltonian is

given by

H = ΠT T
′ + Πq q

′ − L = −24πJ

Nα

[
ΠTΠq +

12πJ

Nα
q2 Π3

q

]
. (3.12)

This is a “Hamiltonian” for τ -dynamics, but ΠT , which is conjugate to T (τ) is the energy:

E = ΠT . (3.13)

From the Euler-Lagrange equation of T , one can see that the energy is conserved:

dE

dτ
= 0 . (3.14)
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We note that the configuration

Tβ(τ) =
β

π
arctan(τ) , (3.15)

(the inverse of f(t) = tan(πt/β)) represents a classical solution of the S[T ] action. For this

classical solution, the energy is a constant

E(Tβ(τ)) =
Nα

12πJ

π2

β2
. (3.16)

3.2 The propagator

Let us now consider the quadratic action in the strong coupling limit J |t|�1 given in (2.20).

S(2) = −1

2
Tr (ψ−1

0 ? η ? ψ−1
0 ? η)− 3J2

2

∫
dt1dt2 [ψ0(t1, t2)]2[η(t1, t2)]2

=
1

2

∫
dt1dt2dt3dt4 η(t1, t2)K(t1, t2; t3, t4)η(t3, t4) (3.17)

The bi-local field η(t1, t2) will be identified as AdS2 bulk field:

η(t1, t2) = Φ(t, z) (3.18)

with the following coordinate transformation from (t1, t2) to (t, z)

t =
1

2
(t1 + t2) , z =

1

2
(t1 − t2). (3.19)

We have a mode expansion of η(t1, t2) (and therefore Φ(t, z)):

Φ(t, z) = η(t1, t2) ≡
∑
νw

Φ̃νwuνw(t1, t2) (3.20)

in terms of complete basis uνw(t1, t2) defined by

uνw(t1, t2) = eiw
t1+t2

2 sgn (t1 − t2)Zν (|w(t1 − t2)/2|) (3.21)

Here, Zν(z) is a linear combination of two Bessel functions found in [8]:

Zν(x) ≡ Jν(x) + ξνJ−ν(x) where ξν =
tan νπ

2 + 1

tan νπ
2 − 1

(3.22)(
x2∂2

x + x∂x − x2
)
Zν(x) = ν2Zν(x) (3.23)

Using the identity which will be proven in appendix D∫
dt3dt4
|t3 − t4|

ψ0(t1, t3)ψ0(t2, t4)uνw(t3, t4) = −16
√
π

3J
g(ν)uνw(t1, t2), (3.24)

where g(ν) = −(3/2ν) tan(πν/2) defined in [8], (3.20) can be rewritten as

Φ(t, z) = −
∑
νw

3Jg̃(ν)

16
√
π

Φ̃νw

∫
dt3dt4
|t3 − t4|

ψ0(t1, t3)ψ0(t2, t4)uνw(t3, t4) (3.25)
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where we define

g̃(ν) ≡ 1

g(ν)
(3.26)

We will also require for our evaluation the diagonalization of [ψ0(t1, t2)]2ψ0(t1, t3)

ψ0(t2, t4) found in [8], which introduced the eigenvalue g(ν).

Applying the above relation to one of η in each term of quadratic action, one can

diagonalize the quadratic action as follows.

S(2) =
1

2

∑
ν,ν′

∫
dwdw′

3Jg̃(ν ′)

16
√
π

Φ̃νwΦ̃ν′w′

∫
dt1dt2
|t1 − t2|

uνw(t1, t2)uν′w′(t1, t2)

+
3J2

2

∑
ν,ν′

∫
dwdw′

3Jg̃(ν ′)

16
√
π

Φ̃νwΦ̃ν′w′

∫
dt1dt2dt3dt4
|t3 − t4|

× uνw(t1, t2)[ψ0(t1, t2)]2ψ0(t1, t3)ψ0(t2, t4)uν′w′(t3, t4) (3.27)

Using next the diagonalization of [ψ0(t1, t2)]2ψ0(t1, t3)ψ0(t2, t4) we obtain4

S(2) =
J

2

∑
ν,w

3Nν

16
√
π

Φ̃∗ν,w (g̃(ν)− 1) Φ̃ν,w (3.30)

where Nν is the normalization of uνw(t1, t2) [8]

Nν =

{
2π
ν for ν = 3

2 + 2n (n = 0, 1, · · · )
8π sinπν

ν for ν = ir (r > 0)
. (3.31)

This leads to a propagator

D(t, z; t′, z′) =

∫ ∞
0

dr

∫
dw

16
√
π

3JNir

u∗ir,w(t, z)uir,w(t′, z′)

g̃(ir)− 1

+
∑

ν=3/2+2n
n=0,1,2,···

∫
dw

16
√
π

3JNν

u∗νw(t, z)uνw(t′, z′)

g̃(ν)− 1
(3.32)

This propagator is different in detail from the one considered in [8], in particular g̃ replaces g

and that the dependence on the coupling constant J is different. This is related to the effect

of amputation of external legs for 1PI case of [8] as we discussed in the previous section. It

is the above propagator howerer that defines the 1/N Feynman rules. (Note that the poles

appearing in the two propagators are identical.) The result of the bi-local propagator (3.32)

shows a divergence at the pole given by ν = 3/2. This zero mode divergence in the resulting

4From the complex conjugate of the basis uνw

u∗νw(t, z) = ξ∗νuν,−w for ν = ir (r > 0), (3.28)

the reality condition of the bi-local fluctuation η(t1, t2) = Φ(t, z) implies that

Φ∗νw = ξνΦν,−w for ν = ir (r > 0). (3.29)
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propagator corresponds to the symmetry (or Goldstone modes [10, 11]) associated with

conformal reparameterization symmetry, (t1, t2) → (f(t1), f(t2)) in the strong coupling

limit J |t| � 1. The zero mode is eliminated by our delta function constraint in (3.5).5

We note that the continuous sum of the bi-local propagator (first line of (3.32)) is

reminiscent of the 2D non-critical string loop propagators [41]. One can evaluate the

integral as in [41] and reduce it to sum of poles. Since ν = ir (r ∈ R), one can rewrite the

term as∫ i∞

−i∞

dν

i

∫ ∞
−∞

dw
8
√
π

3JNν

u∗νw(t, z)uνw(t′, z′)

g̃(ν)− 1
(3.33)

= i
sgn (zz′)

3
√
πJ

∫ i∞

−i∞
dν

∫ ∞
−∞

dw ν e−iw(t−t′)
[
J−ν(|wz|) + ξ−νJν(|wz|)

]
Jν(|wz′|)

cos πν2
[

2ν
3 cos πν2 + sin πν

2

] .

where we assume z > z′ without loss of generality.6 In order to evaluate the ν-integral

as a contour integral in the complex ν plane, we consider poles of the integrand on this

complex plane. Even though cos(πν/2) in the denominator becomes zero at ν = 2n + 1

(n ∈ Z), these points are not poles because (−1)ν + ξ−ν = 0 at these points. On the other

hand, ξ−ν has simple poles at ν = 2n+ 3
2 . The other set of poles of the integrand is given

by the solutions, pm of the following equation:

2pm
3

= − tan
(πpm

2

)
, 2m+ 1 < pm < 2m+ 2 (m ∈ Z) (3.36)

If we close the contour in <(ν) ≥ 0 region, the integral picks up simple poles at ν = pm
(m > 0) and ν = 2n+ 3

2 (n = 1, 2, · · · ). The residue contributions from all poles in <(ν) ≥ 0

region is given by

− sgn(zz′)
8

3
√
πJ

∞∑
n=1

ν=3/2+2n

∫ ∞
−∞

dωνe−iω(t−t′)Jν(|ωz|)Jν(|ωz′|)
2ν
3 − 1

− sgn (zz′)
4√
πJ

∞∑
m=1

∫ ∞
−∞

dw
e−iw(t−t′)

sin(πpm)

p2
m

p2
m + (3/2)2

×
[
J−pm(|wz|) +

pm + 3
2

pm − 3
2

Jpm(|wz|)
]
Jpm(|wz′|). (3.37)

We can see that the first line contribution exactly cancels with the discrete sum of the

bi-local propagator (3.32). This leaves the sum of poles of pm (m > 0) as in [11]. Our final

5In (3.5), we take u =
∫
dt eiωt

δΨ0
f (t1,t2)

δf(t)
∝ u 3

2
,ω(t1, t2) ∼ J 3

2
(|ω(t1 − t2)|/2).

6Note that the Bessel functions in (3.33) behave well in the limit z −→∞ and z′ −→ 0:

Jν(z) ∼zν for z � 1 (3.34)

J−ν(z) + ξ−νJν(z) ∼
z−

1
2 cos z sin πν

2

1 + tan πν
2

for z � 1 . (3.35)
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expression of the bi-local propagator is now given by

D(t, z; t′, z′) = −sgn (zz′)
4√
πJ

∞∑
m=1

∫ ∞
−∞

dw
e−iw(t−t′)

sin(πpm)

p2
m

p2
m + (3/2)2

×
[
J−pm(|wz|) +

pm + 3
2

pm − 3
2

Jpm(|wz|)
]
Jpm(|wz′|) . (3.38)

At each pole, we have one AdS-type contribution. For each pole, one may consider an

effective action of a scalar field with mass, M2
m = p2

m − 1
4 , (m > 0) in AdS2:

Seff
m =

1

2

∫ √
|g| dx2

[
−gµν∂µφm∂νφm −

(
p2
m −

1

4

)
φ2
m

]
(3.39)

where the metric gµν is given by

gµν = diag(−1/z2, 1/z2) . (3.40)

Since that pm is a zero of g̃(ν)− 1, we can define fm(ν) by

g̃(ν)− 1 = −2ν

3
cot

νπ

2
− 1 ≡

[
ν2 − (pm)2

]
fm(ν) . (3.41)

Note that g̃(ν) − 1 and fm(ν) are even functions of ν. Recalling the Bessel’s differential

equation [
z2∂2

z + z∂z + w2z2
]
J±ν(wz) = ν2J±ν(wz) , (3.42)

we define Φm(t, z) by a field redefinition as follows.

φm(t, z) ≡ z 1
2

√
f(
√
DB)Φm(t, z) (3.43)

where Bessel differential operator DB is given by

DB ≡ z2∂2
z + z∂z − z2∂2

t (3.44)

The appearance of a non-polynomial differential operator defining the scalar field propa-

gation is not unusual in string theory, in the present case one expects gravitational fields

which are integrated out in the above representation. We also note a similarity with the

c = 1 Noncritical string duality case where one defines propagators associated with loop

variables of the matrix model [41]. In that case through external leg redefinition, one ob-

tains a local picture with a standard Laplacian of [42]. Here we can also introduce nonlocal

redefinitions of the field to achieve an analogues result relating a standard form of the AdS

field theory to collective field theory. By the field redefinition, the effective action can be

written as

Seff
m =

1

2

3J

8
√
π

∫
dt

∫ ∞
0

dz

z
Φ(t, z)

[
g̃(
√

DB)− 1
]

Φ(t, z) . (3.45)

Note that this has the same form as the quadratic action of collective field in (3.30) after

we express (3.30) in the coordinate space. When one takes the pole at pm, the effective

action Seff
m in (3.45) leads to the on-shell propagator with ν = pm in (3.38).
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The cubic interaction in (2.22) consists of two terms. The first one shows bi-locality

1

3

√
2

N
Tr (ψ−1

0 ?η?ψ−1
0 ?η?ψ−1

0 ?η)=

√
2

N
J3/2

∑
ν1,ν2,ν3

∫ [ 3∏
i=1

dwi

]
cw1w2w3
ν1ν2ν3

Φ̃ν1,w1Φ̃ν2,w2Φ̃ν3,w3

(3.46)

where cw1w2w3
ν1ν2ν3

is defined by

cw1w2w3
ν1ν2ν3

= − 1

16π1/2
g̃(ν2)

∫ [∏4
i=1 dti

]
|t3 − t4|

ψ−1
0 (t1, t2)

J1/2
uν1w1(t2, t3)uν2w2(t3, t4)uν3w3(t4, t1)

(3.47)

On the other hand, the second term is local in bulk:

− J2

√
2

N

∫
dt1dt2 ψ0(t1, t2) [Φ(t1, t2)]3 = −(2J)3/2

π1/4

∫
dt

∫ ∞
0

dz

z2

[
z

1
2 Φ(t, z)

]3
(3.48)

The same features characterize the 4-point interactions. For the higher point (n=5,6,7, · · · )
interactions only the bi-local trace (star product) type term appears (3.46).

4 Conclusion

We have defined the O(N) singlet sector of the SYK model in terms of bi-local field Ψ and

a dynamical time coordinate f(t). The latter introduces a time-reparametrization gauge

symmetry which is used to define the theory in the IR limit and eliminate the associated

zero mode problem. This exact representation of the bi-local theory with a dynamical

time variable and a reparametrization symmetry which is present even away from the

IR exhibits similarity with AdS gravity and will be of relevance for establishing the dual

correspondence [43–45]. There are a number of topic that can be part of further studies.

First, concerning the 3-vertex (and also higher point vertices) the question of AdS locality

is of definite interest. Some indications that this might be possible to achieve were given,

this question is also closely related to the external leg redefinitions of the scalar field. A

continuing study of finite temperature extension of the formalism is of major relevance.

For this, the formalism of TFD (Thermo-Field dynamics) applies and can be implemented

in parallel to recent TFD O(N) vector model studies [46, 47].
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A Higher loop diagrams

In this appendix, we list discuss diagrams for the replica collective theory and their n

dependence up to two-loop order. Here, the “twisting” of the bi-local propagator represents

the diagonalization of the replica space, i.e. δa,b. Because of this twisting, all O(n) diagrams

contain only one replica index, which implies that only the replica diagonal propagator is

relevant after the replica trick. Two-loop diagrams are presented in figure 4, 5 and 6.
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b b c ca a ∼ n3 ,

a

a

a

a

b b a ∼ n2 ,

a

a

a

a

a

a

∼ n ,

a

a

Figure 4. First kind of two-loop vacuum diagrams and their n-dependence.

a a ∼ n3 ,b b cc

a ∼ n2 ,

a

a

a bb

a

a

a

a

a a ∼ n ,

a a ∼ n2 ,b b

a ∼ n ,

a

a

a

a

a

∼ n ,

a

a

a

a

a

a

a

a

Figure 5. Second kind of two-loop vacuum diagrams and their n-dependence.
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a ac b b c ∼ n3 ,

c

c

a b b a ∼ n2 ,

a

a

a a ∼ n ,

a

a

Figure 6. Third kind of two-loop vacuum diagrams and their n-dependence.

B Two- and three-point function

The cubic action is given by (2.22). Let us consider the following identity∫
[Dη]

δ

δη(X1, X2)

(
η(X3, X4)η(X5, X6)e−S

(2)−S(2)
)

= 0 (B.1)

Defining a delta function in bi-local space

δ(X1, X2;X3, X4) ≡ 1

2
[δX1,X3δX2,X4 − δX1,X4δX2,X3 ] , (B.2)

(B.1) can be written as up to O(N−1/2)∫
dU1dU2 V2(X1, X2;U1, U2)Ã′3(X3, X4;X5, X6;U1, U2)

+

√
2

N
δ(X1, X2;X3, X4)

∫ [ 6∏
i=1

dUi

]
V3(U1, · · · , U6)Ã2(X5, X6;U1, U2)Ã2(U3, U4;U5, U6)

+

√
2

N
δ(X1, X2;X5, X6)

∫ [ 6∏
i=1

dUi

]
V3(U1, · · · , U6)Ã2(X3, X4;U1, U2)Ã2(U3, U4;U5, U6)

+

√
2

N

∫ [ 4∏
i=1

dUi

]
V3(X1, X2;U1, U2;U3, U4)

×
[
Ã2(X3, X4;X5, X6)Ã2(U1, U2;U3, U4) + 2Ã2(X3, X4;U1, U2)Ã2(X5, X6;U3, U4)

]
= 0 (B.3)
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Since we are also interested in the three-point function of diagonal bi-local fluctuations, we

may use (2.32) to solve (B.3) for Ã′3(X3, X4;X5, X6;U1, U2).

Ã′3(X1, X2;X3, X4;X5, X6)

= −
√

2

N

∫ [ 6∏
i=1

dUi

]
V (U1, U2;U3, U4;U5, U6)

×
[
Ã2(X1, X2;U1, U2)Ã2(U3, U4;U5, U6)Ã2(X3, X4;U5, U6)

+ Ã2(X3, X4;U1, U2)Ã2(U3, U4;U5, U6)Ã2(X5, X6;X1, X2)

+ Ã2(X5, X6;U1, U2)Ã2(U3, U4;U5, U6)Ã2(X1, X2;X3, X4)
]

− 2

√
2

N

∫ [ 6∏
i=1

dUi

]
V (U1, U2;U3, U4;U5, U6)

×Ã2(X1, X2;U1, U2)Ã2(X3, X4;U3, U4)Ã2(X5, X6;U5, U6)︸ ︷︷ ︸
≡Ã3

(B.4)

One can see that the first three terms are disconnected propagators in the point of view of

bi-local fluctuation. The last term is a connected propagators. Setting

X1 = (a, t1) , X2 = (a, t2) , X3 = (b, t3) , X4 = (b, t4) , X5 = (c, t5) , X6 = (c, t6). (B.5)

the (connected) three-point function of diagonal fluctuation becomes

Ãabc3 (t1, t2; t3, t4; t5, t6) ≡ −2

√
2

N

∫ [ 6∏
i=1

dui

]
× V abc(u1, · · · , u6)Ãaa2 (t1, t2;u1, u2)Ãbb2 (t3, t4;u3, u4)Ãcc2 (t5, t6;u5, u6) (B.6)

As we did in the section 2.2, we will amputate the external legs.

Ãabc3 (t1, t2; t3, t4; t5, t6) ≡
∫ [ 6∏

i=1

dui ψ0(ti, ui)

]
Aabc3 (u1, u2;u3, u4;u5, u6) (B.7)

It is also convenient to define amputated cubic vertex

Ṽ abc
3 (t1, t2; t3, t4; t5, t6)

≡
∫ [ 6∏

i=1

dui ψ0(ti, ui)

]
V abc

3 (u1, u2;u3, u4;u5, u6)

= −δa,bδa,c
1

8
[ψ0(t6, t1)ψ0(t2, t3)ψ0(t4, t5) + (anti-sym)]

− δa,bδa,c3J2

∫
du1du2

1

4
[ψ0(u1, u2)ψ0(t1, u1)ψ0(t2, u2)ψ0(t3, u1)

×ψ0(t4, u2)ψ0(t5, u1)ψ0(t6, u2) + (anti-sym)] (B.8)
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As we did for the two-point function to compare with [8], we picked up connected propa-

gator Γab2 in the point of view of the fermion. Using Γab2 , the three-point function Aabc3 can

be also separated into connected and disconnected ones with respect to the fermion.

Aabc3 (t1, t2; t3, t4; t5, t6)

≡ −
√

8

N

∫ [ 6∏
i=1

dui

]
Ṽ abc(u1, · · · , u6)Aaa2 (t1, t2;u1, u2)Abb2 (t3, t4;u3, u4)Acc2 (t5, t6;u5, u6)

= δa,bδa,c(disconnected diagrams) + δa,bδa,cΓ3(t1, t2; t3, t4; t5, t6) (B.9)

Noting that the two-point function of diagonal fluctuations is

Γab2 (t1, t2; t3, t4) = δa,bΓ2(t1, t2; t3, t4), (B.10)

the connected 6-point function (in the point of view of the fermion) can be written as

follows.√
N

8
Γ3(t1, t2; t3, t4; t5, t6)

=

∫
du1du2

1

2
[Γ2(t3, t4; t2, u1)ψ0(u1, u2)Γ2(t5, t6;u2, t1)− (t1 ←→ t2)]

+ (cyclic in (t1, t2), (t3, t4) and (t5, t6))

+

∫ [ 6∏
i=1

dui

]
Γ2(t1, t2;u1, u2)ψ0(u2, u3)

× Γ2(t3, t4;u3, u4)ψ0(u4, u5)Γ2(t5, t6;u5, u6)ψ0(u6, u1)

− 3J2 1

4
[ψ0(t1, t2)δ(t3 − t1)δ(t5 − t1)δ(t4 − t2)δ(t6 − t2) + (anti-sym)]

+ 3J2

∫
du1du2

1

2
[Γ2(t1, t2;u1, u2)ψ0(u1, t3)ψ0(u2, t4)

×δ(t3 − t5)δ(t4 − t6)ψ0(t3, t4)− (t3 ←→ t4)]

+ (cyclic in (t1, t2), (t3, t4) and (t5, t6))

− 3J2

∫
du3du4du5du6 ψ0(t1, t2)ψ0(t1, u3)ψ0(t2, u4)Γ2(t3, t4;u3, u4)

× ψ0(t1, u5)ψ0(t2, u6)Γ2(t5, t6;u5, u6)

− (cyclic in (t1, t2), (t3, t4) and (t5, t6))

+ 3J2

∫ [ 6∏
i=1

dui

]
dv1dv2 ψ0(v1, v2)Γ2(t1, t2;u1, u2)ψ0(u1, v1)ψ0(u2, v2)

× Γ2(t3, t4;u3, u4)ψ0(u3, v1)ψ0(u4, v2)Γ2(t5, t6;u5, u6)ψ0(u5, v1)ψ0(u6, v2) (B.11)

This is represented in the figure 3.
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C Evaluation of the time coordinate action

In this appendix, we consider the evaluation of the action for the collective time coordi-

nate f(t):

S[f ] =
N

2

∫
dt1

[
∂1Ψ0,f (t1, t2)

]
t2→t1

. (C.1)

Considering the generalized case of order q fermionic coupling [5, 11] (which simply cor-

responds to changing the power for in the bi-local action of eq. (2.10)) the background

solution is given by

Ψ0,f (t1, t2) = b

(√
|f ′(t1)f ′(t2)|
|f(t1)− f(t2)|

) 2
q

. (C.2)

where

b = −

tan
(
π
q

)
2π

(
1− 2

q

)
1
q

, (C.3)

With q = 2 + 2ε, we can think of an ε expansion where the leading approximation corre-

sponding to the q = 2 case, which is easily evaluated as follow.

One expands the denominator of the critical solution in the t2 → t1 limit as

1

|f(t1)−f(t2)| =
1

|f ′(t2)||t1−t2|
− |f

′′(t2)|
2|f ′(t2)|2 +

|f ′′(t2)|2
4|f ′(t2)|3 |t1 − t2|−

|f ′′′(t2)|
6|f ′(t2)|2 |t1 − t2|+ · · · .

(C.4)

We also need to expand the
√
|f ′(t1)| in the numerator as√

|f ′(t1)| = |f ′(t2)| 12
[
1+
|f ′′(t2)|
2|f ′(t2)| |t1−t2| −

|f ′′(t2)|2
8|f ′(t2)|2 |t1−t2|

2 +
|f ′′′(t2)|
4|f ′(t2)| |t1−t2|

2 + · · ·
]
.

(C.5)

Therefore, now we have

Ψ0,f (t1, t2) = − 1

πJ

[
1

|t1 − t2|
+

1

12

|f ′′′(t2)|
|f ′(t2)| |t1 − t2| −

1

8

|f ′′(t2)|2
|f ′(t2)|2 |t1 − t2|+ · · ·

]
. (C.6)

In the following, we eliminate the first term, which gives a divergence. Therefore, taking

the derivative and the limit, the action is given by

S[f ] = − N

24πJ

∫
dt1

[
f ′′′(t1)

f ′(t1)
− 3

2

(
f ′′(t1)

f ′(t1)

)2
]

(C.7)

The correcting terms in epsilon expansion are expected to always be of the Schwarzian

derivative form, correcting only the overall factor in front of the Lagrangian. These and

higher order evaluations due to J-corrections are left for future publication.

D Identity

In this appendix, we will prove that

I(t1, t2) ≡
∫

dt3dt4
|t3 − t4|

ψ0(t1, t3)ψ0(t2, t4)uνw(t3, t4) =
8π

1
2

Jν
tan

(πν
2

)
uνw(t1, t2). (D.1)
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For J � 1/|t|, the background field reads

ψ0(t1, t2) = ψ0(t1 − t2) = − sgn (t1 − t2)

(4π)1/4
√
J |t1 − t2|

. (D.2)

Fourier transformation of the background field into momentum space

ψ0(w) =

∫ ∞
−∞

dt Ψ0(t)eiwt =
π1/4 sgn (w)

i
√
J |w|

(D.3)

Hence, the inverse7 of the background field can be written as

ψ−1
0 (t1, t2) =

1

2π

∫
dp

i
√
J |p|sgn (p)

π1/4
eip(t1−t2) (D.4)

It is convenient to transform bi-local space (t1, t2) to (τ, z) in (3.19):

τ1 =
1

2
(t1 + t2) , τ2 =

1

2
(t3 + t4) (D.5)

z1 =
1

2
(t1 − t2) , z2 =

1

2
(t3 − t4) (D.6)

Then, one can show that

I(t1, t2) = −2e−iwτ1

π1/2J

∫
dpdz2

z2

sgn (p)sgn (w − p)√
|p||w − p|

ei(2p−w)(z2−z1)Zν(|wz2|) (D.7)

Using the integral representations of Bessel function

J0(x) =
2

π

∫ ∞
1

dt
sin(xt)√
t2 − 1

(x > 0) (D.8)

Y0(x) = − 2

π

∫ ∞
1

dt
cos(xt)√
t2 − 1

(D.9)

J0(x) =
2

π

∫ 1

0
dt

cosxt√
1− t2

, (D.10)

the integral with respect to p in (D.7) can be evaluated as follows.∫
dp

sgn (p)sgn (w − p)√
|p||w − p|

ei(2p−w)z = 2π[J0(wz) + Y0(wz)] (D.11)

Then, we have

I(t1, t2) = −4π1/2e−iwτ1sgn (w)

J

∫
du2

u2
[J0(u1 − u2)) + Y0(u1 − u2)]Zν(|u2|) (D.12)

where ui ≡ wzi (i = 1, 2). Using another integral representations of the Bessel functions

J0(x) =
2

π

∫ ∞
0

dt sin(x cosh t) (D.13)

Y0(x) = − 2

π

∫ ∞
0

dt cos(x cosh t) , (D.14)

7When the bi-local field is considered as a matrix in bi-local.
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one can show that for ν = 3
2 + 2n (n = 0, 1, 2, · · · ) and ν = ir (r > 0)∫

du2 [J0(u1 − u2) + Y0(u1 − u2)]
Zν2(|u2|)

u2
= −2sgn (u1)

ν
tan

πν

2
Zν(|u1|). (D.15)

Therefore, we have the identity

I(t1, t2) =
8π

1
2 tan

(
πν
2

)
Jν

e−iwτ1sgn (z1)Zν(|u1|) = −16π
1
2

3J
g(ν)uνw(τ1, z1) (D.16)

where we used g(ν) defined in [8]

g(ν) = − 3

2ν
tan

(πν
2

)
(D.17)
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