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Abstract: With the remarkable advances in vertical-cavity surface-emitting lasers (VCSELs) in recent
decades, VCSELs have been considered promising light sources in the field of optical wireless
communications. However, off-the-shelf VCSELs still have a limited modulation bandwidth to meet
the multi-Gb/s data rate requirements imposed on the next-generation wireless communication
system. Recently, employing machine learning (ML) techniques as a method to tackle such issues has
been intriguing for researchers in wireless communication. In this work, through a systematic analysis,
it is shown that the ML technique is also very effective in VCSEL-based visible light communication.
Using a commercial VCSEL and bidirectional long short-term memory (Bi-LSTM)-based ML scheme,
a high-speed visible light communication (VLC) link with a data rate of 13.5 Gbps is demonstrated,
which is the fastest single channel result from a cost-effective, off-the-shelf VCSEL device, to the best
of the authors’ knowledge.

Keywords: visible light communication (VLC); machine learning (ML); optical wireless communication
(OWC); long short-term memory (LSTM)

1. Introduction

With the advent of big-data technology and extremely fast computing speeds, machine
learning for data-intensive science has developed. Machine learning (ML) is a field of
artificial intelligent (AI) that automates the generation of models for data analysis, allowing
software to learn and find patterns based on data. This helps minimize human intervention
and accelerate decision making. In recent years, machine learning has served as a useful
technology in various fields such as gender recognition from facial images for security
systems or mobile devices [1], the analysis of financial fraud detection [2] and the prediction
of biological data [3]. Additionally, it is shown that machine learning is useful in many
areas of the agriculture industry, including crop management, livestock management,
water management and soil management [4]. Machine learning can contribute to both the
physical layer and the network layer in the field of optical communication as well [5–7].
It can also improve the performances in diverse fields such as physics [8], chemistry [9],
society [10], economy [11] and communication [7]. More introductory information about
the basic ideas of machine learning methods can be found in [12]. With the emergence
of the next generation communication networks, there has been a significant interest in
machine learning as a technology that can realize next-generation communication systems.
Adversarial machine learning (AML) in radio frequency (RF) wireless communications has
been studied for defending against cyberattacks, eventually developing a secure system for
the foundation of next-generation wireless communications [13,14].

To meet the requirements imposed on the next-generation wireless communication,
data rates that are an order of magnitude higher and have substantially lower latency,
compared to the existing network, should be provided. Optical wireless communication
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(OWC) and visible light communication (VLC) have been attractive solutions mainly due
to their license-free and high spectral efficiency [15]. There are two types of light sources
used in most OWC and VLC systems: light-emitting diodes (LED) and laser diodes (LD).
LEDs have a broad spectral width, and they have been widely deployed as lighting sources
due to their cost-effectiveness and high efficacy. LDs have a narrow spectral and can be
utilized to achieve higher data rates and longer transmission distances in VLC systems
thanks to their coherent characteristics. However, LDs are relatively expensive sources and
often require sophisticated temperature control. The modulation bandwidth of LEDs, in
general, ranges from a few MHz to tens of MHz, and that of LDs is orders of magnitude
higher. Additionally, it is useful to apply wideband auxiliary components to avoid the
additional bandwidth limitation on the light sources [16]. Using a single LED, a VLC
communication link with a data rate of 8 Gbps was reported [17], where a resonant cavity
LED with direct current-biased orthogonal frequency division multiplexing (DCO-OFDM)
was used. Employing a single GaN-based blue laser diode, the authors in [18] achieved a
data rate of 15 Gbps at a distance of 15 cm.

With the advancement of vertical-cavity surface-emitting laser (VCSEL) diodes in
recent decades, researchers have been exploring the potential of VCSEL as a light source
for OWC and VLC systems. VCSELs are cost-effective compared to other LDs and have a
faster modulation bandwidth than LEDs. They require a low driving current and provide
an excellent beam quality with a circular emission pattern, suitable for OWC and VLC [19].
Further, VCSELs’ short cavity results in a single longitudinal mode only. Therefore, VCSELs
do not suffer from kink phenomena in the optical L-I curve, whereas other semiconductor
lasers suffer from power instability and control problems [20]. A single channel data
rate of 12.5 Gbps using a VCSEL with 5.2 GHz of bandwidth was demonstrated with 16-
level quadrature amplitude modulation (QAM) OFDM modulation [21]. A bi-directional
wavelength remodulated single VCSEL link with a data rate of 10.6 Gbps for downstream
activity and 2 Mbps for upstream activity was demonstrated in [22]. However, typical
cost-effective commercial VCSELs have a sub–GHz modulation bandwidth. Considering
the demands imposed upon the efficient next-generation wireless network capable of data
rates beyond 10 Gbps, a low-cost VCSEL wireless link with advanced communication
schemes should be investigated.

More recently, there has been considerable interest in improving communication
quality by utilizing machine learning for VLC. In [23], a machine-learning-based low-cost
visible light positioning system (VLP) was introduced. Machine learning techniques were
also used to mitigate the LED’s non-linearity issue for an OFDM-based VLC system [24].
A long short-term memory (LSTM) network was also studied for processing random
sequential data [25–27].

In this work, through a series of experimental investigations, the effectiveness of
machine learning techniques in VCSEL-based VLC is investigated. In particular, using a
commercial VCSEL and bidirectional long short-term memory (Bi-LSTM)-based machine
learning schemes, a high-speed VLC link with a data rate of 13.5 Gbps and a 2 m link
distance is demonstrated. The rest of this work is organized as follows. Section 2 presents
the characteristics of VCSELs. In Section 3, the applied Bi-LSTM-augmented deep neural
network is introduced. Section 4 shows the proof-of-concept demonstration, showing
the results of multi-Gbps VCSEL-based VLC. Then, the discussions and conclusions are
presented in Section 5.

2. Characteristics of VCSEL
2.1. Principle of VCSEL

VCSELs emit a laser beam perpendicularly from the top surface. As shown in Figure 1,
the structure of the VCSEL can be configured with the top and bottom parts for the current
injection, the p-type and n-type mirrors and the active area between them. The distributed
Bragg reflectors (DBR) with thin dielectric materials and different reflectivity are stacked.
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Typically, these materials include layers of semiconductors with alloys or compositions
such as AlGaAs, AlGaInAs, InP or InGaAsP [20].
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By employing these multilayer reflectors, VCSELs can be used with thin-film lenses,
taking advantage of such a thin-layer structure [28]. When the reflectivity of the two mirrors
is adjusted differently, the light propagation direction can also be adjusted to diverge toward
the less reflective part. The active area makes a quantum well (QW), and, as shown in
the inset of Figure 1, by bonding different materials and the proportion of constituent
substances, the difference in the energy level between the elements is constructed. Hence,
the difference in the energy level generates photons with the corresponding wavelengths.
Then, it goes through the oxide layers.

For the infrared VCSELs, DBR pairs of InP/AlGaInAs (850 to 980 nm) or AlGaAs/AlGaAs
(1300 nm to 1550 nm) are used [20]. In [29], it was shown that the wave between 650 and
700 nm wavelengths can be obtained from the VCSEL with AlGaInP/GaInP MQW. Addi-
tionally, the authors in [30] showed blue VCSELs with five multiple quantum well (MQW)
layers emitting the 0.7 mW maximum outputs power at room temperature with a 1.5 mA
threshold current and a 3.3 V threshold voltage. Modifying the composition or utilizing
different materials for the purpose of enhancing the performance of VCSELs has been
actively investigated [31,32]. Further, there have been many studies exploiting the advan-
tages of VCSELs, such as its low cost, low threshold and the narrow beam, which are under
investigation in a wide range of applications [33–36].

2.2. Experimental Analysis of VCSELs’ Characteristics

This sub-section presents the characteristics of the off-the-shelf VCSEL (Thorlabs,
L670VH1) used for the characterization and VLC performance test. The VCSEL has a typical
center wavelength of 670 nm. The threshold current, operating current and corresponding
optical output are 0.6 mA, 2.5 mA and 1 mW, respectively. The beam divergence angle
(full-width-half-maximum) is 10 degrees.

Figure 2 shows the measured frequency response. A high-speed PIN photo-receiver
(New-Focus, 1591), arbitrary waveform generator (Tektronics, 70002B), and oscilloscope
(Tektronics, DPO70404C) are used for the experiment. The overall measurable bandwidth
of the testbed is ~4 GHz. A total of 21 frequency points are measured, which are extracted in
the frequency range of 2 MHz to 1 GHz for the frequency measurement. It is confirmed from
the measurement that the −3 dB bandwidth of the VCSEL device is 500 MHz. The value is
certainly more than an order of magnitude higher than that of typical LEDs, showing the
potential of VCSELs for high-speed modulation.
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Figure 2. VCSEL (L670VH1) frequency response.

The dynamic response to check the linearity of the VCSEL device and to find the
suitable driving condition is shown in Figure 3. The testbed is the same as the frequency
response measurement, except that three different levels of sinusoidal amplitudes (516 mV,
688 mV, 860 mV) are applied, while the DC bias is varied from 1.3 V to 1.5 V. The applied
frequency is 10 MHz, at which value the dynamic characteristics of the VCSEL device
are well observed. The output amplitude from the high-speed photo-receiver is captured
by the oscilloscope, and the received signal shape is observed. The other parameters
(such as the received optical power) are adjusted to monitor the response from the VCSEL
device purely.
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Overall, for the higher DC bias, the peak-to-peak levels of the observed output signal
are slightly reduced. This is due to the VCSEL’s nonlinear DC characteristics. This tendency
can be better seen with the smallest AC signal (516 mV). On the other hand, in the case
of a DC bias of 1.3 V (Figure 3a) and an AC signal of more than 688 mV, a clear lower
clipping is observed. This is due to the VCSEL’s threshold voltage level being at ~1 V.
By increasing the DC bias level to 1.4 V (Figure 3b), it can be seen that the AC signal of
688 mV no longer causes the lower clipping, since the lowest level applied to the VCSEL is
higher than the threshold voltage. For the same reason, Figure 3c shows no clipping even
with the 860 mV applied to the VCSEL. A higher received signal strength could result in
better communication performance; however, it could induce more nonlinear distortion.
Additionally, the inclusion of a certain amount of nonlinear distortion while utilizing
the high signal level could be beneficial, since it could lead to a higher signal-to-noise
ratio (SNR) if the level of nonlinearity is well-compensated, given the other deterioration
parameters in the system. The optimum amount of nonlinearity inclusion could depend
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on the applied communication schemes as well. These postulations are tested in the
LSTM-augmented deep neural network in the following sections.

3. Long Short-Term Memory Network

An LSTM network, a type of recurrent neural network (RNN), is a deep learning model
used for sequential data analysis [26]. LSTMs are designed to overcome the vanishing
gradient problem of RNN. For RNN, the longer the data sequence, the smaller the gradient
that involves the information used to update the weights and biases, which means that
learning is challenging. On the other hand, in the case of LSTMs, there is a cell state vector
that may prevent the gradient from vanishing. Using two unidirectional LSTM layers
simultaneously to generate a Bi-LSTM network, receiving inputs forwards and backwards
effectively increases the amount of information available on the network, possibly leading
to better performance [27]. Figure 4 shows the structure of the Bi-LSTM and LSTM units.
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Inside the LSTM unit, there are three gates that control the flow of data to better
preserve past information: forget gate ft, input gate it and output gate ot. Each gate has its
own weight and bias. The symbol W and the symbol b denote weight and bias, respectively,
and there are two activation functions: the sigmoid function σ and the hyperbolic tangent
function tanh. Because past values are constantly used recursively, information needs to be
normalized between −1 and 1 using a function.

W =


W f
Wi
Wc
Wo

, b =


b f
bi
bc
bo

 (1)
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σ(α) =
1

1 + e−α
, tanh(α) =

eα − e−α

eα + e−α
(2)

The forget gate calculates the information to forget in the cell and applies the current
input (xt) from the current time step and the previous hidden state ht−1 from the previous
time step to the sigmoid function to calculate the value between 0 and 1.

ft = σ
(

W f · [xt, ht−1] + b f

)
(3)

The input gate determines the data to be updated via the sigmoid function in a similar
way to the forget gate. The candidate cell state c̃t is the calculated value between −1 and 1
through the hyperbolic tangent function and is combined with it to be added to the current
cell state ct.

it = σ(Wi · [xt, ht−1] + bi) (4)

c̃t = tanh(Wc · [xt, ht−1] + bc) (5)

The current cell state ct can be calculated by using the results of the equation above,
multiplying ft and the previous cell state ct−1 to determine the data to forget and adding
the data to update. Then, the part of the cell state to be output is determined by ot. Based
on the cell state, the parameter to export as the current hidden state ht is specified. This ht
is again transferred to the next step and is calculated as the ht−1 of the next step.

ct= ft × ct−1 + it × c̃t (6)

ot = σ(Wo · [xt, ht−1] + bo) (7)

ht = ot × tanh(ct) (8)

4. Proof of Concept Demonstration
4.1. Experimental Set-Up

The experimental setup for a high-speed line-of-sight VLC link using a VCSEL (Thor-
labs, L670VH1) is illustrated in Figure 5. This experiment is performed under ordinary
indoor lighting. Two-level pulse amplitude modulation (2-PAM), also known as on-off-
keying (OOK), is generated by an arbitrary waveform generator (Tektronix, 70002B) con-
nected to the control PC. Amplified by a wideband amplifier (Mini-Circuits, ZHL-4240+)
with a frequency range from 10 to 4200 MHz, the generated communication signal is com-
bined with a suitable DC level by a bias tee (Mini-Circuit, ZFBT-6GW+), according to the
measured L-I curve of the VCSEL. Then, the generated electrical signal is applied to the
VCSEL, which is transformed into the optical signal. Optomechanical translation stages
and appropriate optics for both the transmitter and receiver are used to couple the light
into the fiber-pigtailed photoreceiver (New-Focus, model 1591). The distance between the
transmitter and receiver is set to 2 m. An oscilloscope (Tektronix, DPO70404C) captures
and samples the electrical signal from the photoreceiver and sends the data to the control
PC for offline signal processing via MATLAB. Subsequently, the recovered signal and the
demodulated bits are processed for the bit-error-rate (BER) performance test.
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4.2. Communication Test Result

To investigate the VLC performance with various driving conditions in the case of
OOK modulation, the BER performance and the received eye-diagrams at a data rate of
3 Gbps, with different peak-to-peak (AC) signals and biases (DC), are investigated. In
Figure 6a,b, it can be observed from the eye-diagrams that, for the same DC bias, when the
AC value is increased, the lower part is clipped due to it being driven below the threshold
voltage of the VCSEL, although the received signal strength (peak-to-peak) increases. The
eye-diagram in Figure 6c shows that, by applying a 1.5 VDC bias with a 688 mV peak-
to-peak, the received signal strength becomes similar to that in the case of 1.4 VDC with
516 mVpp, but it shows marginally improved eye-opening.
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Figure 7 illustrates the BER performances. It is confirmed that the performance tends
to improve by increased DC bias, regardless of the AC swing. The worst BER case is when
the AC is 860 mV with 1.3 VDC, as shown in Figure 6b. The best case is when the AC is
860 mV with 1.3 VDC (as shown in Figure 6b) and the corresponding data rate is ~3 Gbps,
satisfying the forward error correction (FEC) with a BER threshold of 3.8 × 10−3.
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Machine learning techniques can be applied to achieve a higher data rate, and the
investigated structure is shown in Figure 8. The model consists of a Sequence Input
Layer, two Fully Connected Layers, multiple Unidirectional LSTM or Bi-LSTM Layers,
and a Classification Layer. The number of LSTM or Bi-LSTM Layers can be optimized
empirically, considering the LSTM structure depicted in Figure 4. The model is trained
with data generated by the arbitrary waveform generator and the data received from the
photoreceiver. The data set is divided into a train set and a test set to train and evaluate
the network. The ‘Training data’ shown in Figure 8 indicates the generated data labeled
0 or 1. The symbol y denotes the received aliased data to be recovered, and the symbol x̂
denotes the recovered data. The training model is formed through the operation of several
layers in the network and a series of computations. Then, the data corrupted by noise and
interference are compensated by the network, and it is shown in Figure 8 as ‘Decoded data’.
Finally, the decoded data are evaluated by the test set. The training options and the values
used for the hyperparameters implemented to train the model are summarized in Table 1.

Table 1. The training options and the hyperparameters’ values.

Parameter Values

Optimizer Adam
Learning Rate 0.001

Number of Epochs 200
Gradient Threshold 1

Shuffle Once
Execution Environment GPU

Sequence Length Longest
Loss Function Cross-entropy

To explore the relationship between the waveform shape and the LSTM network, we
try to train the machine learning model, which includes a single LSTM layer with 300 LSTM
units, and classify the received signal by changing the AC and DC values. In Figure 9,
compared to the OOK case in Figure 7, the LSTM shows a noticeable BER performance
improvement in all cases. It is especially notable that, for the case of an AC of 860 mV and
a DC of 1.4 V (Figure 9b), the achieved data rate is improved to 8 Gbps from the previous
OOK result of 3 Gbps.
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Figure 9. BER performance according to different AC values with a single LSTM network at DC bias
of (a) 1.3 V, (b) 1.4 V, and (c) 1.5 V.

It is also found that there are optimum machine learning configurations for the tested
VCSEL-based VLC link. In particular, the type and depth of the layer and the number
of units affect the machine learning performance. Such configurations are optimized to
further increase the data rate. An AC of 860 mV with a DC of 1.4 V is applied to the VCSEL.
Figure 10a shows the BER performance according to the number of units in a single LSTM
layer. ‘Raw BER’ means the case without any machine learning method. There is a BER
improvement from 100 to 300 units, but the performance is slightly decreased compared to
the improvement from 300 to 500 units. The Bi-LSTM layers are also tested, as shown in
Figure 10b. It can be seen that the single Bi-LSTM layer outperforms the single LSTM layer,
and the triple Bi-LSTM layers show excellent performance, with a data rate of 13.5 Gbps,
satisfying the forward error correction (FEC) with a BER threshold of 3.8 × 10−3.
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5. Discussion and Conclusions

Since VCSELs have been developed quickly in recent decades, a number of studies
have shown VCSELs’ feasibility in a wide range of applications. In particular, in optical
wireless communication and visible light communication, VCSELs are considered one of
the most promising light sources due to their low manufacturing cost, high modulation
bandwidth and straightforward operation and management. In this work, to meet the
multi-Gb/s data rate requirements imposed on the next-generation wireless communication
system, the sub-GHz modulation bandwidth of the off-the-shelf VCSELs was successfully
compensated for by utilizing the bidirectional long short-term memory-based machine
learning scheme. To the best of the authors’ knowledge, the highest single channel data rate
(13.5 Gbps) with a 2 m link distance from a cost-effective commercial VCSEL device was
demonstrated. Additionally, the spectral efficiency (data rate/bandwidth) is much higher
than that in previous work. The best result reported in a previous work [21] using an OFDM
scheme showed 2.4 bps/Hz; however, the method introduced in this work has an efficiency
of 27 bps/Hz, which is ~11 times higher than that previously reported. Future work
includes further improving the data rate by applying other modulation and multiplexing
schemes and exploring other effective machine learning techniques for VCSEL-based visible
light communication networks, considering the efficiency of the machine learning process
at the same time. Additionally, in-depth analytic investigations of the chaos-theory-based
algorithms with less complexity in order to overcome the complex structure of modern
deep neural networks are potential research topics.
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Abbreviation
AC alternating current
AI artificial intelligent
AML adversarial machine learning
BER bit-error-rate
Bi-LSTM bidirectional long short-term memory
DBR distributed Bragg reflector
DC direct current
DCO-OFDM direct current-biased orthogonal frequency division multiplexing
FEC forward error correction
LD laser diode
LED light-emitting diode
L-I light output-current (I)
L-PAM L-level pulse amplitude modulation
LSTM long short-term memory
ML machine learning
MQW multiple quantum well
OOK on-off-keying
OWC optical wireless communication
QAM quadrature amplitude modulation
QW quantum well
RF radio frequency
RNN recurrent neural network
SNR signal-to-noise ratio
VCSEL vertical-cavity surface-emitting laser
VLC visible light communication
VLP visible light positioning system
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