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We discuss analytic fast-ion velocity distribution functions which are useful for basic plasma
modelling as illustrated for typical parameters of the future fusion plasma in the tokamak ITER. The
Maxwellian is by far the most widespread model for ions and electrons in tokamaks and stellarators.
The bi-Maxwellian and the drifting (bi-)Maxwellian are extensions allowing for anisotropy and bulk
plasma flow, respectively. For example, fast ions generated by wave heating in the ion cyclotron
range of frequencies are often described by bi-Maxwellians or so-called tail temperatures. The ring
distribution can serve as a basic building block for arbitrary distributions or as bump-on-tail in
stability studies. The isotropic slowing-down distribution is a good model for fusion α-particles.
The anisotropic slowing-down distribution occurs for anisotropic particle sources as is typical for
neutral beam injection. We physically motivate these distribution functions and present analytic
models in various coordinate systems commonly used by theorists and experimentalists. We further
calculate 1D projections of the distribution functions onto a diagnostic line-of-sight to gain insight
into measurements relying on the Doppler shift.

I. INTRODUCTION

Probably the most widely known velocity distribution
function of particles in all of physics is the Maxwellian
or Maxwell-Boltzmann distribution function which is on
the curriculum of most physics educations, see e.g. refer-
ences [1–3]. Maxwell’s ground-breaking idea was to de-
scribe the state of a gas by a distribution function f(v)
of velocities v. In his 1860 paper [4], he introduced his
distribution based on two requirements. First, the func-
tion should be spherically symmetric reflecting isotropy.
Second, the velocity components should be separable re-
flecting the independence of the three coordinate direc-
tions. The Maxwell distribution is the only distribution
fulfilling both requirements. (However, the velocity com-
ponents are not separable if relativistic effects are con-
sidered [3]). In 1867, he showed without reference to his
two original requirements that collisions do not change
his distribution [5]. Boltzmann showed in the following
decade that the Maxwellian is the most probable distri-
bution in an isolated system with a given particle number
and a given energy and that collisions will drive any dis-
tribution towards it, i.e. that it is the only stationary
solution [6, 7]. A collection of particles described by the
Maxwellian distribution is said to be in thermal equi-
librium which is an excellent approximation for rarefied
gases at moderate temperatures.
However, plasmas in tokamaks and stellarators are

never in complete thermal equilibrium. Fusion plasmas
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are much hotter than the environment and lose heat
rapidly. This heat loss must be balanced by a heat source
from fusion reactions or from auxiliary heating which pre-
vents the formation of a thermal equilibrium even in a
steady-state plasma. For example, the velocity distri-
bution function of fusion α-particles has a tail approxi-
mately of the form 1/v3 up to the birth velocity rather
than a Maxwellian tail [8–10]. The energetic particle pop-
ulations originating from neutral beam injection (NBI)
and electromagnetic wave heating in the ion cyclotron
range of frequencies (ICRF) are even highly anisotropic
in velocity space [11–15]. Nevertheless, Maxwellians have
often been assumed to approximate the bulk plasma with
success.

This tutorial reviews the Maxwellian distribution as
well as velocity distribution functions typical for plasma
scenarios with fusion or auxiliary heating: the drifting
Maxwellian and bi-Maxwellian, the ring distribution and
the isotropic and the anisotropic slowing-down distribu-
tions. In each case, we discuss the 1D projection of
the distribution which is highly important for diagnos-
tics viewing along a characteristic direction such as the
line-of-sight. These analytic velocity distribution func-
tions have many applications: to quickly model plasma
discharges, to interpret measurements with fusion plasma
diagnostics, to make theoretical investigations and com-
puter codes tractable, or to benchmark computer codes.
They can serve as first step to get an overview of a dis-
charge before turning to high-fidelity codes, and they
can aid diagnostic design in new tokamaks or stellara-
tors where the exact distribution function may not yet
be known.

We will introduce these common velocity distribution
functions in the most widespread coordinate systems in
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plasma physics. It is often not explicitly stated or obvious
what exactly a distribution function refers to. Experi-
mentalists tend to consider fully transformed distribution
functions which include all Jacobians and normalization
factors. Many theorists, however, tend to simply sub-
stitute convenient variables into a 3D Cartesian velocity
distribution function but not actually transform it to the
new variables.
Fully 3D functions are described in 3D Cartesian,

cylindrical and spherical coordinates. Velocity distribu-
tion functions in magnetized fusion plasmas are axisym-
metric about the magnetic field vector (sometimes called
gyrotropic) to a good approximation due to the fast gy-
ration of the charged particles. Axisymmetric functions
can be described by two coordinates which are often cho-
sen to be 2D Cartesian or (E, p)-coordinates. E is the
energy and

p =
v ·B
|v||B| (1)

is the pitch of the particle where v and B are the veloc-
ity and magnetic field vectors, respectively. (This defi-
nition may sometimes have a minus sign if the magnetic
field and the current point in opposing directions so that
co-current passing ions have positive pitch.) Sometimes
distributions are assumed to be isotropic as for example
the Maxwellian according to Maxwell’s 1860 requirement
[4]. Isotropic functions can be described by just one co-
ordinate, commonly the speed or the energy. Finally,
the distribution of projected velocities onto a particular
direction is another important 1D description for many
diagnostics. The underlying velocity distribution is usu-
ally anisotropic to some degree. Hence some information
is lost in the projection.
This paper is organized as follows. Section II in-

troduces the various coordinate systems used in fusion
plasma physics. Section III transforms the Maxwellian to
these coordinate systems. Section IV discusses the drift-
ing bi-Maxwellian distribution and section V the topo-
logically different ring distribution which is described by
a very similar equation. Section VI reviews the slowing
down of particles with isotropic and anisotropic parti-
cle sources. Section VII briefly outlines a model for the
global phase-space distribution function parametrized in
three constants of motion of a particle. Section VIII con-
cludes this tutorial.

II. DISTRIBUTION FUNCTIONS IN VARIOUS

COORDINATES

In general, phase-space distribution functions are six-
dimensional, consisting of three position-space dimen-
sions and three velocity-space dimensions. The phase-
space distribution f6D(x,v) specifies the number of par-
ticles dN in an infinitesimal phase-space volume (dx, dv):

dN = f6D(x,v)dxdv. (2)

The units of f6D are [s3/m6]. In this tutorial we
consider local velocity distribution functions, such that
only the three velocity-space dimensions are relevant.
The velocity-distribution function in the infinitesimal
position-space volume element dx is defined by

dN = f3D(v)dvdx. (3)

Dividing both sides by dx introduces the density dn in
the infinitesimal velocity-space volume dv

dn = f3D(v)dv. (4)

The units of f3D are also [s3/m6]. The density is ob-
tained by integration which provides the normalization
condition for the distribution function:

n =

∫

f3D(v)dv. (5)

Various representations of distribution functions are com-
monly used in the plasma physics literature. We first
consider convenient 3D Cartesian velocity coordinates for
fusion plasmas. Particles in magnetized plasmas gyrate
quickly about the magnetic field vector so that veloc-
ity distribution functions are axisymmetric about B to a
good approximation. Hence it is advantageous to align
one of the coordinate axes with the magnetic field vector.
This axis is called v‖. v⊥1 and v⊥2 are the velocity com-
ponents perpendicular to the magnetic field. The velocity
distribution function f3D

Car(v‖, v⊥1, v⊥2) gives the density
in an infinitesimal velocity-space volume:

dn = f3D
Car(v‖, v⊥1, v⊥2)dv‖dv⊥1dv⊥2. (6)

Axisymmetric functions do not depend on the gyrophase
γ. Hence it is advantageous to introduce the cylindrical
coordinates (v‖, v⊥, γ) such that

v⊥1 = v⊥ cos γ, (7)

v⊥2 = v⊥ sin γ. (8)

v⊥ is the perpendicular velocity, which is related to v⊥1

and v⊥2 by

v⊥ =
√

v2⊥1 + v2⊥2. (9)

Substitution of v⊥1 and v⊥2 gives a convenient represen-
tation of 3D axisymmetric functions in two coordinates,
f3D
Car(v‖, v⊥), since the ignorable gyrophase γ drops out.
The density in an infinitesimal velocity-space volume is

dn = f3D
Car(v‖, v⊥)dv‖dv⊥1dv⊥2. (10)

This substitution does not correspond to a transforma-
tion of the velocity distribution function to the cylin-
drical coordinates (v‖, v⊥.γ). The distribution function

f3D
Car(v‖, v⊥) still represents the 3D Cartesian velocity
space density but it is parametrized in cylindrical co-
ordinates. The velocity distribution function could for-
mally be written as f3D

Car(v‖, v⊥(v⊥1, v⊥2)) to state the
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dependence of v⊥ on the underlying Cartesian coordi-
nates v⊥1 and v⊥2 (equation 9) but this is not usually
done. For a full transformation to cylindrical coordi-
nates we also need to express the velocity-space volume
element in cylindrical coordinates. The Jacobian of the
transformation from Cartesian to cylindrical coordinates
is

J = det

∣

∣

∣

∣

∣

∂(v‖, v⊥1, v⊥2)

∂(v‖, v⊥, γ)

∣

∣

∣

∣

∣

= v⊥, (11)

so that the density in the small velocity-space volume is
given by

dn = f3D
Car(v‖, v⊥)v⊥dv‖dv⊥dγ. (12)

Integration over γ conveniently reduces the number of
dimensions. The density is then given by

dn = 2πv⊥f
3D
Car(v‖, v⊥)dv‖dv⊥. (13)

Distribution functions computed with the
TRANSP/NUBEAM code [16], which is implemented
at most tokamaks, are usually presented in (E, p)-
coordinates. This coordinate system is probably the
most widespread among experimentalists working with
velocity or distribution functions. The 2D coordinate
transformations between (v‖, v⊥) and (E, p) are

E =
1

2
m
(

v2‖ + v2⊥

)

, v‖ = p

√

2E

m
,

p =
v‖

√

v2‖ + v2⊥

, v⊥ =
√

1− p2

√

2E

m
(14)

where m is the particle mass. The definition of the pitch
in equation (1) and the transformation in equation (14)
show that the pitch p ∈ [−1; 1]. It is the cosine of the
so-called pitch angle. The Jacobians for the forward and
backward transformations are

Jv‖,v⊥→E,p = det

∣

∣

∣

∣

∣

∂(v‖,v⊥)

∂(E,p)

∣

∣

∣

∣

∣

= 1

m
√

1−p2
,

JE,p→v‖,v⊥
= det

∣

∣

∣

∣

∣

∂(E,p)
∂(v‖,v⊥)

∣

∣

∣

∣

∣

= mv⊥
√

v2

‖
+v2

⊥

. (15)

The density in the infinitesimal area dEdp is

dn = 2π

√

2E

m3
f3D
Car

(

p

√

2E

m
,
√

1− p2

√

2E

m

)

dEdp.

(16)

(However, the units of the distribution in the actual out-
put file of TRANSP are [1/cm3/eV/(dΩ/4π)] where dΩ
is the solid angle. As dΩ = 2πdp, dΩ/4π = dp/2, so
that we have to divide the TRANSP output by two to
obtain the distribution function in the often used (E, p)-
coordinates.)

Sometimes the speed is used instead of the energy. The
speed is

v =
√

v2‖ + v2⊥1 + v2⊥2. (17)

The 2D coordinate transformations between (v‖, v⊥) and
(v, p) are

v =
√

v2‖ + v2⊥, v‖ = pv,

p =
v‖

√

v2‖ + v2⊥

, v⊥ =
√

1− p2v. (18)

The Jacobians for forward and backward transformations
between (v‖, v⊥) and (v, p) are

Jv‖,v⊥→v,p =
v

√

1− p2
, Jv,p→v‖,v⊥ =

v⊥
v2‖ + v2⊥

.(19)

The density in the infinitesimal area dvdp is

dn = 2πv2f3D
Car

(

pv,
√

1− p2v

)

dvdp. (20)

One can also arrive at this result by transforming the
density in (E, p)-coordinates (equation 16) to (v, p)-
coordinates. These coordinates are related by the usual
definition of kinetic energy

E =
1

2
mv2. (21)

The Jacobians for forward and backward transformations
between speed and energy are

Jv→E =
dv

dE
=

1√
2mE

, JE→v =
dE

dv
= mv. (22)

Whereas gyrotropic functions are described by two vari-
ables, isotropic distribution functions are described by
just one variable, most often the speed or the energy. If
the spherical coordinates (v, η, ζ) are substituted into an
isotropic distribution function, the two angles drop out
and we can write the isotropic distribution function as
f3D
Car(v). This function represents a 3D Cartesian veloc-
ity space density parametrized in spherical coordinates.
The density in the infinitesimal velocity-space volume el-
ement is

dn = v2 sin ζf3D
Car(v)dvdηdζ (23)

where v2 sin ζ is the Jacobian of the transformation from
Cartesian to spherical coordinates. As the isotropic func-
tion f3D

Car(v) does not depend on the angles, the density
can be expressed as function of the speed alone by inte-
gration over the angles:

dn = 4πv2f3D
Car(v)dv. (24)

The energy is another popular coordinate. In terms of
energy, we get

dn = 4π

√

2E

m3
f3D
Car

(
√

2E

m

)

dE. (25)
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The distribution functions transformed to these various
coordinates can be related to the 3D Cartesian coordinate
system. The prefactor contains the relevant Jacobian and
a factor 2π or 4π from the integration over angle or solid
angle, respectively.

f3D
cyl (v‖, v⊥) = v⊥f

3D
Car(v‖, v⊥) (26)

f2D
Car(v‖, v⊥) = 2πv⊥f

3D
Car(v‖, v⊥) (27)

f2D
vp (v, p) = 2πv2f3D

Car

(

pv,
√

1− p2v
)

(28)

f2D
Ep (E, p) = 2π

√

2E

m3
f3D
Car

(

p

√

2E

m
,
√

1− p2

√

2E

m

)

(29)

f1D
v (v) = 4πv2f3D

Car(v) (30)

f1D
E (E) = 4π

√

2E

m3
f3D
Car

(
√

2E

m

)

(31)

Velocity or energy distribution functions common in the
plasma physics literature may or may not include the fac-
tor 2π or 4π from the integration over ignorable angle(s)
and may or may not include the Jacobian from Carte-
sian coordinates to the various coordinate systems. As
usually the coordinate system or the infinitesimal volume
element is not explicitly stated, it may not be immedi-
ately obvious which coordinate system an author has in
mind. Theorists will often work with the 3D Cartesian
velocity distribution function parametrized in cylindrical
coordinates. Experimentalists will often prefer to include
the Jacobian and the integral over the ignorable angle(s)
as implemented in the widespread TRANSP/NUBEAM
code. Inclusion of all terms is also necessary to find the
distribution function in these variables. For example, the
1D Maxwellian speed distribution and the Maxwellian
energy distributions do contain the relevant Jacobians
and the factor 4π in the vast majority of textbooks on
basic physics and statistical physics, e.g. reference [2].
In diagnostic applications we are often interested in

velocity distribution functions projected onto one partic-
ular direction, often given by the line-of-sight of the di-
agnostic. A few examples are charge-exchange recombi-
nation spectroscopy including fast-ion Dα-spectroscopy,
Thomson scattering and collective Thomson scattering,
neutron emission spectroscopy and γ-ray spectroscopy
[17]. The projection of isotropic functions is independent
of the direction and can hence be found by integration
of f3D(v) over two coordinates as often shown in text-
books. An arbitrary function in 3D velocity space is in
general projected according to

g(u) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f3D(v)δ(v · û− u)dv (32)

where g(u) is the projected velocity distribution func-
tion, u is the velocity projected onto the unit vector û in
the projection direction and δ is the Dirac δ-function. For
axisymmetric 3D functions in velocity space, the integra-
tion over the ignorable gyroangle can be calculated ana-

(a)f3D
Car

(v‖, v⊥1, v⊥2)

(b)f3D
Car

(v‖, v⊥)

(c)f2D
Car

(v‖, v⊥)

(d)f2D
Ep

(E)

FIG. 1. Maxwellian with ITER-relevant parameters T =
20 keV and n = 1020m−3 in various coordinate systems.
(a) f3D

Car(v‖, v⊥1, v⊥2). (b) f3D
Car(v‖, v⊥). (c) f2D

Car(v‖, v⊥).

(d) f2D
Ep (E). The units in (a) and (b) are [s3/m6], in (c)

[106 s2/m5], and in (d) [1014/(eV m3)]. The isotropy of the
Maxwellian is reflected in the concentric isolevels in (a) and
(b) and in the independence of the function on the pitch in
(d). However, in (c) the Jacobian v⊥ conceals the isotropy
as f2D

Car approaches zero close to the v‖-axis where v⊥ → 0.

Likewise, f2D
Ep (E) approaches zero for E → 0.
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lytically using so-called weight functions [18]. In (v‖, v⊥)-
space and in (E, p)-space, equation (32) respectively be-
comes [19]

g(u, φ) =

∫ ∞

0

∫ ∞

−∞

wCar(v‖, v⊥, u, φ)f
2D
Car(v‖, v⊥)dv‖dv⊥,

g(u, φ) =

∫ ∞

0

∫ 1

−1

wEp(E, p, u, φ)f2D
Ep (E, p)dpdE,

(33)

where φ is the angle between the unit vector in projec-
tion direction û and the magnetic field. One angle is
sufficient to describe the projection direction due to the
axisymmetry. The weight function in (v‖, v⊥)-space and
in (E, p)-space is, respectively, [19]

wCar(v‖, v⊥, u, φ) =
1

πv⊥ sinφ

√

1−
(

u−v‖ cosφ

v⊥ sinφ

)2
,

wEp(E, p, u, φ)

=
1

π
√

(1− p2)2E/m sinφ

√

1−
(

u/
√

2E/m−p cosφ√
1−p2 sinφ

)2
.

(34)

This completes the discussion of the most common veloc-
ity or energy distribution functions encountered in the fu-
sion plasma physics literature. Lastly, we specify the lim-
its to obtain the full densities from each function, which
provides us with a normalization condition that we will
enforce for all distributions in the following. The den-
sity is in each case obtained by integration over velocity-
space:

n =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f3D
Car(v‖, v⊥1, v⊥2)dv‖dv⊥1dv⊥2,

(35)

n =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

f3D
Car(v‖, v⊥)dv‖dv⊥1dv⊥2, (36)

n =

∫ 2π

0

∫ ∞

0

∫ ∞

−∞

f3D
cyl (v‖, v⊥)dv‖dv⊥dγ, (37)

n =

∫ ∞

0

∫ ∞

−∞

f2D
Car(v‖, v⊥)dv‖dv⊥, (38)

n =

∫ 1

−1

∫ ∞

0

f2D
Ep (E, p)dEdp, (39)

n =

∫ 1

−1

∫ ∞

0

f2D
vp (v, p)dvdp, (40)

n =

∫ ∞

0

f1D
v (v)dv, (41)

n =

∫ ∞

0

f1D
E (E)dE, (42)

n =

∫ ∞

−∞

g1D(u)du. (43)

Alternatively, one may enforce that the respective inte-
gral gives unity to obtain a probability density function.

III. MAXWELLIAN IN VARIOUS

COORDINATE SYSTEMS

We first illustrate the transformation of velocity distri-
bution functions to the coordinate systems discussed in
the previous section for an ordinary Maxwellian, which
is perhaps the most widely known distribution function
in physics and which is therefore well-suited as first prac-
tical example. It can be written as

f3D(v) =
n

π3/2v3t
exp

(

−v
2

v2t

)

(44)

where vt is the thermal speed

vt =
√

2T/m. (45)

T is the temperature in units of energy. The conversion
from Kelvin to Joules is done using Boltzmann’s constant
k = 1.38 × 10−23 J/K, and from electronvolt to Joules
using 1.6× 10−19 J/eV. The prefactor of the exponential
ensures that the integral over 3D velocity space gives the
density. The Maxwellian can be written in 3D Cartesian
coordinates as

f3D
Car(v‖, v⊥1, v⊥2) =

n

π3/2v3t
exp

(

−
v2‖ + v2⊥1 + v2⊥2

v2t

)

.

(46)

A slice of this function with v⊥2 = 0 is illustrated in
figure 1(a). The parameters are set to model a typical
plasma in ITER. The density is obtained from the triple
integral in equation 35 which is easily solved since it can
be separated into the product of three identical integrals
of the form

∫ ∞

−∞

exp

(

−v2x
v2t

)

dvx =
√
πvt (47)

so that equation (35) is obeyed.
Due to the axisymmetry in magnetized plasmas, we

can describe the Maxwellian in (v‖, v⊥)-coordinates:

f3D
Car(v‖, v⊥) =

n

π3/2v3t
exp

(

−
v2‖ + v2⊥

v2t

)

. (48)

As mentioned in the previous section, this represen-
tation refers to a 3D Cartesian velocity space density
parametrized in cylindrical coordinates. The Maxwellian
in (v‖, v⊥) coordinates is illustrated in figure 1(b). Note
that (v‖, v⊥1, v⊥2) ∈ (−∞;∞) whereas v⊥ ∈ [0;∞). The
Maxwellian fully transformed to 3D cylindrical coordi-
nates is

f3D
cyl (v‖, v⊥) =

nv⊥
π3/2v3t

exp

(

−
v2‖ + v2⊥

v2t

)

. (49)
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Equations (48) and (49) differ by v⊥ which is the Jaco-
bian of the transformation from Cartesian to cylindrical
coordinates. However, equation (49) is not often used
in this form, but it is integrated over the gyroangle γ
to obtain the Maxwellian in a 2D Cartesian coordinate
system as f2D

Car(v‖, v⊥) with v⊥ > 0 and no implied third
direction:

f2D
Car(v‖, v⊥) =

2nv⊥√
πv3t

exp

(

−
v2‖ + v2⊥

v2t

)

.

(50)

The Maxwellian in this 2D Cartesian coordinate system
is illustrated in figure 1(c). The isotropy in velocity space
is not apparent in 2D (v‖, v⊥)-coordinates due to the Ja-
cobian v⊥ which is presumably why the representation in
figure 1(b) is often preferred.
The Maxwellian in 2D (E, p)-space is after transforma-

tion according to equations (14) and (15)

f2D
Ep (E) = n

√

E

πT 3
exp

(

−E

T

)

(51)

where the ignorable pitch does not appear due to
isotropy. The Maxwellian in (E, p)-coordinates is illus-
trated in figure 1(d).
The Maxwellian in (v, p)-coordinates is

f2D
vp (v) =

2nv2√
πv3t

exp

(

−v2

v2t

)

(52)

where again p does not appear.
Next, we turn to 1D descriptions in terms of the speed,

the energy and the projected velocity. These are useful in
many physical situations other than magnetized plasma
and are therefore often covered in textbooks of basic and
statistical physics. The Maxwellian in 3D Cartesian ve-
locity space parametrized in the spherical coordinates
(v, η, ζ) is

f3D
Car(v) =

n

π3/2v3t
exp

(

−v2

v2t

)

. (53)

The Maxwellian fully transformed to 3D spherical coor-
dinates is

f3D
sph(v, ζ) =

nv2 sin ζ

π3/2v3t
exp

(

−v2

v2t

)

. (54)

Integration over η and ζ but not over v immediately gives
the 1D distribution of speeds

f1D
v (v) =

4nv2√
πv3t

exp

(

−v2

v2t

)

(55)

in units [s/m4]. The energy distribution or energy spec-
trum for the Maxwellian is obtained from equation (55)
by coordinate transformation according to equation (22):

f1D
E (E) = 2n

√

E

πT 3
exp

(

−E

T

)

. (56)

Equations (55) and (56) can also be derived from, re-
spectively, equations (52) and (51) by integration over
the pitch, which gives a factor two since the Maxwellian
is isotropic and does not depend on the pitch:

f1D
E (E) =

∫ 1

−1

f2D
Ep (E, p)dp = 2f2D

Ep (E), (57)

f1D
v (v) =

∫ 1

−1

f2D
Ep (v, p)dp = 2f2D

vp (v). (58)

Equations (57) and (58) hold for any isotropic velocity
distribution function.

Lastly, the 1D projection of the Maxwellian is highly
important for the many diagnostics relying on the
Doppler shift. As the Maxwellian is isotropic, the pro-
jection is the same in any arbitrary direction described
by the unit vector û. As the three perpendicular coordi-
nates are separable, we can hence compute the projected
velocity distribution function onto any coordinate axis
by effecting only two of the three integrals:

g(u) =
n√
πvt

exp

(

−u2

v2t

)

. (59)

The 1D distribution of projected velocities u has the form
of a 1D Maxwellian for any direction. We note that u ∈
(−∞;∞) whereas v, E ∈ [0;∞).

This completes the transformation of the ordinary
Maxwellian to the most common velocity space and en-
ergy space coordinate systems in fusion plasma physics
and the diagnostically important projection onto a par-
ticular direction. The next section gives these equations
for a drifting bi-Maxwellian.

IV. DRIFTING BI-MAXWELLIAN

In magnetized fusion plasmas the ions are usually not
in thermal equilibrium, but they are anisotropic to some
degree. One way to allow departure from thermal equi-
librium is to allow different temperatures in parallel and
perpendicular directions with respect to the magnetic
field, for example as consequence of anisotropic plasma
heating schemes [20]. ICRF couples to the gyration of the
ions which occurs in the perpendicular direction. This
increases the velocity components perpendicular to the
magnetic field. NBI can also heat preferentially in paral-
lel or perpendicular directions. In such cases we can think
of a parallel temperature T‖ and a perpendicular temper-
ature T⊥ in a bi-Maxwellian velocity distribution func-
tion [13, 21–25]. The very large perpendicular tempera-
ture obtained by ICRF heating is sometimes called the
tail temperature. The plasma may also drift as a whole
relative to the coordinate system. Since drift as a whole
does not change the equilibrium, it can be introduced in
a Galilean transformation [2]. We start by considering
the completely arbitrarily drifting ’tri-Maxwellian’ with
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three temperatures in 3D Cartesian coordinates

f3D
Car(v‖, v⊥1, v⊥2) =

n

π3/2vt,‖vt,⊥1vt,⊥2

× exp

(

− (v‖ − vd‖)
2

v2t,‖
− (v⊥1 − vd⊥1)

2

v2t,⊥1

− (v⊥2 − vd⊥2)
2

v2t,⊥2

)

(60)

where

vt,‖ =
√

2T‖/m, (61)

vt,⊥1 =
√

2T⊥1/m, (62)

vt,⊥2 =
√

2T⊥2/m. (63)

Equation (60) is not typical for a magnetized plasma
since the temperatures in the two perpendicular direc-
tions are the same due to the fast gyration. The basic
assumption of the bi-Maxwellian is hence that T⊥1 =
T⊥2 = T⊥ whereas T‖ is allowed to be different. The
corresponding thermal velocity is defined as

vt,⊥ =
√

2T⊥/m (64)

and hence vt,⊥1 = vt,⊥2 = vt,⊥. Further, one may align
one of the perpendicular coordinate directions with the
perpendicular drift velocity component without loss of
generality, for example vd⊥1 = vd⊥ and vd⊥2 = 0:

f3D
Car(v‖, v⊥1, v⊥2) =

n

π3/2vt,‖v
2
t,⊥

× exp

(

− (v‖ − vd‖)
2

v2t,‖
− (v⊥1 − vd⊥)

2 + v2⊥2

v2t,⊥

)

.

(65)

Substitution of cylindrical coordinates according to equa-
tions 8 gives:

f3D
Car(v‖, v⊥, γ) =

n

π3/2vt,‖v
2
t,⊥

× exp

(

− (v‖ − vd‖)
2

v2t,‖
− v2⊥ − 2v⊥vd⊥ cos γ + v2d⊥

v2t,⊥

)

.

(66)

In either coordinates, the arbitrarily drifting bi-
Maxwellian is described by three coordinates. The gyro-
angle γ appears in equation (66) because any perpendicu-
lar drift, which is common in magnetized plasma, breaks
the axisymmetry in the lab frame. The axisymmetry can
be restored by a coordinate transformation to the guid-
ing center frame in the perpendicular direction such that
vd⊥ = 0.
Parallel drift does not break the axisymmetry. The

purely parallel-drifting bi-Maxwellian is also a useful
model in many plasma scenarios since drift in the paral-
lel direction is often much larger than drift in the per-
pendicular direction in the lab frame. For vd⊥ = 0 the
gyroangle γ drops out and we obtain the axisymmetric

(about B) parallel-drifting bi-Maxwellian parameterized
in cylindrical coordinates

f3D
Car(v‖, v⊥) =

n

π3/2vt,‖v
2
t,⊥

exp

(

− (v‖ − vd‖)
2

v2t,‖
− v2⊥

v2t,⊥

)

(67)

In the 3D cylindrical coordinate representation including
the Jacobian we get

f3D
cyl (v‖, v⊥) =

nv⊥
π3/2vt,‖v

2
t,⊥

exp

(

− (v‖ − vd‖)
2

v2t,‖
− v2⊥

v2t,⊥

)

.

(68)

This representation is often not as useful as the 3D Carte-
sian phase-space density where it is easier to spot any
anisotropy in the parallel and perpendicular tempera-
tures in a graph. In 2D Cartesian (v‖, v⊥)-space, the
parallel-drifting bi-Maxwellian is

f2D
Car(v‖, v⊥) =

2nv⊥√
πvt,‖v

2
t,⊥

exp

(

− (v‖ − vd‖)
2

v2t,‖
− v2⊥

v2t,⊥

)

,

(69)

and in 2D (E, p)-space according to equations (14)
and (15)

f(E, p) = n

(

E

πT 2
⊥T‖

)1/2

× exp






−

(

p
√
E −

√

m
2 vd‖

)2

T‖
− (1− p2)E

T⊥






. (70)

The isotropic Maxwellians from section III can be recov-
ered by setting T = T‖ = T⊥ and vd‖ = 0. The effects
of drift and temperature anisotropy for the drifting bi-
Maxwellian are shown in the various coordinate systems
in figure 2 as compared to the nominal ITER scenario
from figure 1.
It is straightforward to integrate equation (70) over the

pitch to obtain the energy spectrum of the bi-Maxwellian.
But since the bi-Maxwellian is a 2D function, the energy
spectrum and the speed distribution do not appear to
be directly useful. However, the 1D projection of the bi-
Maxwellian is important to understand diagnostics re-
lying on the Doppler shift [25]. The 1D projection of
the isotropic Maxwellian was given in section III based
on the isotropy of the function. The 1D projection of the
anisotropic bi-Maxwellian unsurprisingly does depend on
the direction and is hence not as straightforward to com-
pute. Nevertheless, the integrals in equation (33) can
be solved analytically for axisymmetric bi-Maxwellians,
i.e. bi-Maxwellians without perpendicular drift [25]. Any
perpendicular drift can be handled by Galilean transfor-
mations. After the Galilean transformations and integra-
tion, we find that an arbitrarily drifting bi-Maxwellian
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(a)f3D
Car

(v‖, v⊥) (b)f3D
Car

(v‖, v⊥)

(c)f2D
Car

(v‖, v⊥) (d)f2D
Car

(v‖, v⊥)

(e)f2D
Ep

(E, p) (f)f2D
Ep

(E, p)

FIG. 2. Drifting Maxwellians and bi-Maxwellians in three coordinate systems. The baseline parameters are T = 20 keV and
n = 1020m−3 as in figure 1. However, in (a), (c), and (e) we set vd = 3× 105m/s, and in (b), (d), and (f) we set T‖ = 10 keV
and T⊥ = 20 keV. Drift is reflected in the translation in v‖-direction for (v‖, v⊥)-coordinates and in the bias towards positive
p in (E, p)-coordinates. Temperature anisotropy is reflected in the departure from circular shape in (b) and from straight lines
in (f).

has an intuitive 1D projection [25]:

g(u) = n

(

m

2πTu

)1/2

exp

(

−m (u− ud)
2

2Tu

)

. (71)

where we have introduced an effective temperature in the
u-coordinate along the line-of-sight

Tu = T⊥ sin2 φ+ T‖ cos
2 φ (72)

and an effective u-drift

ud = vd‖ cosφ+ vd⊥ cosβ (73)

where β is the angle between the perpendicular drift and
the line-of-sight. Equation (71) thus has the form of a
drifting 1DMaxwellian in the projected velocity u. Equa-
tion (71) relates the drifting 1D Maxwellian often used
in temperature and drift velocity (so-called ’rotation’)

measurements to an underlying group of 2D arbitrar-
ily drifting bi-Maxwellians with the same 1D projection.
This ambiguity can only be resolved by additional in-
formation, for example an additional measurement. 1D
projections of a drifting bi-Maxwellian along various di-
rections are compared in figure 3. The anisotropic bi-
Maxwellian has a symmetric projection perpendicular to
the magnetic field. The effect of parallel drift is largest
for φ = 0◦.

V. RING DISTRIBUTION

In magnetic fusion plasmas, it is often undesirable that
the velocity distribution function has a local maximum
at large velocities, a situation termed bump-on-tail. A
bump-on-tail is a source of free energy that can drive
plasma instabilities. Such a bump-on-tail may be de-
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FIG. 3. 1D projections at various projection angles of a bi-
Maxwellian with drift parallel to the magnetic field. The more
parallel the view, the narrower the function due to the smaller
temperature, and the larger the shift in u due to the parallel
drift velocity.

scribed by a ring distribution which is sometimes done
in stability calculations [26, 27]. A Gaussian ring distri-
bution in the various coordinate systems is illustrated in
figure 4. A ring distribution can also be used as model
for fast ions immediately after an NBI is switched on.
Right after birth the NBI ions have the velocity of the
beam, but a ring distribution is formed quickly in 3D
velocity space due to the gyration of the ions. Lastly,
the ring distribution can serve as a basic building block
for arbitrary velocity distribution functions which can be
constructed by adding ring distributions with various ve-
locities [14, 19, 28].
As an idealized model, we can first consider the cold

ring distribution [29, 30]. In this case the Gaussian in the
zero-width limit is replaced by the Dirac δ-function. The
cold ring can be represented as a single point in 2D veloc-
ity space. In 3D Cartesian, 3D cylindrical, 2D Cartesian
and (E, p)-coordinates the cold ring distribution is

f3D
Car(v‖, v⊥) =

n

2πv⊥
δ(v‖ − v0‖)δ(v⊥ − v0⊥), (74)

f3D
cyl (v‖, v⊥, γ) =

n

2π
δ(v‖ − v0‖)δ(v⊥ − v0⊥), (75)

f2D
Car(v‖, v⊥) = nδ(v‖ − v0‖)δ(v⊥ − v0⊥), (76)

f2D
Ep (E, p) = nδ(E − E0)δ(p− p0). (77)

The energy spectrum and the 1D speed distribution are
obtained by integrating equation (77) over the pitch and
by transforming to the speed:

f1D
E (E) = nδ(E − E0) (78)

f1D
v (v) = nδ(v − v0) (79)

The pitch information is lost in these functions, such that
these 1D representations not necessarily represent ring
distributions, but other 2D functions can have the same
energy and speed spectra.

The 1D projection of the cold ring distribution is of
great interest for diagnostics relying on the Doppler shift
because it shows the footprint of an ion at a particular
point in velocity space in the measurable spectrum [19,
28]. Substitution of equation (76) into equation (33) and
integration gives

g(u) =
n

πv0⊥ sinφ

√

1−
(

u−v0‖ cosφ

v0⊥ sinφ

)2
. (80)

Equation (80) is proportional (by a factor n) to the prob-
ability density function in u of the projection equation
[19]

u = v0‖ cosφ+ v0⊥ sinφ cos γ. (81)

The distribution function is centered at v0‖ cosφ and has
a width of 2v0⊥ sinφ since cos γ ∈ [−1; 1]. An example
of the projected ring distribution appears in figure 5.
A warm ring distribution is obtained by replacing the

Dirac δ-function by the normal distribution [31–33]. The
scaling follows from the requirement that the integral
over velocity space gives the density. We obtain in 2D
Cartesian coordinates

f2D
Car(v‖, v⊥) =

2n

πw‖w⊥

(

erf
(

v0⊥

w⊥

)

+ 1
)

× exp

(

− (v‖ − v0‖)
2

w2
‖

− (v⊥ − v0⊥)
2

w2
⊥

)

,

(82)

and in 3D Cartesian velocity space parametrized in cylin-
drical coordinates

f3D
Car(v‖, v⊥) =

n

π2w‖w⊥v⊥

(

erf
(

v0⊥

w⊥

)

+ 1
)

× exp

(

− (v‖ − v0‖)
2

w2
‖

− (v⊥ − v0⊥)
2

w2
⊥

)

(83)

where w‖ and w⊥ are the Gaussian widths of the ring in
parallel and perpendicular directions, respectively. Here
the error function appears because the normal distribu-
tion is restricted to v⊥ > 0. For v0⊥ ≫ w⊥ the scal-
ing factor in equation (82) approaches n/(πw‖w⊥) corre-
sponding to the scaling for normal distributions that are
not cut off. Finally, we transform the ring distribution
to (E, p)-coordinates:

f2D
Ep (E, p) =

2n

πw‖w⊥

(

erf
(

v0⊥
w⊥

)

+ 1
)

1

m
√

1− p2

× exp

(

− (p
√

2E/m− v0‖)
2

w2
‖

− (
√

(1− p2)2E/m− v0⊥)
2

w2
⊥

)

.

(84)
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(a)f3D
Car

(v‖, v⊥1, v⊥2) (b)f3D
Car

(v‖, v⊥)

(c)f2D
Car

(v‖, v⊥) (d)f2D
Ep

(E, p)

FIG. 4. Ring distribution [a.u.] in various coordinate systems. The ring distributions in 3D (b) and 2D (c) look similar but
in the 2D distribution a small bias towards large velocities is introduced by the factor 2πv⊥. In (E, p)-coordinates the ring
distribution looks fairly distorted.

FIG. 5. 1D projections of a cold ring distribution and a warm
ring distribution where the δ-function is replaced by a Gaus-
sian function in 2D (v‖, v⊥)-space. The center of the function
is at v‖0 cosφ, and the width is v⊥0 sinφ [19].

A closed form analytic expression for the projection
of a warm ring distribution would be useful but is not

yet available. It is therefore necessary to calculate such
projections numerically which is possible by a formalism
for arbitrary distribution functions that are axisymmetric
about B [34]. Projections of cold and warm ring distri-
butions have double-humped shapes (figure 5).

VI. ISOTROPIC AND ANISOTROPIC

SLOWING-DOWN DISTRIBUTIONS

This section discusses isotropic and anisotropic
slowing-down distributions. A fusion reactor has to bal-
ance the heat loss from the plasma by heat release from
fusion reactions to maintain a steady-state plasma. The
fusion energy is coupled to the plasma via α-particles
born at 3.5 MeV in the D(T,n)α fusion reaction. The α-
particles transfer their energy by collisions to the less
energetic particles in the plasma which have an aver-
age energy about two orders of magnitude lower. The
isotropic slowing-down distribution describes the classi-
cal slowing down of isotropically distributed high-energy
ions due to collisions with electrons and ions in a ther-
mal background plasma [8–10]. It is a good model for
the velocity distribution of α-particles born in fusion re-
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actions as the birth distribution can be assumed to be
isotropic to a fairly good approximation [35]. (However,
the directional bias of NBI ions entering the DT reaction
and the drift orbit topologies introduce some anisotropy,
as do potentially Alfvén eigenmodes [36]).
The injection of neutral particle beams is perhaps

the most widespread energetic particle source nowa-
days. Whereas the α-particles from fusion reactions have
roughly isotropically distributed birth velocities, the fast
ions born by ionization of neutrals from NBI have a
small pitch range given by the geometry of the NBI with
respect to the magnetic field. This anisotropic source
of ions consequently generates an anisotropic velocity
distribution function. The injection energies are about
10 keV to 1 MeV. The ions are born at the nominal in-
jection energy and, for positive-ion sources, at one-half
and one-third of the full energy due to the acceleration of
molecules with a single charge, e.g. D+

2 and D+
3 in a deu-

terium beam. Such distributions are fairly well described
by anisotropic slowing-down distributions.
The slowing-down process is analytically described by

a Fokker-Planck equation with a few simplifying assump-
tions. Here we convey the basic idea and the necessary
assumptions to arrive at both distributions. We assume
axisymmetry about the magnetic field vector, small fast-
ion densities, and velocities in the range

vt,i ≪ vf ≪ vt,e, (85)

where vt,i and vt,e are, respectively, the thermal ion and
electron speeds

vt,i =

√

2Ti

mi
, vt,e =

√

2Te

me
. (86)

For these conditions we can derive a homoge-
neous Fokker-Planck equation parametrized in (v, p)-
coordinates with an anisotropic source term [12]

∂f3D
Car

∂t
=

1

τsv2
∂

∂v

(

(

v3 + v3c

)

f3D
Car

)

+
Z2v

3
c

2τsv3
∂

∂p

(

(

1− p2
)∂f3D

Car

∂p

)

+
1

τsv2
∂

∂v

(

v2

mf

(

Te +
v3c
v3

Ti

)∂f3D
Car

∂v

)

+ S = 0.

(87)

τs is the Spitzer slowing-down time given by

τs =
3(2π)3/2ǫ20mfT

3/2
e

Z2
fe

4m
1/2
e ne ln Λ

(88)

where ǫ0 is the vacuum permittivity, mf is the fast-ion
mass, Zf is the charge number of the fast ion and lnΛ is
the Coulomb logarithm. vc is the crossover speed where
drag on electrons equals drag on ions, given by

vc =

(

3
√
πme

4mf
Z1

)1/3

vt,e. (89)

The effective charge numbers Z1 and Z2 are given by

Z1 =
∑

i

nimfZ
2
i

nemi
, (90)

Z2 =
∑

i

niZ
2
i

neZ1
. (91)

For nD = nT = ne/2 we get Z1 = 5/3. S is the source
term which we will give separately for the isotropic and
anisotropic cases.
As we seek a steady-state solution, we set the time

derivative on the left-hand-side of equation (87) to zero.
The first term on the right-hand-side is the only term
with a single derivative which describes the frictional
slowing down of the particles. The second and third
terms have double derivatives and are hence diffusive in
character (in velocity space): the second term is called
pitch-angle scattering and the third term is called speed
diffusion. Speed diffusion is the only term leading to
particle speeds larger than the birth speed and is con-
sequently important for v > vb. We focus on speeds
below the birth speed (v < vb) where the speed diffusion
term is small compared with the slowing-down term [12].
Hence we will neglect it in the following. We now solve
this equation for isotropic and anisotropic source terms
in the following two subsections.

A. Isotropic slowing-down distribution

We start with the much simpler isotropic slowing-down
distribution and seek a steady-state solution neglecting
the small speed diffusion term [8–10, 35]. Further, we
assume that the source term is isotropic, and the ions
are born at the birth speed, such that

S(v) =
S0δ(vb − v)

4πv2
. (92)

For modelling an α-particle distribution function, S0 is
the fusion reaction rate

S0 = nDnT 〈σv〉. (93)

The birth speed is vb = 1.3 × 107 m/s for 3.5 MeV α-
particles. The pitch angle diffusion term then vanishes
due to the isotropic source term. The simplified Fokker-
Planck equation becomes

∂

∂v

(

(

v3 + v3c

)

f3D
Car(v)

)

+
S0τsδ(v − vb)

4π
= 0. (94)

For v 6= vb, (v
3+v3c )f

3D
Car(v) must be a constant C as the

δ-function is zero. Further, for v > vb the distribution
is zero as there is no acceleration and we have neglected
speed diffusion. Hence we can write the solution as

f3D
Car(v) = C

H(vb − v)

v3 + v3c
. (95)
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Substitution of equation (95) into equation (94) and in-
tegration over a small range around the birth speed gives

C =
S0τs
4π

(96)

and finally a 3D Cartesian distribution function
parametrized by the speed v [12, 20, 37, 38]:

f3D
Car(v) =

S0τs
4π

H(vb − v)

v3 + v3c
. (97)

This representation of the slowing-down distribution is
plotted in figure 6 for typical ITER parameters.

FIG. 6. Slowing-down distribution function f3D
Car(v) for α-

particles in ITER. The birth speed, the crossover speed and
the thermal speed are marked.

For fast-ion modelling it is convenient to express the
prefactor S0τs/4π in terms of the fast-ion density n. This
relation can be established by integrating over 3D veloc-
ity space. As the slowing-down distribution function is
isotropic and the variable in equation (95) is the speed,
the integral is easiest in spherical coordinates. In spher-
ical coordinates, the isotropic slowing-down distribution
is

f3D
sph(v, ζ) =

S0τs
4π

v2 sin ζH(vb − v)

v3 + v3c
. (98)

Integration gives

n =
S0τs
4π

∫ ∞

0

∫ π

0

∫ 2π

0

v2 sin ζH(vb − v)

v3 + v3c
dηdζdv

=
S0τs
4π

∫ vb

0

4πv2

v3 + v3c
dv (99)

where we have changed the upper integration limit in
v according to the Heaviside function. The remaining
integral over v yields the desired relation between the
fast-ion density, the source rate and the slowing-down
time:

n =
S0τs
3

ln
(

1 +
(vb
vc

)3)

. (100)

The actual time τ̃s for a particle to slow down from vb to
zero is given by n = S0τ̃s, so that

τ̃s =
τs
3
ln
(

1 +
(vb
vc

)3)

. (101)

The isotropic 3D Cartesian slowing-down distribution
parametrized by the speed is hence given in terms of the
fast-ion density by

f3D
Car(v) =

3n

4π ln
(

1 +
(

vb

vc

)3)
H(vb − v)

v3 + v3c
. (102)

In 3D Cartesian coordinates (v‖, v⊥1, v⊥2), equa-
tion (102) becomes

f3D
Car(v‖, v⊥1, v⊥2) =

3n

4π ln
(

1 +
(

vb

vc

)3)

×
H
(

vb −
√

v2‖ + v2⊥1 + v2⊥2

)

√

v2‖ + v2⊥1 + v2⊥2

3

+ v3c

. (103)

The isotropic 3D Cartesian slowing-down distribution
function parametrized by (v‖, v⊥) is

f3D
Car(v‖, v⊥) =

3n

4π ln
(

1 +
(

vb
vc

)3)

H
(

vb −
√

v2‖ + v2⊥

)

√

v2‖ + v2⊥
3

+ v3c

,

(104)

In 2D Cartesian coordinates (v‖, v⊥), it is

f2D
Car(v‖, v⊥) =

3n

2 ln
(

1 +
(

vb

vc

)3)

v⊥H
(

vb −
√

v2‖ + v2⊥

)

√

v2‖ + v2⊥
3

+ v3c

.

(105)

Transformation of equation (105) to (E, p)-space gives

f2D
Ep (E) =

3n

4 ln
(

1 +
(

Eb

Ec

)3/2)

√
EH

(

Eb − E
)

E3/2 + E
3/2
c

.(106)

Here the crossover energy is

Ec =
1

2
mαv

2
c (107)

which can be expressed in terms of the electron temper-
ature:

Ec =

((

3
√
πZ1

4

)2
mα

me

)1/3

Te. (108)

For nD = nT = 0.5ne we get for the crossover energy of
α-particles

Ec = 33Te. (109)
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(a)f3D
Car

(v‖, v⊥)

(b)f2D
Car

(v‖, v⊥)

(c)f2D
Ep

(E, p)

FIG. 7. α-particle slowing-down velocity distribution function
with ITER-relevant parameters in various coordinate systems.
No ions above the birth energies are found.

In the similar (v, p)-space, the isotropic slowing-down dis-
tribution reads

f2D
vp (v) =

3n

2 ln
(

1 +
(

vb

vc

)3)

v2H
(

vb − v
)

v3 + v3c
. (110)

The isotropic slowing-down distribution as expected in
ITER is plotted in various coordinate systems in figure 7.
The 1D speed distribution is obtained by multipli-

cation of equation (102) with 4πv2 according to equa-
tion (30):

f1D
v (v) =

3n

ln
(

1 +
(

vb

vc

)3)
v2H(vb − v)

v3 + v3c
. (111)

The energy spectrum of the slowing-down distribution is
found by a change of variable (equation (22)):

f1D
E (E) =

3n

2 ln
(

1 +
(

Eb

Ec

)3/2)

√
EH

(

Eb − E
)

E3/2 + E
3/2
c

.(112)

Figure 8 illustrates the energy spectrum of the isotropic
slowing-down distribution expected for ITER. The en-
ergy spectra of fusion α-particles and other fast ions are
measurement requirements of energetic particle diagnos-
tics at ITER [39]. The energy and speed spectra of the
slowing-down distribution (equations (112) and (111))
can also be obtained by integration of, respectively, equa-
tions (106) and (110) over the pitch which gives a factor
two due to the isotropy. The integral over energy gives
the fast-ion density, since

∫ Eb

0

√
E

E3/2 + E
3/2
c

dE =
2

3
ln

(

1 +

(

Eb

Ec

)3/2)

.(113)

To account for a distribution of birth energies in the
lab frame, we can replace the Heaviside function with the
complementary error function which does not change the
above integral and has the property

lim
∆E→0

1

2
erfc

E − Eb

∆E
= H(Eb − E). (114)

The energy distribution is then

f1D
E (E) =

3n

4 ln
(

1 +
(

Eb

Ec

)3/2)

√
E

E3/2 + E
3/2
c

erfc
E − Eb

∆E
.

(115)

However, we will use the Heaviside function as ideal
model in the following for simplicity.

FIG. 8. α-particle slowing-down energy distribution function
as expected in ITER. The energy distribution function is more
flat as compared to figure 6.
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The 1D projection of the slowing-down distribution
is not as easily computed as for the Maxwellian since
the variables are not easily separated. However, we have
computed the projection explicitly using the weight func-
tion formalism according to equation (33). The inte-
gral is straightforwad in (E, p)-space, since the isotropic
slowing-down distribution does not depend on the pitch.
Thus we can first integrate just the weight function w
over the pitch and then do the integration over the en-
ergy. The result is

g(u) =
n

4vc ln
(

1 +
(

vb

vc

)3)

×
(

ln

(∣

∣

∣

∣

∣

v2b − vbvc + v2c
u2 − |u|vc + v2c

∣

∣

∣

∣

∣

(

|u|+ vc
vb + vc

)2)

+ 2
√
3

(

arctan
2vb − vc√

3vc
− arctan

2|u| − vc√
3vc

))

.

(116)

To our knowledge, equation (116) has not been published
until now. It is a useful equation for basic modeling of
α-particle diagnostic in fusion plasmas. The projection
does not depend on the angle between the line-of-sight
and the magnetic field as we expect for an isotropic func-
tion. The 1D projection of the isotropic slowing-down
distribution is illustrated in figure 9. Compared with a
Maxwellian, the tails are cut off and are elevated. The
projected slowing-down function does not have a sudden
jump at the birth velocity as the function f3D

Car.

FIG. 9. 1D projection of the isotropic α-particle slowing-
down distribution function g(u) for any projection angle φ as
expected for ITER.

B. Anisotropic slowing-down distribution

A useful analytic function modeling NBI velocity dis-
tribution functions has been found more than 40 years

(a)f3D
Car

(v‖, v⊥)

(b)f2D
Car

(v‖, v⊥)

(c)f2D
Ep

(E, p)

FIG. 10. NBI distribution function in various coordinate sys-
tems showing the slowing down and pitch angle scattering of
a particle source at an energy of 1 MeV at a pitch of 0.6.

ago [11, 12]. NBI distribution functions are nowadays
routinely computed with several computer codes that
take spatial effects into account [40], e.g. the TRANSP
module NUBEAM [16] or ASCOT [41]. It has also re-
cently become possible to measure NBI distribution func-
tions directly by velocity-space tomography [14, 42]. The
analytic model of NBI distribution functions described
here provides useful guidance to compare the measure-
ments and the simulations with [43]. The model is found
as a steady-state solution of the simplified Fokker-Planck
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FIG. 11. 1D projections of the NBI distribution function from
figure 10 for various projection angles φ.

equation

1

τsv2
∂

∂v

(

(v3 + v3c )f
3D
Car

)

+
Z2v

3
c

2τsv3
∂

∂p

(

(1− p2)
∂f3D

Car

∂p

)

+ S = 0 (117)

The anisotropic source term S is here taken as δ-function
in speed and a pitch-broadened function K(p) with

∫ 1

−1

K(p)dp = 1 (118)

The anisotropic source term is

S(v, p) =
S0δ(v − vb)K(p)

4πv2
. (119)

The steady-state solution of the Fokker-Planck equation
is written as expansion in Legendre polynomials as 3D
Cartesian phase-space densities parametrized in (v, p)-
coordinates

f3D
Car(v, p) =

1

2π

S0τs
v3 + v3c

∞
∑

l=0

(l +
1

2
)ul(l+1)Pl(p)KlH(vb − v)

(120)

or fully transformed to (v, p)-coordinates

f2D
vp (v, p) =

S0τsv
2

v3 + v3c

∞
∑

l=0

(l +
1

2
)ul(l+1)Pl(p)KlH(vb − v)

(121)

where

u =

(

v3b + v3c
v3 + v3c

v3

v3b

)Z2/6

, (122)

Kl =

∫ 1

−1

K(p)Pl(p)dp. (123)

The Legendre polynomials Pl(p) are polynomials of order
l. The first few Legendre polynomials are

P0(p) = 1, P1(p) = p,

P2(p) =
1

2
(3p2 − 1), P3(p) =

1

2
(5p3 − 3p). (124)

Higher-order Legendre polynomials can be computed by
Bonnet’s recursion formula

Pl+1(p) =
2l + 1

l + 1
pPl(p)−

l

l + 1
Pl−1(p). (125)

As the Legendre polynomials are orthogonal in [−1; 1],
several important integrals become very simple. The
fast-ion density depends only on the first term of the
sum in equation (121) with l = 0 since

f2D
vp (v, p) = P0(p)f

2D
vp (v, p) (126)

and the integral over pitch is therefore zero for all l > 0
due to orthogonality.

n =

∫ ∞

0

∫ 1

−1

f2D
vp (v, p)dpdv = S0τs

∫ vb

0

v2

v3 + v3c
dv

=
S0τs
3

ln
(

1 +
(vb
vc

)3)

. (127)

This relation is the same as for the isotropic slowing-
down distribution (equation (100)). Hence S0τs can be
eliminated from the distribution function to express the
scaling of the distribution function in terms of the fast-
ion density:

f2D
vp (v, p) =

3n

ln
(

1 +
v3

b

v3
c

)

v2

v3 + v3c

×
∞
∑

l=0

(l +
1

2
)ul(l+1)Pl(p)KlH(vb − v).

(128)

As the l = 0 term gives 1
2 , this term corresponds to the

isotropic slowing down distribution (equation (110)).
An example of a typical NBI distribution function with

an injection energy of 1 MeV, as foreseen in ITER, ap-
pears in figure 10. ITER has negative-ion sources, and
therefore no injection sources at half- and one-third en-
ergy appear. To model a typical NBI distribution func-
tion for positive-ion sources, which are typical in present
tokamaks, one can sum anisotropic slowing-down func-
tions for the full-, half-, and one-third injection energy.
It is straightforward to give analytic expressions for the
anisotropic slowing-down distributions in the other co-
ordinate systems. However, the pitch coordinate is es-
sential for the use of Legendre polynomials, so that the
expressions are by far simplest when the pitch is used
as coordinate. Therefore we do not give explicit expres-
sions in the other coordinate systems and transform the
function numerically in figure 10.
Finally, the 1D projection of NBI distribution func-

tions along the line-of-sight plays a prominent role in fast-
ion diagnostics and strongly influences the basic shape of
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the observable spectra. 1D projections along several di-
rections of the line-of-sight are illustrated in figure 11.
For the given highly anisotropic NBI distribution func-
tion from figure 10, the measurable spectrum can be
symmetric or asymmetric with bias towards redshift or
blueshift to varying degrees depending on the geometry
of the line-of-sight. Analytic formulas for the projec-
tion of this distribution have been computed for the first
ten Legendre polynomials. However, as the analytic ex-
pressions become fairly cluttered, it seems at this point
more convenient to compute projections numerically by
the formalism for arbitrary distribution functions [34].

VII. PHASE-SPACE DISTRIBUTION

FUNCTIONS

The velocity distribution functions discussed in this tu-
torial describe the velocity distribution at a single point
in the plasma. In tokamaks the full phase-space distri-
bution function can be described by three constants of
motion which are the energy, the magnetic moment µ,
and the canonical toroidal angular momentum Pφ [37]:

E =
1

2
mv2, (129)

µ =
mv2⊥
2B

, (130)

Pφ = mR
Bφ

B
v‖ − qΨ, (131)

where R is the major radius coordinate, Bφ is the
toroidal magnetic field component, and Ψ is the poloidal
magnetic flux. The phase-space distribution function
f6D
xv

(E, µ, Pφ, σ) completely describes all ions in the
plasma. The binary parameter σ = sgn(v‖) labels if a
passing orbit is co-going or counter-going. This lable
is necessary since co- and counter-going orbits with the
same (E, µ, Pφ) exist. One can thus consider this distri-
bution function as to be composed of two 3D distribution
functions. It should be noted that the particle number
in a phase-space volume element is usually

dN = f6D
xv

(E(x,v), µ(x,v), Pφ(x,v), σ)dxdv. (132)

The mixing of position space and velocity space makes
it difficult to give analytic models for this distribution.
Nevertheless, the phase-space distribution is highly im-
portant for stability calculations, and it could be possible
to measure it in the future [44]. To have a simple analytic

model, one can assume the distribution to be separable
according to [45]

f6D
xv

(E, µ, Pφ, σ) = g1(E)g2(µ)g3(Pφ). (133)

Then physical models for the energy distribution can be
assumed, e.g. the slowing-down distribution or a ring dis-
tribution. The magnetic topology in tokamaks makes it
difficult to give general analytic models for µ and Pφ. As
no complete analytic models exist to our knowledge, we
do not discuss phase-space distribution functions param-
eterized in constants of motion further. In the 3D mag-
netic field of stellarators, parameterization of the phase-
space in three constants of motion is not possible.

VIII. CONCLUSIONS

We have discussed analytic models for several veloc-
ity distribution functions: the Maxwellian, the drifting
bi-Maxwellian, the ring distribution, and the isotropic
and the anisotropic slowing-down distributions. The or-
dinary Maxwellian, which is well-known to most physi-
cists, served to give a practical example of a velocity dis-
tribution function in the most common coordinate sys-
tems used to describe plasmas in magnetic fusion devices:
3D Cartesian, spherical and cylindrical coordinates, 2D
Cartesian, (E, p) and (v, p)-coordinates, and 1D speed or
energy coordinates. The 1D projection of the distribution
functions provides insights into measurements relying on
the Doppler shift, e.g. Dα-spectroscopy. These distribu-
tions and coordinate systems are common and useful for
basic plasma modelling, for example of the bulk plasma
or fast-ion velocity distributions from NBI, ICRF heat-
ing or fusion reactions. The analytic models discussed
here provide insight into the basic shapes of these dis-
tribution functions and allow quick parametric studies
and diagnostic design. Our examples are illustrated for
ITER-relevant parameters. Furthermore, they can serve
as guidance to interpret simulations and measurements
of velocity distribution functions and its lowest moments:
the density, the drift velocity and the temperature.
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W. Heidbrink, S. Korsholm, F. Leipold, J. Madsen,
D. Moseev, S. Nielsen, J. Rasmussen, M. Stejner, G. Tar-
dini, M. Weiland, and the ASDEX Upgrade Team, Nu-
clear Fusion 54, 023005 (2014).

[15] M. Salewski, M. Nocente, A. Jacobsen, F. Binda, C. Caz-
zaniga, G. Ericsson, J. Eriksson, G. Gorini, C. Hellesen,
A. Hjalmarsson, V. Kiptily, T. Koskela, S. Korsholm,
T. Kurki-Suonio, F. Leipold, J. Madsen, D. Moseev,
S. Nielsen, J. Rasmussen, M. Schneider, S. Sharapov,
M. Stejner, M. Tardocchi, and J. Contributors, Nuclear
Fusion 57, 056001 (2017).

[16] A. Pankin, D. McCune, R. Andre, G. Bateman, and
A. Kritz, Computer Physics Communications 159, 157
(2004).

[17] D. Moseev, M. Salewski, B. Geiger, M. Garcia-Munoz,
and M. Nocente, Reviews of Modern Plasma Physics
(2018), 10.1007/s41614-018-0019-4.

[18] W. W. Heidbrink, Y. Luo, K. H. Burrell, R. W. Har-
vey, R. I. Pinsker, and E. Ruskov, Plasma Physics and
Controlled Fusion 49, 1457 (2007).

[19] M. Salewski, S. Nielsen, H. Bindslev, V. Furtula, N. Gore-
lenkov, S. Korsholm, F. Leipold, F. Meo, P. Michelsen,
D. Moseev, and M. Stejner, Nuclear Fusion 51, 083014
(2011).

[20] R. J. Goldston and P. H. Rutherford, Introduction to
Plasma Physics (IOP Publishing, 1995).

[21] R. O. Dendy, R. J. Hastie, K. G. McClements, and T. J.
Martin, Physics of Plasmas 2, 1623 (1995).

[22] W. Cooper, J. Graves, S. Hirshman, T. Yamaguchi,
Y. Narushima, S. Okamura, S. Sakakibara, C. Suzuki,
K. Watanabe, H. Yamada, and K. Yamazaki, Nuclear
Fusion 46, 683 (2006).

[23] S.-R. Huh, N.-K. Kim, B.-K. Jung, K.-J. Chung, Y.-S.
Hwang, and G.-H. Kim, Physics of Plasmas 22, 033506
(2015).

[24] P. H. Yoon, Physics of Plasmas 23, 072114 (2016).
[25] M. Salewski, B. Geiger, A. Jacobsen, I. Abramovic,

S. Korsholm, F. Leipold, B. Madsen, J. Madsen, R. Mc-
Dermott, D. Moseev, S. Nielsen, M. Nocente, J. Ras-
mussen, M. Stejner, M. Weiland, T. E. M. team, and
T. A. U. team, Nuclear Fusion 58, 036017 (2018).

[26] M. Vandas and P. Hellinger, Physics of Plasmas 22,
062107 (2015).

[27] J. Sun, X. Gao, L. Chen, Q. Lu, X. Tao, and S. Wang,
Physics of Plasmas 23, 022901 (2016).

[28] C. Hellesen, M. G. Johnson, E. A. Sundén, S. Conroy,
G. Ericsson, J. Eriksson, H. Sjöstrand, M. Weiszflog,
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