
Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency and Bandwidth

Nagendra Gulur, Mahesh Mehendale

Texas Instruments (India),
Bangalore, India

nagendra@ti.com,m-mehendale@ti.com

R. Manikantan, R. Govindarajan

Indian Institute of Science,
Bangalore, India

r.manikantan@gmail.com, govind@serc.iisc.ernet.in

Abstract—In this paper, we present Bi-Modal Cache - a flex-
ible stacked DRAM cache organization which simultaneously
achieves several objectives: (i) improved cache hit ratio, (ii)
moving the tag storage overhead to DRAM, (iii) lower cache
hit latency than tags-in-SRAM, and (iv) reduction in off-chip
bandwidth wastage. The Bi-Modal Cache addresses the miss
rate versus off-chip bandwidth dilemma by organizing the data
in a bi-modal fashion - blocks with high spatial locality are
organized as large blocks and those with little spatial locality
as small blocks. By adaptively selecting the right granularity
of storage for individual blocks at run-time, the proposed
DRAM cache organization is able to make judicious use of
the available DRAM cache capacity as well as reduce the off-
chip memory bandwidth consumption. The Bi-Modal Cache
improves cache hit latency despite moving the metadata to
DRAM by means of a small SRAM basedWay Locator. Further
by leveraging the tremendous internal bandwidth and capacity
that stacked DRAM organizations provide, the Bi-Modal Cache
enables efficient concurrent accesses to tags and data to reduce
hit time. Through detailed simulations, we demonstrate that
the Bi-Modal Cache achieves overall performance improvement
(in terms of Average Normalized Turnaround Time (ANTT))
of 10.8%, 13.8% and 14.0% in 4-core, 8-core and 16-core
workloads respectively.

I. INTRODUCTION

With increasing core counts in single-chip multiproces-

sors, off-chip memory has become a performance-limiting

factor from both latency and bandwidth perspectives. Due

to limited growth in pin counts, data access rates from

off-chip DRAM systems have not scaled to match the

demands of modern servers leading to the bandwidth wall

problem [1]. 3D die stacking [2] has emerged as a promising

alternative wherein DRAM memory dies are stacked on top

of a processor die using high bandwidth through-silicon-vias

(TSVs). Stacking offers 100s of MBs to even gigabytes of

DRAM capacity at very high bandwidth alleviating the off-

chip memory wall constraint.
Researchers have proposed to use this capacity as a very

large capacity last level cache. The proposed solutions, based

on the size of the DRAM cache block, fall under two

categories: fine-grained [3], [4] - in which the cache is
organized at the same block size as the last level SRAM

cache1(typically 64 or 128 bytes), and coarse-grained [5],
[6] - in which the DRAM cache blocks have much larger

1Abbreviated LLSC throughout the rest of this paper.

sizes (typically 2048 or 4096 bytes, not exceeding DRAM

page size). Fine-grained organizations incur prohibitively

high metadata storage overhead (of the order of many

megabytes) and thus forces the metadata to be stored in

the stacked DRAM itself. This increases the hit latency as

the accesses to tag and then data happen serially, incurring

multiple (at least two) DRAM accesses. The small block size

also fails to exploit the abundant spatial locality inherent at

this level, incurring higher cache miss rates. On the other-

hand, the fine-grained organization uses off-chip bandwidth

and cache capacity efficiently.

The coarse-grained organizations are characterized by

higher cache hit rates and lower metadata storage needs.

Metadata can be stored on SRAM thereby enabling faster

access times. Anticipating that stacked DRAM capacities

will grow, we argue that SRAM-based metadata will become

unaffordable, even for large block size. For example, a

DRAM cache of 1GB size organized as 1024 byte blocks

needs metadata storage of 4 MB, assuming a per-block

metadata overhead of 4 bytes. Further, the large block size

incurs wasted bandwidth by fetching un-used data into the

cache. This also causes under-utilization of cache space.

Going forward, the DRAM caches in scalable multi-

core architectures of the future would need to achieve

higher hit rates, have lower hit (and miss) latency, reduce

off-chip memory bandwidth wastage, and improve cache

space utilization. Meeting these objectives together is quite

challenging, and [5] proposes a scheme to have them all.

But can we have more?

Towards this goal, in this paper we propose the Bi-Modal
Cache. Bi-Modal Cache, as the name suggests organizes
the data with high spatial locality as large blocks and the

rest as small blocks. Bi-Modal Cache reduces wasted band-
width and improves cache space utilization by (i) accurately

identifying the spatial locality at the level of cache blocks

and storing them appropriately and (ii) learning the spatial

locality at the application level and identifying a judicious

mix of large and small blocks that matches the application

requirement.

Second, Bi-Modal Cache stores metadata on DRAM. We
overcome the DRAM tag access latency issue and improve

the average hit latency (compared to both tags-in-SRAM

and tags-in-DRAM) by two optimizations: (i) we introduce

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.36

38

2014 47th Annual IEEE/ACM International Symposium on Microarchitecture

1072-4451/14 $31.00 © 2014 IEEE

DOI 10.1109/MICRO.2014.36

38

a small SRAM based way locator which helps avoid making
DRAM accesses for tags in a large majority of accesses, and

(ii) we perform parallel tag and data accesses on DRAM.

The resulting Bi-Modal Cache achieves high hit rate, low hit
latency, high cache-space utilization, and reduced (off-chip)

memory bandwidth.

Through extensive evaluation of the cache organization

on 4, 8 and 16-core workloads, we demonstrate that our

organization achieves lower average LLSC miss penalty than
other proposed organizations. Bi-Modal Cache achieves an
improvement in ANTT of 10.8%, 13.8% and 14.0% in 4-

core, 8-core and 16-core workloads respectively. These im-

provements are over an aggressive baseline, AlloyCache [4].
Further, compared to the recent Footprint Cache [5], Bi-
Modal Cache achieves an average reduction in latency of
12% and an ANTT improvement of 4.9%.

II. THE DESIGN SPACE OF DRAM CACHES

A. Overview of DRAM caches

By virtue of stacking and the inherent density of DRAM,

a DRAM cache provides a large capacity (typically 64MB

to even gigabytes) offering an unprecedented opportunity to

hold critical workload data on chip. The DRAM cache is

typically organized as a last level shared cache behind a

hierarchy of SRAM caches2. A DRAM cache offers large

capacity caches at lower power unlike L1, L2 caches that are

implemented using SRAM. However DRAM cache design

requires careful attention to access latency since a typical

DRAM access requires activating a row of cells, sensing

this charge and finally transmitting the sensed data over

a bus. Since row activation has drained the corresponding

capacitors, a precharge operation is required to restore the
charge back on these capacitors.

B. Design Space

Performance of DRAM cache is determined by the fol-

lowing parameters:

Metadata Storage: The large capacities offered by DRAM
caches require higher metadata (tags, valid, dirty bits, re-

cency bits etc) storage requirements which can run into

multiple megabytes. For instance, assuming a tag overhead

of 4 bytes per cache block, a 256MB cache organized at

64B block-size requires as much as 16MB of metadata to be

stored. Obviously committing this much storage in SRAM

is costly and energy expensive3. Several researchers have

proposed to address this issue by techniques such as larger

cache block sizes or by moving the metadata storage to the

DRAM cache itself [3], [4].

Cache Block Size: Larger block sizes (e.g., 2KB or 4KB)
reduce metadata overhead and also exploit spatial locality

2In this work, the DRAM cache is located behind a cache-coherent shared
cache and thus does not handle coherence related events.
3The tag storage overhead may even exceed the total size of the last-level

SRAM cache.

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

Q1 Q2 Q5 Q6 Q7 Q8 Q9 Q10
Q13

Q15
Q16

Q18
Q19

Q21
Q22

Q25D
R

A
M

 C
ac

he
 M

is
s R

at
e

Quadcore Workloads

64B
128B

256B
512B

1024B
2048B

4096B

Figure 1: Miss Rates Fall with Increasing Block Sizes

very well. However, they suffer from two issues: (i) cache

misses consume large off-chip bandwidth to fetch large

blocks, and (ii) in the absence of sufficient spatial locality,

they waste cache capacity.

Set Associativity: Associativity generally improves cache
hit rates by reducing conflict misses, thereby improving the

likelihood of retaining useful blocks longer. In the context of

DRAM caches, we find that associativity itself does not have

a significant bearing on hit rate – an observation that other

researchers have also made [7], [4]. However, associativity

is important in the sense of providing the substrate for

implementing non trivial block allocation and replacement

policies.

These parameters interact to influence cache hit rate, row-

buffer hit rate, hit latency, and off-chip bandwidth. We

discuss these interactions below:

Achieving High Cache Hit Rates: In Figure 1, we plot
the miss rates observed in several quad-core workloads4 at

7 different block sizes: 64B, 128B, 256B, 512B, 1024B,
2048B and 4096B. For most workloads, the miss rate nearly

halves with doubling of block size indicating that DRAM

caches should be organized with large block sizes to leverage

spatial locality.

Reducing Cache Hit Time: Hit time is governed by tag
lookup as well as data access times. In the works of [4],

[3], metadata is placed along with data on DRAM rows.

In [3], the cache is organized as 29-way set-associative.

Through Compound Access Scheduling, both the tags and
data are accessed via multiple column accesses once the row

has been activated. In [4], a direct mapped organization

with co-located tag and data is proposed to reduce hit

latency but requires a larger burst to retrieve both in a

single access. Further, it strictly limits the organization to

64B block size and direct-mapping. In [5], the metadata

is placed on SRAM. Thus, tag lookup is performed first

and then a single DRAM access is made to retrieve data (if

there was a tag match). Even here, tag and data accesses are

sequential, incurring high latency. Further, a large tag RAM

store incurs latency of several cycles even on SRAM making

the serialized accesses undesirable. In a recent paper [8]5,

the tags are held on DRAM in a configuration similar to that

4Details of workloads and experimental setup are presented in Section IV.
5The work in [8] is independent and concurrent to ours.

3939

 0

 0.2

 0.4

 0.6

 0.8

 1

Q1 Q2 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q13

Q15
Q16

Q16
Q17

Q18
Q19

Q20
Q21

Q22
Q23

Q24
Q25

Fr
ac

tio
n

of
 b

lo
ck

s

Quadcore Workloads

1/8

2/8

3/8

4/8

5/8

6/8

7/8

8/8

Figure 2: Distribution of Blocks with Different Utilizations

in [3] and a small SRAM tag cache is introduced to cache

all tags of recently accessed sets. If the tag cache achieves

high hit rate, and is small in size, then the hit time can be

reduced.

Improving Cache Space Utilization: Small blocks use
cache space effectively but at the cost of high metadata

storage. They also do not exploit spatial locality and incur

frequent cache misses. Large blocks on the otherhand may

“commit” space in the cache without fully using every byte

allocated to it. This block-internal fragmentation results in

inefficient utilization of capacity and causes more misses

with resulting increase in off-chip traffic. Thus we argue

that cache space utilization also needs to be improved to

effectively reduce the off-chip bandwidth.

In order to understand the extent of internal fragmentation,

we tracked the utilization of each 64B sub-block in 512B

DRAM cache blocks and computed the fractions of blocks

that had different amounts of utilization. Utilization varies

from 1
8 (corresponding to just 1 sub-block being referenced)

all the way upto 1 (when all 8 sub-blocks were referenced by
the CPU). Figure 2 plots the fractions of blocks of different

utilizations. While some workloads (noticeably Q2, Q4 and
Q5) have over 90% of blocks with 100% utilization, others

(noticeably Q7, Q8, Q19 and Q23) have < 30% of such

blocks. Thus always allocating large blocks results in wasted

cache space. It also leads to wasted over-fetch from main

memory.

This motivates our bi-modal organization that uses two
block sizes to achieve the dual objectives of improving hit

rate, and improving space utilization/bandwidth reduction.

Associativity has only a minor impact: Lastly, we exam-
ine the role played by set associativity on large last level

caches. Much like prior work [7], [3], we find that hit

rates do not significantly improve with higher associativity.

Thus, given the cost of implementing high set associativity

(multiple tag comparisons, and maintaining recency infor-

mation), we argue that a reasonably modest associativity

is good enough to capture any additional cache hits to be

gained. Having some associativity proves to be beneficial in

constructing adaptive cache management schemes - such as

being able to control block replacement, block insertion and

block sizing.

III. Bi-Modal Cache ORGANIZATION

A. Overview

Bi-Modal Cache stores metadata on DRAM anticipating

the need to manage very large DRAM caches with multi-

megabyte metadata storage requirements. The cache orga-

nization boosts performance by two independent optimiza-

tions. First, in contrast to fixed sized blocks, our organization

is bi-modal - some big blocks and some small blocks. By
predicting a block’s spatial utilization, the cache is able to

decide and fill the cache miss as a big way or as a small

way. This not only reduces off-chip bandwidth demand but

also reduces block-internal fragmentation. Second, Bi-Modal
Cache improves the average access latency over both the
tags-in-DRAM as well as the tags-in-SRAM organizations.

It does so by looking up the metadata and data in parallel

(much like conventional SRAM based L1 caches) by storing

metadata on its own DRAM bank/channel. This design also

helps improve row-buffer locality for metadata accesses.

Further, by introducing an efficient and accurate (high hit-

rate) Way Locator in SRAM for tag look-up, this organiza-

tion ensures that only data accesses are performed on DRAM

for the majority of accesses. The Way Locator caches the
tags and data locations of the most recently accessed blocks

for a subset of heavily accessed sets.

Access to Bi-Modal Cache starts with a tag look-up in
the Way Locator. A hit in the Way Locator determines the

location in DRAM where the data is available; a subsequent

access fetches the data from DRAM. A miss in Way Locator

leads to accessing the tag and data from DRAM. Here, Bi-
Modal Cache enables efficient access of tags and the opening
of the corresponding data page in DRAM concurrently.

Figure 3 compares Bi-Modal Cache with other related
schemes in terms of latency breakdown (per access). The

AlloyCache provides a low-latency baseline by fetching tag
and data together in a single big burst (72 bytes). However

this comes at the cost of a higher cache miss rate due

to the small block size (see Figure 1). The tags-in-SRAM

organization (Footprint-Cache) has a slightly higher latency

than the AlloyCache scheme since large SRAM storage

access is costlier than an additional data transfer. While

the ATCache achieves low hit latency corresponding to tag-

cache hits, it suffers from low tag-cache hit rates due to

high associativity and 64B block size. Thus its average

latency is high. In Bi-Modal Cache the way locator achieves
a high hit rate (> 90% in quad and 8-core) resulting in

very few DRAM accesses for tags. On way locator misses,

Bi-Modal Cache leverages the high RBH in the metadata

bank to reduce tag+data access time by issuing parallel tag

and data accesses. In Section V we show that in practice a

4040

Figure 3: Latency Reduction with Bi-Modal Cache

combination of high DRAM cache hit rate, way locator hit

rate, and high RBH in the metadata bank combine to achieve

a lower LLSC miss latency than all the other schemes.
Taken together, these optimizations simultaneously

achieve improvements in hit latency, cache hit rate, row-

buffer hit rate, off-chip bandwidth and cache space utiliza-

tion. This results in achieving the lowest average LLSC miss
penalty.

Table I summarizes these features and compares Bi-Modal
Cache to prior organizations.

B. Bi-Modal Blocks: Design for Bandwidth and Cache
Space Utilization

1) Cache Organization: We propose to organize the data
at two granularities - big blocks (512B) and small blocks

(64B). Intuitively, big blocks are preferred for data that

has high spatial utilization and small blocks for the rest.

A static partitioning of the cache to hold a fixed number of

big and small blocks would be sub-optimal and very rigid

considering that different workloads have widely different

spatial utilizations (see Figure 2) and these utilization levels

are likely to vary over time even for a single workload. Thus

we organize each cache set to be bi-modal - i.e., each cache
set can hold X big and Y small blocks upto the size of

the set. Thus the “state” of a set at any time is denoted as

(X,Y).
A set in state (X,Y) has (X + Y) ways and is thus

(X + Y)-way associative. Given the limited benefit of high
associativity for large DRAM caches [4], [7], we prefer

to limit the maximum associativity permitted by restricting

the number of small ways. For a set of size 2KB, the

allowed set states are {(4, 0), (3, 8), (2, 16)}. The size of
a set is chosen to map its contents to reside within one

DRAM page to avoid having to access multiple DRAM

pages6. Similarly, for a 4KB set, the allowed states are

{(8, 0), (7, 8), (6, 16), (5, 24), (4, 32)}.
Set Data Layout: A set’s data maps to a DRAM page.

Data for the big ways are stored adjacent to each other

followed by data for the small ways. Further, in order

to correctly identify the column address of a way, we

number the big ways left-to-right with way-0 in the leftmost

columns; small ways are numbered right-to-left with way-0

in the rightmost columns of the page.

Cache Indexing and Metadata Layout: In our organi-
zation, the number of sets is fixed while set associativity

can vary over time on a per set basis. Thus the indexing

scheme that maps an address to set index is the same as in

a conventional cache. Specifically, for a cache of size C, and
set size S, there are 2M = C

S sets. For a physical address

space that uses A bits, the least 9 bits are used for offset
(since the big block size is 512B), followed by next M set-

index bits, and the remaining (A −M − 9) bits being the
tag bits. For small blocks, in addition to these tag bits, the 3
high-order offset bits are also stored to ensure correct match.

In the metadata bank, for each set, we store its state (X,Y)
followed by tag bits for the big blocks followed by the tag

bits for the small blocks. There are upto 18 tags per set as

the maximum number of blocks per set is 18 when the set

in the (2, 16) state. Figure 4 shows the data layouts in the

6Accesses to multiple DRAM pages within a bank introduces additional
access latency.

4141

Attribute Loh-Hill AlloyCache ATCache Footprint Cache Bi-Modal Cache
Block Size 64B 64B 64B 2048B Two sizes (512B, 64B)

Associativity Yes (29 way) Only direct-mapped Yes (16-way) Yes (Fixed) Yes (4–18 ways)

Metadata On DRAM On DRAM On DRAM On SRAM On DRAM

Metadata Overhead High High High Low Low

SRAM storage High Low Low Low Low
(for caches/predictors)

DRAM cache High - Low - High - Moderate - Low -
Hit Latency (Multiple DRAM (1 DRAM access (Moderate Tag (Sequential (High Way Locator

Accesses for with a larger Cache Hit Rate, Tag, then Data) Hit Rate, 2-Way
Tag then Data) burst for Large Associative Search, Parallel

tag+data) Search) Tag+Data on Miss)

DRAM cache Hit Rate Low Low Low High High

Avg LLSC High Moderate High Low Low
Miss Latency

Wasted Off-Chip No No No Low Low
Bandwidth

Block Internal No No No High Reduced
Fragmentation

Table I: How Bi-Modal Cache compares to existing DRAM cache organizations

Figure 4: Data and Metadata Layouts in DRAM

metadata and data banks. The figure shows 2 channels, 8

banks per channel and with a bank in each channel holding

metadata for the data in the other channel. Each page of the

data banks holds a set of size 2KB. A sample set in the

(3, 8) state is shown.

2) Data and Metadata in Separate Banks: Unlike prior
schemes wherein the metadata is interleaved with data on

the same DRAM rows, we propose to store the metadata on

a separate DRAM bank on-chip. Stacked DRAM organiza-

tions provide tremendous bandwidth as well as capacity and

we leverage these to dedicate one of the banks to hold all the

metadata per channel. A typical DRAM stack has multiple

(4–8) data channels that can access many banks (8–16 per

channel), and thus it permits two concurrent accesses on two

different channels. By mapping the metadata for data banks

belonging to one channel onto a bank of another channel,

concurrent access of metadata and data can be achieved. We

issue a tag access operation on the metadata bank in parallel

to activating the row in the bank that holds the corresponding

set data7. This avoids the “tags-then-data” serializtion. This

7On the data bank, we only open the row in anticipation of a DRAM
cache hit, we do not make a data access until tags are checked. This is
unlike traditional SRAM based parallel tag/data accesses.

organization requires no hardware modification and can be

implemented over existing stacked DRAMs.

This organization has an important advantage. It signif-

icantly improves the row-buffer hit rate of the metadata

bank(s). By keeping only metadata in the DRAM pages of

a bank, the “density” of metadata per DRAM page goes up

increasing the likelihood of finding more row-buffer hits.

To quantify this, consider an organization of the cache with

64B block size, DRAM page size of 2KB and 4B metadata

per cache block. If the metadata is stored alongside data in

the same pages, then 29 blocks (and their metadata) could

be stored per page (as in [4]). A channel typically has 8–16

banks, and thus the interleaved scheme will have only 232–

464 metadata entries in open row-buffers per channel8. On

the other hand, if the metadata was stored separately, we can

store 512 metadata entries per page increasing the likelihood

of getting more row-buffer hits. As shown in Section V-E

this scheme achieves higher RBH for metadata resulting in

hit latency reduction.

3) Block Size Predictor: The decision on whether to fetch
big or small blocks is facilitated by the block size predictor.
The block size predictor comprises of two components: a

tracker, to measure the actual spatial utilization levels seen,
and a predictor which uses the information supplied by the
tracker to make predictions for future cache misses.

Tracking Spatial Utilization: Spatial utilization is mea-
sured by tracking the utilization of 64-byte sub-blocks

allocated in sets that the block size predictor samples. In

particular, it allocates a utilization bit vector (8 bits for a 512

byte block, one for each 64B sub-block) for each sampled

way and sets a bit to true whenever the corresponding sub-

block is accessed by the CPU. When a way gets evicted,

its utilization bit vector is used to update the Block Size
Predictor. The utilization bit vector is then cleared to obtain
utilization data for the incoming block. To reduce the storage

8With larger sized blocks, the number of metadata entries per DRAM
page in the interleaved organization falls further.

4242

overhead of tracking, we use the idea of set-sampling [9].

The tracker monitors the utilization of all the big blocks

in these sampled sets. We monitored about 4% of the sets

resulting in a storage overhead of ≈ 20KB for a 256MB

Cache.

Block Size Predictor: The size predictor uses the utiliza-
tion bit vector to decide if the sampled way is to be classified

as a big or small block. It does so by comparing the number

of bits set to true against a configurable threshold level, T .
If the number of set bits is ≥ T , then the way is classified
as big, else classified small. A high value of T requires

higher utilization levels for blocks to be classified big. In

our setup, we set T to 5 (maximum is 8 since there are
eight 64B blocks in a 512B block)9.

The predictor is implemented as a table in SRAM com-

prising 2P entries indexed by P bits from the N tag and set

index bits. Each entry contains a 2-bit saturating counter. If

successive updates to an entry are in the same direction, then

the counter is decremented to saturate at “00” (predict small)
or incremented to saturate at “11” (predict big). The storage
requirements are quite modest: a predictor with P = 16
needs only 2× 216 = 128K bits (i.e., 16KB).
4) Adapting Associativity in Each Set: Next we describe

how the number of big and small blocks in each set is

adapted.

Adapting Cache-wide State: The DRAM cache controller

maintains a cache-wide global state (Xglob, Yglob) denoting
the number of big and small blocks to maintain on a per-set

basis. (Xglob, Yglob) is initialized to (4, 0) and is periodically
updated using a pair of counters - Dbig , Dsmall - which keep

track of the demand for big and small blocks respectively.

We update the global state after each interval comprising

of 1M DRAM cache accesses. Demand is measured as the

number of DRAM cache misses suffered for each type of

block size and is updated at corresponding miss events.

We let R = W × Dsmall

Dbig
where W denotes a weight. R

is compared to the current ratio of small-versus-big ways
Yglob
Xglob

to adapt the global state. The weight W helps control

the preference for big/small blocks. Setting W < 1 boosts
the preference for bigger blocks. We found that in practice,

setting W = 0.75 provided a good tradeoff. The controller
updates its global state using the rules below:

• If R >
Yglob
Xglob

: then increase the quota for small blocks,
i.e., set Xglob = Xglob − 1;Yglob = Yglob + 8

• If R <
(Yglob−8)
(Xglob+1) : then increase the quota for big

blocks, i.e., set Xglob = Xglob + 1;Yglob = Yglob − 8
• Otherwise the state remains as before at (Xglob, Yglob).

The storage overhead in implementing this control is

negligible: two counters to track demand, two counters to

maintain current prediction of cache state, and a register to

store the weight.

9T could be adjusted at run-time but that is beyond the scope of this
work.

Comparison Predicted: Predicted:
Outcome Big Block Small Block

Xs = Xglob, Replace a Replace a
Ys = Yglob big block small block

Xs < Xglob, Evict 8 small blocks Replace a
Ys > Yglob and insert big block. small block

Xs > Xglob, Replace a Evict a big block
Ys < Yglob big block and insert small block.

Table II: Block Replacement in Bi-Modal Cache

Adapting Per-Set State: The controller also initializes all
cache blocks as big blocks - i.e., state (Xs, Ys) of each
set S is (4, 0). At the time of a cache miss, the global
state (Xglob, Yglob) is compared to the set state (Xs, Ys).
Based on the outcome of the state comparison, appropriate

allocation and replacement decisions are taken as shown in

Table II. These steps essentially try to align the state of

the set to the global state. We note that if the set state has

to change, then the evicted/allocated block(s) must be the

highest numbered way(s). Since the off-chip miss is the long

pole, implementing the above replacement scheme will not

become latency critical.

5) Handling Writebacks: Writebacks from the DRAM

cache to the main memory are handled at 64B granularity

by maintaining dirty bits for every 64B block inside the

512B block. Thus when a big dirty block is evicted, the

writebacks are performed only for the 64B sub-blocks that

are dirty. Note however that the entire big block is removed

from the cache.

C. Way Locator - Design for Hit Latency Reduction

We introduce a Way Locator in SRAM which caches

the way IDs of the most recent accesses to DRAM cache

sets. The key observation that guides the design of our way

locator is that in a large low-level cache, most cache hits

are to the most recently used ways. This observation is

supported by Figure 5 which shows the fraction of cache

hits at various MRU (Most Recently Used) positions in an 8-

way associative cache for several eight-core workloads . On

average, more than 94% of hits are to the top 2 MRU ways.
Similar observations were made even on 16-core workloads

sharing the DRAM cache. Thus, it suffices to record the 2
most recently accessed ways for each set.

1) Way Locator Design: The way locator is a small 2-
way set associative cache. It is a table indexed using K
(out of N) bits drawn from the tag and set index bits of

the incoming address. We chose not to use the PC of the

instruction causing the access since it requires the PC value

(and associated core-id) to be passed through 2-3 levels

of memory hierarchy to the DRAM cache controller. As

shown in Figure 6, for each index there are 2 entries, with
each entry consisting of a valid bit, a block size bit (to

denote big/small), remaining set+tag bits as well as the 3

leading bits of the offset, and a way identification number.

For every access, the way locator is looked up using the

4343

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16

Fr
ac

tio
n

of
 C

ac
he

 h
its

 a
t M

R
U

 p
os

iti
on

Eight-Core Workloads

MRU0

MRU1

MRU2

MRU3

MRU4

MRU5

MRU6

MRU7

Rest

Figure 5: Most Cache Hits are to the Top-2 MRU Ways

Figure 6: Design of the Way Locator

K-bit index and the 2 entries at that index are compared
against the incoming address. If a match is found, then the

corresponding way identification number is used to compute

the column location of the data on the DRAM row and

a DRAM access is initiated. Note that our way locator

design ensures that it never makes any wrong predictions.
By comparing all of the required address bits against stored

entries, it ensures that there are no mis-predictions and hence

no wasted DRAM accesses.

The way locator is updated whenever it misses. The way

id of the accessed block is inserted to the way locator. In

case of a cache block eviction, its way information is evicted

from the way locator.

2) Way Locator Storage Requirements: Way Locator la-
tency is governed by the size of the SRAM storage needed.

In Table III we list the storage needs and latencies at various

table sizes and DRAM cache sizes. The latency values are

obtained using CACTII [10] at 22nm. The latencies of way

locator lookup are smaller than those associated with looking

up large SRAM tag stores [5] (6 cycles for 1MB, 7 for 2MB
and 9 cycles for 4MB in CACTII 22nm).

Thus, while the techniques employed in the Bi-Modal
Cache are well-known, they are orchestrated in an effective
manner to design a flexible DRAM cache organization that

achieves significant performance and that can continue to

benefit with scaling DRAM cache size.

Num. 128M Cache, 256M Cache, 512M Cache,

entries (2× 2K) 4GB mem 8GB mem 16GB mem

K=10, 5.9KB 6.14KB 6.4KB
2K entries 1 cycle 1 cycle 1 cycle

K=12, 21.5KB 22.5KB 23.5KB
8K entries 1 cycle 1 cycle 1 cycle

K=14, 77.8KB 81.9KB 86KB
32K entries 1 cycle 1 cycle 1 cycles

K=16, 278.5KB 294.9KB 311.3KB
128K entries 2 cycles 2 cycles 2 cycles

Table III: Way Locator Storage and Latency

D. Accessing the Bi-Modal Cache

Putting things together, in this section, we describe how

an access takes place in the Bi-Modal Cache. There are three
distinct cases, depending on whether the access is a hit in

way-locator, miss in way-locator but a DRAM cache hit, or

miss in the DRAM cache.

1) Way Locator Hit: If the way locator indicates a match,
we just access the corresponding data bank’s way on DRAM.

Eliminating Metadata Accesses: The way locator enables
an important optimization - a way locator hit can altogether

eliminate DRAM metadata access. Since a hit prediction

is always correct (i.e., it is a DRAM cache hit and data

is indeed present in the indicated way), there is no need

for reading the metadata. Metadata updates may still be
needed like in any cache management scheme (recency

information or setting a dirty bit in case of a write). In our

implementation, we do not maintain strict LRU and thus

we do not update the metadata on every access. Since the

way locator provides the top 2 MRU ways, our replacement
scheme is “random-not-recent” - randomly replace a way

that is not one of the top 2 MRU ways. It may be noted

that since the way locator may have fewer entries than the

number of sets, it can not provide MRU data for every

set. In cases where the way locator does not hold top-2

MRU locations for a given set, a random way of that set is

replaced. This scheme does well given the limited demand

for older ways in large low level caches. With this, the

Bi-Modal Cache eliminates accesses to the metadata bank
whenever there is a way locator hit for DRAM cache reads.

For writes, we update the dirty bits in the metadata bank but

this is not in the critical path of data access.

2) Way Locator Miss, DRAM cache Hit: If there was
a way locator miss, then the DRAM metadata bank is

accessed, and all the tags are read. Since our design limits

the highest associativity to 18 (in (2, 16) state), we are able
to read all the tags and associated attributes (big/small bits,

additional offset bits for small ways) from DRAM in 2

DRAM bursts (each burst fetches 64 bytes)10. In parallel,

the row in the bank that holds data for this set is activated.

Once the tags are matched and a match is found, a DRAM

column access is issued to the open row.

10In case of 4KB sets, the max. associativity is 36, and requires 3 DRAM
bursts

4444

3) DRAM cache Miss: If the access is a cache miss11 ,
then the DRAM cache controller first predicts the size of the

block to be fetched from main memory using the block size

predictor. Based on the predicted block size, the appropriate

fetch is initiated from the off-chip memory.

4) Hit Latency Reduction with Way Locator: In order
to understand the hit latency reduction of Bi-Modal Cache
we have to examine the average tag access time which is

dependent on the SRAM storage size (which determines

the tag lookup time ttag hit), SRAM way locator hit rate

htag hit, and DRAM cache metadata lookup time ttag miss .
We may express the average tag access latency as:

ttag access = htag hit ∗ ttag hit + (1− htag hit) ∗ ttag miss

ttag miss ≈ rtag row hit ∗ ttag col read + (1− rtag row hit)∗
(ttag precharge + ttag row open + ttag col read)

For illustration, consider a 256MB DRAM cache over a

40-bit address space. A tags-in-SRAM organization can be

modeled using the above equations as a tag store with

htag hit = 100% and ttag hit = 7 cycles. The way locator
has a smaller SRAM storage and thus incurs a smaller

ttag hit of 1 cycle at a table size of 120KB. At a DRAM
access timing of 10ns (32 cycles of a 3.2GHz processor), the

way locator needs to achieve htag hit of atleast 78% to per-

form better than the tags-in-SRAM organization. This model

reveals the importance of achieving high htag hit as well

as reducing ttag miss for a cached-metadata organization

to outperform the tags-in-SRAM. Bi-Modal Cache achieves
htag hit > 90% by leveraging spatial locality and caching

only the top-2 MRU blocks of sets (see Section V-F).

Further, Bi-Modal Cache reduces ttag miss by over 30%
(compared to a co-located tags and data scheme) by issuing

tag reads to a dedicated metadata bank which has a higher

average RBH (rtag row hit) compared to data banks (see

Section V-E). With a high hit-rate in Way Locator and high
RBH for metadata accesses, Bi-Modal Cache achieves an
average tag access latency of 3.6 cycles, which is nearly half
the average latency of a tags-in-SRAM organization.

IV. EVALUATION METHODOLOGY

We evaluated the performance benefits of Bi-Modal
Cache using multiprogrammed workloads running on the
GEM5 [12] simulation infrastructure to which we integrated

detailed models of stacked DRAM caches and off-chip

memory. The memory models faithfully account for all the

significant timing and functional characteristics including

hierarchical DRAM organization, key timing parameters

(including refresh), data bus widths, and clock frequencies.

The memory controller models implement all the key param-

eters, including command & data queues, request scheduling

11We have not used a miss predictor. Works in [3], [4] propose SRAM
based miss predictors which we could also deploy. This is an orthogonal
optimization aimed at miss latency.

Processor 3.2 GHz OOO Alpha ISA
L1I Cache 32kB private, 64B blocks, Direct-mapped, 2 cycle hit latency

L1D Cache 32kB private, 64B blocks, 2-way set-associative, 2 cycle hit latency

L2 Cache For 4/8/16 cores: 4MB/8MB/16MB, 8-way/16-way/32-way,
128/256/512 MSHRs, 64-byte blocks, 7/9/12 cycles hit latency

AlloyCache For 4/8/16 cores: 128MB/256MB/512MB, Direct-Mapped,
(Baseline) 64-byte blocks, MAP-I Predictor (1KB),

Memory in 2/4/8 Channels
Total of 16/32/64 DRAM banks, 2KB page,
128-bit bus width, 1.6GHz, CL-nRCD-nRP=9-9-9

BiModal 512/64B blocks, 2KB Set Size,
DRAM cache Way Locator: 77.8KB/81.9KB/86KB

Size Predictor and Tracker: 32KB/36KB/46KB
All the rest same as AlloyCache Baseline
(Note: BiModal did not employ MAP-I miss predictor)

Memory For 4/8/16 cores: 1/2/4 off-chip data channels
Controller Each MC: 64-bit interface to channel, 256-entry command queue

FR FCFS scheduling [11], open-page policy
Address-interleaving: row-rank-bank-mc-column

Off-Chip For 4/8/16 cores: 4GB/8GB/16GB main memory using:
DRAM DDR3-1600H, BL (cycles)=4, CL-nRCD-nRP=9-9-9

in 2/4/8 ranks, 16/32/64 banks
Refresh related: TREFI of 7.8us and TRFC of 280nCK

Table IV: CMP configuration

algorithms, and signalling commands to the memory. For

quad-core workloads, timing simulations were run for 1

billion instructions on each core after fast-forwarding the

first 10 billion instructions to allow for sufficient warm-up.

As is the norm, when a core finishes its timing simulation,

it continues to execute until all the cores have completed12.

In case of 8 and 16-core workloads, due to the amount of

simulation time required, we collected statistics on timing

runs of 500M and 250M instructions per core respectively.

In all cases, the total instructions simulated across all the

cores amount to more than 4B.

In addition to timing simulations, we explored several

design parameters/design choices of interest using a trace-

based DRAM cache simulator. Traces were collected from

GEM5 simulations of 4, 8, and 16-core architectures running

for 75 billion instructions on each core. This has resulted

in 120M – 450M accesses to the DRAM cache, with an

average of 310M DRAM cache accesses per workload. The

trace-driven simulator facilitated a comprehensive analysis

of cache hit rate, RBH, way locator hit rate, block size

predictor accuracy, cache space utilization and bandwidth

across a wide range of DRAM cache parameters including

cache size, block size, associativity, predictor table size and

thresholds.

Our workloads are comprised of programs from SPEC

2000 and SPEC 2006 benchmark [13] suites. The 4, 8

and 16-core multiprogrammed workloads are listed in Ta-

ble V. These benchmarks were carefully combined to create

workloads with high, moderate and low levels of memory
intensity13 to ensure a representative mix. Workloads marked
with a “*” in Table V have high memory intensity (LLSC
miss rate ≥ 10%). We also measured the footprints of these

12The statistics are collected only during the first 1 Billion instructions.
13Intensity was measured in terms of the last-level SRAM cache miss

rate.

4545

Quad-Core Workloads
*Q1:(462,459,470,433), *Q2:(429,183,462,459), *Q3:(181,435,197,473),
Q4:(429,462,471,464), *Q5:(470,437,187,300), *Q6:(462,470,473,300),
*Q7:(459,464,183,433), Q8:(410,464,445,433), Q9:(462,459,445,410),

*Q10:(429,456,450,459), Q11:(181,186,300,177), Q12:(168,401,435,464),
Q13:(434,435,437,171), *Q14:(444,445,459,462),Q15:(401,410,178,177),
Q16:(300,254,255,470), *Q17:(171,181,464,465), Q18:(464,450,465,473),
*Q19:(453,433,458,410), Q20:(462,471,254,186),Q21:(462,191,433,437),
Q22:(197,168,179,187), Q23:(401,473,435,177),Q24:(416,429,454,175)

Q25:(254,172,178,188)

Eight Core Workloads
E1:(462,459,433,456,464,473,450,445), *E2:(300,456,470,179,464,473,450,445),
*E3:(168,183,437,401,450,435,445,458), *E4:(187,172,173,410,470,433,444,177),
E5:(434,435,450,453,462,471,164,186), E6:(416,473,401,172,177,178,179,435),
*E7:(437,459,445,454,456,465,171,197), E8:(183,179,433,454,464,435,444,458),
*E9:(183,462,450,471,473,433,254,168), *E10:(300,173,178,187,188,191,410,171),
*E11:(470,177,168,434,410,172,464,171),E12:(459,473,444,453,450,197,175,164),
E13:(471,462,186,254,465,445,410,179),*E14:(187,470,401,416,433,437,456,454),
*E15:(300,458,462,470,433,172,191,471),E16:(183,473,401,435,188,434,164,427)

Sixteen Core Workloads
*S1:(462,459,433,456,464,473,450,445,453,179,183,168,416,434,444,191)
*S2:(435,465,471,164,186,434,416,256,172,177,178,437,454,171,197,458)
S3:(462,473,254,168,183,453,300,173,187,178,188,410,171,434,470,191)
*S4:(470,177,464,171,172,168,434,410,175,164,444,450,254,465,179,471)
S5:(410,433,189,187,177,173,300,255,254,471,458,456,454,437,444,434)
S6:(191,189,177,183,179,168,470,164,470,464,459,450,435,256,416,445)

Table V: Workloads

workloads in terms of the number of distinct 64B blocks

accessed. The average memory footprints in 4-core and 8-

core workloads are 990MB and 2.1GB respectively. We

also found that on average 87% of all the DRAM cache

misses are due to capacity/conflict. Thus our workloads are

sufficiently exercising the DRAM cache.

System performance is measured using the ANTT [14]

metric, defined as: ANTT = 1
n

∑n
i=1

CMP
i

CSP
i
, where CMP

i

and CSP
i denote the cycles taken by the ith program when

running in a multi-programmed workload and when running

standalone, respectively.

The details of our baseline architecture and variants

explored are listed in Table IV. Our baseline DRAM cache

architecture is the AlloyCache organization [4].

V. RESULTS

In this section, we evaluate the performance of the Bi-
Modal Cache and compare it with other schemes.

A. System Performance

Figure 7 shows the performance improvement that Bi-
Modal Cache achieves over the baseline in 4-core, 8-

core and 16-core workloads. Note that the baseline is

aggressive - it is a low-latency direct-mapped organization

with interleaved tags and data to achieve efficient read-

out of both from a single DRAM row. Bi-Modal Cache
achieves on average, gains in ANTT of 10.8%, 13.8%
and 14.0% respectively in 4, 8 and 16-core workloads. In

order to understand the sources of these performance gains,

we ran experiments with 2 additional configurations: Bi-
Modal-Only - this configuration implements only bi-modal
caching and no way location, and Way-Locator-Only - this
configuration implements only way location on fixed sized

(512B) blocks, and no bi-modality. Figure 8(a) shows the

improvements in performance for all 3 configurations on 8-

core workloads. As we can see, both components of the

Bi-Modal Cache design, namely its ability to support and
adapt to two different cache block sizes and its ability to

locate the way quickly and access the data (without tag

search) for a large majority of the accesses, independently

yield significant performance benefits.

B. Improving Cache Hit Rate

The baseline scheme (AlloyCache) is organized as 64B
blocks and as shown earlier in Figure 1, this has significantly

lower cache hit rates. A fixed 512B block size greatly im-

proves hit rates (average gain: 29%) by leveraging inherent
spatial locality. As shown in Figure 8(b), the Bi-Modal
Cache further improves hit rates (average gain: 38%) via
improved cache space utilization.

C. Reducing Access Latency

We measured the cache hit and miss latencies observed

at the DRAM cache controller, including the time for way

location and delays caused by contention. We compare the

average access latency (i.e., average LLSC miss penalty)

with several other schemes in Figure 8(c). Bi-Modal Cache
achieves lower average latency (22.9%) over the baseline by
virtue of a higher cache hit rate despite having nearly the

same hit-latency as baseline.
1) Comparison with Footprint-Cache and ATCache:

Footprint Cache [5] (FPC) organizes data in the form of

large (1024B or 2048B) blocks and thereby manages to store

metadata on SRAM. Only predicted sub-blocks of these

large blocks are fetched into the cache to reduce wasted

off-chip bandwidth. Further, it bypasses blocks predicted to

have just one CPU reference to it. Bi-Modal Cache has 2
benefits over FPC. One, FPC incurs a higher tag lookup

latency. Two, FPC commits large block space in the cache
whenever its predictor indicates a utilization of ≥ 2 fine-
grain blocks (64B size). Given that a good fraction of blocks

(average of 18% for our workloads) have utilization levels

≥ 2 but < 8 (see Figure 2), this causes internal wastage
within a block and results in additional cache misses due to

a virtually smaller cache. Bi-Modal Cache achieves average
latency improvement of 12% over FPC resulting in 4.9% in

ANTT (details not shown due to space restriction).

Finally, as compared to the ATCache [8]14, our scheme
achieves a higher way locator hit rate than the tag-cache

hit rate in the ATCache, higher DRAM cache hit rate (due

to larger blocks) and lower DRAM hit latency resulting

in significant latency improvement (26.5%). This translates
to ANTT improvement of 14.8%. Thus Bi-Modal Cache
achieves latency reduction over both tags-in-SRAM and

tags-in-DRAM organizations by simultaneously improving

cache hit rates and reducing hit latency.

14Our implementation used PG = 8.

4646

 0

 5

 10

 15

 20

 25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q13

Q14
Q15

Q16
Q17

Q18
Q19

Q20
Q21

Q22
Q23

Q24
Q25

Avg

A
N

TT
 Im

pr
ov

em
en

t (
%

)

Quadcore Workloads

(a) Qaud-Core

 0

 5

 10

 15

 20

 25

 30

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16
Avg

A
N

TT
 Im

pr
ov

em
en

t (
%

)

Eight-core Workloads

(b) Eight-Core

 0

 5

 10

 15

 20

S1 S2 S3 S4 S5 S6 Average

A
N

TT
 Im

pr
ov

em
en

t (
%

)

Sixteen-Core Workloads

(c) Sixteen-Core

Figure 7: Overall System Performance Improvement with Bi-Modal Cache

 0

 5

 10

 15

 20

 25

 30

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16
Average

Pe
rf

. I
m

pr
ov

em
en

t (
%

)

Eight-core Workloads

Bi-Modal-Only
Way-Locator-Only

Overall

(a) Sources of Performance Gains

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16

D
R

A
M

 C
ac

he
 H

it
R

at
e

Eight-core Workloads

Baseline Fixed(512B) BiModal-Cache

(b) Hit Rate

 0

 5

 10

 15

 20

 25

 30

 35

 40

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16

LL
C

 M
is

s L
at

en
cy

 (n
s)

Eight-core Workloads

Baseline
ATCache

FPC
Bi-Modal

(c) LLSC Miss Latency (Lower is Better)

Figure 8: Understanding Performance Improvement with Bi-Modal Cache

D. Reducing Wasted Bandwidth

Bi-modality achieves a significant reduction in wasted

bandwidth (more than 60%) compared to a fixed block size
organization. Figure 9(a) plots the wastage in the fixed-512B

block size organization and that incurred in the Bi-Modal
Cache for 8-core workloads. In particular, the workloads
E8, E12, E14 and E15 that suffered significant wastage

in the fixed block size configuration have considerably

benefited. On average, Bi-Modal Cache achieves savings of
67%, 62% and 71% in 4-core, 8-core and 16-core workloads

over the fixed 512B block-size organization. These savings

are substantial both from reducing contention on the off-

chip bus (and thereby reducing miss latency) as well from

an energy point-of-view.

As compared to the 64B baseline [3] that incurs no

wasted off-chip bandwidth, the Bi-Modal Cache incurs only
an additional 3.7% and 4.4% bandwidth in quad-core and

eight-core respectively. Thus, Bi-Modal Cache is able to
leverage a large block size without incurring significant

additional bandwidth. A stricter threshold (T > 5) can be
used to reduce this additional bandwidth consumption. In

comparison to FPC [5], our organization reduces off-chip

bandwidth consumption by 7.2% and 7.7% in quad-core

and eight-core respectively. These savings are a result of

improving cache utilization.

E. Improving the Metadata Row-Buffer Hit Rate

As discussed in Section III, by separating out the metadata

into its own bank the DRAM row-buffer hit rates improve.

Figure 9(b) shows this effect for several quad-core work-

loads15. On average, the metadata bank gains 37% hit rate

improvement over one where data and tags are co-located

in the same rows. Similar results are seen in 8-core and 16-

core workloads (but not shown here due to space restriction).

What this means from a latency perspective is that even

when the way locator suffers a miss, this organization would

suffer less latency by eliminating a good fraction of row-

buffer activations and precharges.

F. Way Locator Hit Rates

The way locator’s hit rate plays a key role in ensuring

that most requests require just a single DRAM access.

Figure 9(c) plots the way locator hit rates at different

table sizes for selected quad-core workloads. A table size

of K = 14 provides a good trade-off between hit rates
(average: 95%) and table size (77.8K for 128MB cache -

refer Table III). Thus only a small fraction of accesses incur

an additional DRAM access for metadata. At this table size,

8-core workloads achieve an average hit rate of 91%.

15In all cases, the averages are computed over all the workloads even if
not all have been plotted for space reasons.

4747

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16
Avg

W
as

te
d

B
an

dw
id

th
 (%

)

Eight-core Workloads

Fixed-Size(512B) Bi-Modal

(a) Wasted Bandwidth (8-Core)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q13

Q14
Q15

Q16
Q17

Q19
Q20

Q21
Q22

Q23
Q24

Q25

R
ow

 B
uf

fe
r H

it
R

at
es

Quad-core Workloads

BiModal-RBH(Metadata-Bank) BiModal-RBH(Data-Banks)

(b) BiModal RBH (Metadata bank)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Q1 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q13

Q14
Q16

Q19
Q22

Q24
Q25

Avg

W
ay

 L
oc

at
or

 H
it

R
at

e

Quadcore Workloads

K=10 K=12 K=14 K=16

(c) Way Locator Hit Rates

Figure 9: Bandwidth, RBH and Way Locator Hit Rate Improvements in Bi-Modal Cache

G. Bi-Modal Adaptation

Bi-modality enables different workloads to tailor the use

of cache space suitably depending on the access characteris-

tics. Figure 10 shows the fraction of accesses that go to small

blocks. There is a wide variation across workloads with Q17
having only 1% of its accesses to small blocks while Q23
has 48% of its accesses to small blocks. This indicates that

the Bi-Modal Cache adapts to workload characteristics well.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Q1 Q2 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Q11

Q12
Q13

Q14
Q15

Q16
Q17

Q18
Q19

Q20
Q21

Q22
Q23

Q24
Q25

Fr
ac

. A
cc

es
se

s t
o

64
B

Quad-core Workloads

Figure 10: Fraction of Accesses to Small Blocks

H. Energy Savings

We computed the energy consumed using the number of

accesses, DRAM cache hit rate, way locator hit rate, row

buffer hit rates in the cache and main memory, and the

amount of data transferred. Bi-Modal Cache saves off-chip
energy by improving DRAM cache hit rate, and by lever-

aging higher spatial locality in off-chip accesses. While the

baseline (AlloyCache) does not incur any wasted transfers, it
suffers from low spatial locality and causes a high proportion

of off-chip DRAM page activations and precharges. Further,

its direct-mapped organization incurs more evictions.

The fraction of DRAM cache accesses that miss in the

way locator (< 5% in quad-core) may increase energy by

opening two banks. Of these, on average, only about 17% of

accesses require two row-buffer activations (i.e., < 0.85%
of all accesses in quad-core).

Figure 11 plots energy saving realized by Bi-Modal Cache
for 8-core workloads. It achieves overall memory energy

(DRAM cache + main memory) reduction of 11.8% for 8-

core workloads (14.9%, and 12.4% on average in quad, and

16-core workloads respectively) over the baseline.

 6

 8

 10

 12

 14

 16

 18

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16
Avg

En
er

gy
 S

av
in

gs
 (%

)

Eight-core Workloads

Figure 11: Off-Chip Energy Savings in 8-Core

N PREF NORMAL PREF BYPASS
1 9.8% 10.4%
3 8.7% 9.3%

Table VI: Performance (ANTT) Improvement Over Prefetch-

Enabled Baseline

I. Sensitivity

Interaction with Prefetch: Prefetching can potentially
hide the long latency of a cache miss. However, prefetchers

also introduce their own complexity, e.g., wasted bandwidth

if prefetched data was not actually needed, and cache pollu-

tion by evicting useful data early. We explored the effect of

a hardware prefetcher on Bi-Modal Cache by adding a next-
N-lines prefetcher [15] between the LLSC and the DRAM

cache. This prefetcher observes the misses in the LLSC and
initiates prefetching of the next N spatially adjacent cache

blocks (64B) if these blocks are not already present in the

LLSC. We introduced such a prefetcher in both the baseline
(AlloyCache) as well as Bi-Modal Cache. We explored two
settings of N , a conservative prefetcher at N = 1 and an
aggressive prefetcher at N = 3. For the Bi-Modal Cache,
we explored two different implementations of prefetch in

the DRAM cache: (i) prefetch requests are treated exactly

like normal accesses (PREF NORMAL), and (ii) prefetch
requests bypass the DRAM cache if they are misses in

the DRAM cache (PREF BYPASS). Table VI reports the
performance improvements observed in Bi-Modal Cache
relative to the respective prefetch-enabled baselines in quad-

core workloads. This shows that the benefits of Bi-Modal
Cache hold even in the presence of prefetching, with the
smallest average gain being 8.7%.

4848

Cache Size, Block Size and Associativity: We explore
the performance benefit of Bi-Modal Cache with different
cache sizes, block sizes and associativity. Figure 12 shows

that this organization is able to exhibit performance benefit

at both smaller (64MB) and larger (512MB) caches, with

smaller (256B) and larger block sizes (1024B) and at higher

associativity (8-way). The notation BiModal(X-Y-Z) refers
to the Bi-Modal Cache of size X , big block size Y and

big block associativity Z. All the improvements are over
corresponding-sized AlloyCache configurations.

 5
 10
 15
 20
 25
 30

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
E11

E12
E13

E14
E15

E16
Avg

A
N

TT
 Im

pr
ov

em
en

t (
%

)

Eight-core Workloads

BiModal(64MB-512B-4W)

BiModal(512MB-512B-4W)

BiModal(256MB-256B-4W)

BiModal(256MB-1024B-4W)

BiModal(256M-512B-8W)

Figure 12: Sensitivity Study

VI. RELATED WORK

In Sections II and III-A, we have already contrasted our

work with recent DRAM cache organizational studies [8],

[3], [4], [5]. The work in [6] aims to filter out infrequently

used pages and cache only the few hot pages. In our work,
we found that the proportion of hot pages can be substantial

(as seen from Figure 2) thereby reducing or even eliminating

opportunities for significant filtering. In [16], a DRAM

cache organization that balances out cache and off-chip

bandwidths is proposed to prevent a disproportionate load

on the DRAM cache. This work is orthogonal to the ideas

discussed in our proposal. The works in [17], [18] address

SRAM cache line sizing in the presence of stacked DRAM

main memory. Techniques related to SRAM cache line

sizing assume that tag overheads are low, access times are

small and that data movement/layout changes are affordable.

These are all severe constraints in the DRAM cache space.

There are quite a few works that discuss 3D stacked memory

issues such as TSV bandwidth, resilience, and power [19],

[20], [21], [22] that are orthogonal to the issues addressed

in our work.

There are a number of studies around SRAM cache

organizations [23], [24], [25] with the goals of achieving

better hit rates, and latencies in multi-core systems. In [23]

a variable-granularity cache organization at the L1, L2 levels
is proposed to utilize space more efficiently. The proposed

mechanisms are costly for implementation at the DRAM-

Cache level both from a metadata storage as well as from

hit, and miss evaluation cost. In [24], block utilization is

tracked and dead blocks are used to retain useful victims

from other sets. Similarly, the work in [25] proposes to

organize the likely eviction candidates at small granularity

retaining only the likely useful sub-blocks. At the DRAM

cache level, we found very little benefit of retaining evicted

(or likely to be evicted) blocks in a victim cache since there

was very little temporal reuse.

Cache way prediction/memoization has been applied at

the L1 and L2 levels [26], [27], [28], [29] to reduce energy

at some trade off to access latency. Although the idea of way-

prediction is old and well-known, we believe it has more

role to play in the realm of DRAM caches and ours is the

first work to leverage this idea at the DRAM cache level to

reduce cache access latency significantly.

VII. CONCLUSIONS

In this work, we presented a DRAM cache organization

that achieves improved cache hit rate, row-buffer hit rate,

hit latency and off-chip memory bandwidth. By separating

out the metadata into its own bank and using a way locator

to point to the correct data location, the Bi-Modal Cache
achieves hit latency reduction while also enabling metadata

to reside on DRAM. This separation has the added benefit of

improving the row-buffer hit rate. By organizing the cache

sets to accomodate two sizes, the Bi-Modal Cache reduces
wasted off-chip bandwidth as well as internal fragmentation.

These combine to deliver improved performance. Overall,

the Bi-Modal Cache improves ANTT by 10.8%, 13.8% and

14% for 4, 8, and 16-core workloads, over an aggressive

baseline.

ACKNOWLEDGEMENTS

We would like to thank Prof. Mainak Chaudhuri and

the anonymous reviewers of this paper for their insightful

comments and feedback.

REFERENCES

[1] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and
Y. Solihin, “Scaling the bandwidth wall: Challenges in and
avenues for CMP scaling,” Proceedings of the 36th Annual
International Symposium on Computer Architecture, vol. 37,
no. 3, pp. 371–382, 2009.

[2] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang,
G. H. Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pan-
tuso, P. Reed, J. Rupley, S. Shankar, J. Shen, and C. Webb,
“Die stacking (3D) microarchitecture,” in Proceedings of
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture, 2006, pp. 469–479.

[3] G. H. Loh and M. D. Hill, “Efficiently enabling conventional
block sizes for very large die-stacked DRAM caches,” in
Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011, pp. 454–464.

[4] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-
off in architecting DRAM caches: Outperforming impractical
SRAM-tags with a simple and practical design,” in Pro-
ceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 235–246.

4949

[5] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches
for servers: Hit ratio, latency, or bandwidth? Have it all
with footprint cache,” in Proceedings of the 40th Annual
International Symposium on Computer Architecture, 2013, pp.
404–415.

[6] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian, “CHOP:
Adaptive filter-based dram caching for CMP server plat-
forms.” in International Symposium on High Performance
Computer Architecture, 2010, pp. 1–12.

[7] M. D. Hill, “A case for direct-mapped caches,” Computer,
vol. 21, no. 12, pp. 25–40, 1988.

[8] C.-C. Huang and V. Nagarajan, “ATCache: Reducing DRAM-
cache latency via a small SRAM tag cache,” in Proceedings of
the 23rd International Conference on Parallel Architectures
and Compilation Techniques, 2014.

[9] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and
J. Emer, “Set-dueling-controlled adaptive insertion for high-
performance caching.” Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture,
vol. 28, pp. 91–98, 2008.

[10] S. J. E. Wilton and N. P. Jouppi, “Cacti: An enhanced cache
access and cycle time model,” IEEE Journal of Solid-State
Circuits, vol. 31, pp. 677–688, 1996.

[11] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.
Owens, “Memory access scheduling,” Proceedings of the 27th
Annual International Symposium on Computer Architecture,
vol. 28, no. 2, pp. 128–138, 2000.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.
Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, 2011.

[13] J. L. Henning, “Spec cpu2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17,
2006.

[14] S. Eyerman and L. Eeckhout, “System-level performance
metrics for multiprogram workloads,” IEEE Micro, vol. 28,
no. 3, pp. 42–53, 2008.

[15] S. P. Vanderwiel and D. J. Lilja, “Data prefetch mechanisms,”
ACM Comput. Surv., vol. 32, no. 2, pp. 174–199, Jun. 2000.

[16] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi,
“A mostly-clean DRAM cache for effective hit speculation
and self-balancing dispatch,” in Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2012, pp. 247–257.

[17] T. Ono, K. Inoue, and K. Murakami, “Adaptive cache-line
size management on 3D integrated microprocessors,” in SoC
Design Conference, 2009, pp. 472–475.

[18] K. Inoue, K. Kai, and K. Murakami, “Dynamically variable
line-size cache exploiting high on-chip memory bandwidth
of merged DRAM/logic LSIs.” in International Symposium
on High Performance Computer Architecture, 1999, pp. 218–
222.

[19] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee,
“An optimized 3D-stacked memory architecture by exploiting
excessive, high-density TSV bandwidth.” in International
Symposium on High Performance Computer Architecture,
2010, pp. 1–12.

[20] J. Sim, G. H. Loh, V. Sridharan, and M. O’Connor, “Re-
silient die-stacked DRAM caches,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture,
2013, pp. 416–427.

[21] G. H. Loh, “3D-stacked memory architectures for multi-core
processors,” Proceedings of the 35th Annual International
Symposium on Computer Architecture, vol. 36, no. 3, pp. 453–
464, 2008.

[22] L. Zhao, R. R. Iyer, R. Illikkal, and D. Newell, “Exploring
DRAM cache architectures for CMP server platforms.” in
ICCD. IEEE, 2007, pp. 55–62.

[23] S. Kumar, H. Zhao, A. Shriraman, E. Matthews,
S. Dwarkadas, and L. Shannon, “Amoeba-cache: Adaptive
blocks for eliminating waste in the memory hierarchy,”
in Proceedings of the 2012 45th Annual IEEE/ACM
International Symposium on Microarchitecture, 2012, pp.
376–388.

[24] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi, “Using
dead blocks as a virtual victim cache,” in Proceedings of the
19th International Conference on Parallel Architectures and
Compilation Techniques, 2010, pp. 489–500.

[25] M. K. Qureshi, M. A. Suleman, and Y. N. Patt, “Line
distillation: Increasing cache capacity by filtering unused
words in cache lines.” in International Symposium on High
Performance Computer Architecture, 2007, pp. 250–259.

[26] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi,
and K. Roy, “Reducing set-associative cache energy via way-
prediction and selective direct-mapping,” in Proceedings of
the 34th Annual ACM/IEEE International Symposium on
Microarchitecture, 2001, pp. 54–65.

[27] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting
set-associative cache for high performance and low energy
consumption,” in Proceedings of the 1999 International Sym-
posium on Low Power Electronics and Design, 1999, pp. 273–
275.

[28] T. Ishihara and F. Fallah, “A way memoization technique for
reducing power consumption of caches in application specific
integrated processors,” in Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 1, 2005, pp.
358–363.

[29] B. Calder, D. Grunwald, and J. Emer, “Predictive sequential
associative cache,” in Proceedings of the 2nd IEEE Sympo-
sium on High-Performance Computer Architecture. IEEE
Computer Society, 1996.

5050

