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Abstract—Most mesh denoising techniques utilize only either the facet normal field or the vertex normal field of a mesh surface. The

two normal fields, though contain some redundant geometry information of the same model, can provide additional information that

the other field lacks. Thus, considering only one normal field is likely to overlook some geometric features. In this paper, we take

advantage of the piecewise consistent property of the two normal fields and propose an effective framework in which they are filtered

and integrated using a novel method to guide the denoising process. Our key observation is that, decomposing the inconsistent field

at challenging regions into multiple piecewise consistent fields makes the two fields complementary to each other and produces

better results. Our approach consists of three steps: vertex classification, bi-normal filtering, and vertex position update. The

classification step allows us to filter the two fields on a piecewise smooth surface rather than a surface that is smooth everywhere.

Based on the piecewise consistence of the two normal fields, we filtered them using a piecewise smooth region clustering strategy.

To benefit from the bi-normal filtering, we design a quadratic optimization algorithm for vertex position update. Experimental results

on synthetic and real data show that our algorithm achieves higher quality results than current approaches on surfaces with

multifarious geometric features and irregular surface sampling.

Index Terms—Mesh denoising, bi-normal filtering, feature preserving, piecewise consistence, piecewise smooth surface

Ç

1 INTRODUCTION

MESH surfaces are widely used in computer graphics
and applications such as computer-aided industrial

design, interactive virtual reality and medical diagnosis and
treatment. Even with high-fidelity scanners, the obtained
surfaces still contain noise from various sources [1]. Noise
not only degrades visualization quality, but also causes
troubles in downstream processing [2]. Though some recent
techniques [2], [3], [4], [5] have yielded promising results,
denoising models with features at various scales and/or
with irregular surface sampling is still a challenging task.

Mesh denoising aims to eliminate noise or spurious
information while simultaneously preserving genuine infor-
mation at all frequencies. Nowadays, the two-stage process
is commonly adopted [6], [7], [8], which first adjusts the
facet normal field and then updates vertex positions to
match the adjusted facet normal field. This is based on the
observation that the first-order normal variations can better
describe surface variations rather than vertex position

variations [9]. For models with challenging regions of fea-
tures at various scales and/or of irregular surface sampling,
performing vertex position update with only the facet nor-
mal field, however, would lead to artifacts in denoising
results, including feature blurring, shape distortion, and
vertex drifts. This is because the geometry information of
one single normal field is insufficient in guiding the optimi-
zation of vertex position, needless to say that for most tech-
niques the genuine information will at least be partially lost
in the normal filtering stage.

There are two commonly used normal fields of a mesh
surface, i.e., the facet normal field and the vertex normal
field. These two normal fields sometimes contain redundant
geometry information of the same mesh surface. This is
because if the underlying surface of a mesh is smooth every-
where, the two fields would be consistent with each other.
The consistence between the two fields can explain why
they can be recovered from each other through simple inter-
polation and why most of the two-stage methods employing
only single normal filtering [3], [8] can still achieve quality
results, especially at smooth regions.

However, the two fields also have some differences: the
facet normal field tends to reflect the global geometric varia-
tions of a mesh surface, while the vertex normal field more
illustrates local details of mesh vertices. Thus if the underly-
ing surface is piecewise smooth, rather than smooth every-
where, the two fields are inconsistent at feature regions
(also called discontinuous points or outliers in some
papers), where one normal field cannot be directly esti-
mated from the other with simple interpolation. Therefore,
depending on the geometry property of a feature, each nor-
mal field may contain distinct geometry information at a
region. This motivates us to investigate the possibility of
employing both normal fields in the denoising process to
complement each other at regions with features and/or
with irregular surface sampling.
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However, it is difficult to estimate the vertex and facet
normals accurately at these feature regions due to the exis-
tence of anisotropic patches at these regions. The situation
becomes even worse in the presence of noise. We propose a
novel strategy, namely bi-normal filtering, to more accu-
rately compute the two normal fields and employ them to
guide the optimization of vertex position for preserving fea-
tures and dealing with irregular surface sampling.

Before going into the process of bi-normal filtering, we
classify vertices of an input noisy mesh into feature vertices
and non-feature vertices, which tells us which vertices
require special consideration during the filtering process. In
the bi-normal filtering, we first initialize the facet normal
field. Existing normal filters can produce accurate facet nor-
mals at smooth regions, but result in less reliable normals at
feature regions. Then we cluster each feature vertex’s neigh-
boring facets into multiple piecewise smooth patches by for-
mulating an energy function derived from the initialized
facet normal field. Thanks to the neighboring facets cluster-
ing, the vertex normals at the feature regions can be esti-
mated by fitting these piecewise smoothed patches.
Meanwhile, we further refine the facet normal field by add-
ing the piecewise consistence at feature regions as con-
straints into a global system [5], which can fully prevent
negative effects from other piecewise smooth patches dur-
ing the refinement. Finally, we formulate the vertex update
process as a quadratic optimization problem exploiting
both the vertex normal field and the facet normal field,
which can more accurately update vertices to approximate
the underlying surface of the mesh.

As shown in Fig. 1, the utilization of the two normal fields
is paramount in making denoising results visually more
appealing. Extensive experiments reported in Section 7 fur-
ther demonstrate that our algorithm can achieve higher qual-
ity results than previous approaches on noisy surfaces with
multifarious geometric features and irregular surface sam-
pling. Themain contributions of this paper are

� we take advantage of the piecewise consistent prop-
erty between the two normal fields on mesh surfaces
and design a novel bi-normal filtering strategy to
address the inherent difficulties in estimating the
two normal fields of a noisy mesh at feature regions;

� we formulate the vertex position update as a qua-
dratic optimization problem based on the two

normal fields. Since one normal field can provide
geometric information that the other field might
lack, combining them to guide the optimization of
vertex positions leads to higher fidelity of the under-
lying surface.

2 RELATED WORK

Existing surface noise removal approaches are either isotro-
pic (i.e., surface smoothing) or anisotropic (i.e., surface
denoising). Here, we mainly focus on existing techniques
which are closely related to our work. An all-around over-
view is beyond the scope of this paper; readers can refer to
[12], [13], [14] and references therein for more details about
this topic.

Early methods for noise removal are isotropic, which
means the filters applied in these methods are surface
geometry independent. Laplacian smoothing [15] is the fast-
est and simplest scheme among surface smoothing techni-
ques. To solve the shrinkage problem of Laplacian operator,
Taubin [6] presented a two-step Laplacian operator to
expand the mesh after smoothing. Desbrun et al. [16]
extended this approach to irregular meshes by using geo-
metric flow analogy to re-scale the mesh. Meyer et al. [17]
further extended this idea to handle anisotropy for feature
preserving. Later, Kim and Rossignac [18] refined these
three approaches to design a lowpass/highpass filtering
framework with exaggeration and attenuation options.
Recently, several global, noniterative surface smoothing
approaches [19], [20], [21] have been proposed, which are
usually based on differential properties. In general, these
isotropic approaches are numerically robust, and could gen-
erate smoothing results. However, they inevitably wipe
away high-frequency features due to the intrinsic character-
istic of isotropic filters.

Compared with surface smoothing techniques, surface
denoising techniques usually better preserve geometric fea-
tures while removing noise. Many denoising approaches
[22], [23], [24], [25], [26] are inspired from scale space and
anisotropic diffusion in image processing. They adopted
feature-preserving anisotropic diffusion for 2D grids to ani-
sotropic geometric diffusion on 3D surfaces. Although these
approaches can yield high-quality results, they suffer from
the numerical instability of the diffusion equations, as they
are heavily based on shock formation [27]. Hildebrandt and

Fig. 1. Denoising results of the Block model. From left to right columns: noisy model which is first locally subdivided at three regions (highlighted)
using the middle-point subdivision strategy (two iterations) to produce the irregular sampling and then corrupted with noise (Gaussian noise with
s ¼ 0:15 of mean edge length), denoising results of Sun et al.’s unilateral normal filtering (T ¼ 0:38; n1 ¼ 10; n2 ¼ 12) [8], Fan et al.’s second-order
bilateral filtering (k1 ¼ 35; k2 ¼ 8; Eps ¼ 2;MinPts ¼ 6) [10], Wang et al.’s cascaded filtering (n1 ¼ 12; t ¼ 0:005; n2 ¼ 14) [11], He and Schaefer
area-based edge filtering (m ¼

ffiffiffi

2
p

;a ¼ 0:1g; � ¼ 0:02‘2eg) [2], and our bi-normal filtering (sS1 ¼ 0:3; n1 ¼ 12; sS2 ¼ 0:3; n2 ¼ 12). Our approach yields
a better result than other techniques at challenging regions with features and irregular surface sampling.
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Polthier [12] adopted prescribed mean curvature flow to
preserve surface feature when removing noise. He and
Schaefer [2] proposed a denoising approach by minimizing
the curvature of a surface except at sharp features.

Some denoising techniques are inspired from the bilat-
eral filtering [28] which was initially employed in image
denoising. Fleishman et al. [3] and Jones et al. [27] indepen-
dently extended it to denoise 3D meshes. Fleishman et al.
used an iterative one-stage scheme which is relatively fast
but cannot always accurately retain features. Jones et al.
used a non-iterative two-stage scheme which is slow
because it treats normal smoothing and vertex update as
global problems. El Ouafdi et al. [29] designed a Rieman-
nian distance based on diffusion tensor to filter neighboring
vertices which formed a probabilistic denoising algorithm.

In recent years, many researchers, e.g., Taubin [30],
Ohtake et al. [7], Yagou et al. [31], Shen and Barner [32],
[13], Sun et al. [8], [4], Zheng et al. [5] and Zhu et al. [33]
have adopted the multi-stage framework which first filters
facet normals and then updates vertex positions based on
facet normals. Compared with one-stage approaches, these
multi-stage approaches are generally more effective for
recovering features contaminated by reasonable amount of
noise. However, these filters cannot eliminate inter-
influence of different geometric structures which leads to
feature blurring, especially the blurring of shallow features
as shown in the result section.

More recently, several researchers, e.g., Fan et al. [10],
Bian and Tong [34], and Wang et al. [11], classified vertices
on the noisy mesh into different types before denoising pro-
cess. Wang et al. [35] simultaneously decoupled noises and
features on 3D surfaces for denoising. Generally, an accu-
rate estimation of the differential geometric properties is
vital for these methods. However, higher order derivatives
are sensitive to noise, which usually leads to poor results.

3 OVERVIEW

How to produce the two normal fields of higher accuracies
with the help from each other for mesh denoising is the main
focus of this study. We adopt a cascaded operation on the
two normal fields, where methods used are built on the
geometry assumption that the underlying surface of a noisy
mesh is piecewise smooth and a feature lies on the intersec-
tion of multiple smooth surface patches [36]. Fig. 2 illustrates
the framework of the proposed algorithm. It is composed of
three steps: vertex classification, bi-normal filtering and vertex
position update (also called mesh evolution). We first employ a

vertex classification technique [37] to label mesh vertices as
features and non-features (Section 4). In bi-normal filtering,
we first obtain a relatively accurate initial facet normal field
via a local facet normal filtering [5] to reduce the effects of
noise on the following steps (Section 5.1). We then cluster
each feature vertex’s facet neighbors into distinct piecewise
smooth patches (with different colors in Fig. 2) according to
similarity of their facet normals (Section 5.2). Next, the vertex
normal field is estimated based on the clustering results (Sec-
tion 5.3). In detail, clusters of different piecewise smooth
patches are fitted into different planes to determine normals
of feature vertices. Thus, we can obtain a more accurate ver-
tex normal field than traditional methods that indiscrimi-
nately average a vertexs 1-ring facet normals for all vertices.
Meanwhile, the representative normals of those consistent
patches are added as constraints into a global equation sys-
tem [5] for further optimizing the facet normal field (Sec-
tion 5.4). Finally, noisy vertices are adjusted to new positions
by solving a quadratic optimization based on the two normal
fields (Section 6).

4 VERTEX CLASSIFICATION

We employ the normal tensor voting algorithm [37] to clas-
sify vertices of the input noisy mesh according to the piece-
wise smooth assumption. In detail, according to the
eigenvalues of the voting tensor, vertices can be classified
into three types, i.e., corner, sharp edge, and face, in which
sharp edges are considered as intersections of two piece-
wise smooth patches and corners as intersections of three or
more piecewise smooth patches. We call vertices of sharp
edges and corners as feature vertices, and faces as non-feature
vertices. Due to the existence of noise, the normal tensor vot-
ing algorithm may result in misclassifications in some cases
[37]. For example, a non-feature vertex may be wrongly
classified into sharp edge or corner. Fortunately, this will
not influence the performance of our algorithm, as in the fol-
lowing bi-normal filtering, these misclassifications can be
eliminated, which will be described in Section 5.2.

5 BI-NORMAL FILTERING

If the underlying surface of a mesh is smooth everywhere,
the two normal fields are consistent with each other. To be
specific, one of the normal fields can be directly recovered
from the other through weighted interpolation. However, if
the underlying surface is piecewise smooth, the two fields
are not consistent in the neighborhood around a feature,
where multiple smooth surface regions exist. In order to
faithfully recover features during denoising, we propose a
bi-normal filtering approach to estimate both the facet and
vertex normal fields in turns with a careful handling of the
inconsistence at feature regions.

5.1 Facet Normal Field Initialization

In order to reduce the effects of noise in the following steps,
we first initially estimate the facet normal field. Another rea-
son we choose to start with the facet normal field is that ver-
tex normals are commonly less accurate or even missing in
raw data. Many existing filters can be used in the initializa-
tion to obtain a relatively accurate facet normal field, as we

Fig. 2. The framework of the proposed algorithm.
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found no significant differences in our experiments. Here,
we adopt Zheng et al.’s local bilateral normal filter [5], in
which the weight function depends on spatial distance, sig-
nal distance and sampling ratio simultaneously.

5.2 Neighboring Facets Clustering

In order to more accurately estimate the vertex normal field
and refine the facet normal field at feature regions, we
attempt to figure out the underlying surface geometry
around a feature vertex, and use its geometric information
to estimate its normal. We first cluster the vertexs neighbor-
ing facets into a number of groups. The neighboring facets
clustering is trying to find consistent grouping of connected
facets around the vertex, so that the facets in each group
have similar or smoothly varying normals. In other words,
we are seeking sub-regions around the vertex with as few
geometrical variations as possible. Notice that it is only nec-
essary to apply the clustering to feature vertices, as non-
feature vertices will always result in one single group.

We formulate the clustering problem into an optimiza-
tion framework with the energy function defined as

E ¼
X

k

i¼1

Z

Mi

rðxÞn � ðn� niÞdx; (1)

where k is the number of clusters (groups); Mi denotes an
arbitrary cluster; rðxÞ gives the density function (usually a
constant function);n represents the normal of arbitrary points
on a facet in the clusterMi; andni is the representative normal
computed by normalizing the weighted average of all facet
normals within the cluster.We can find that the energyE enc-
odes the total offsets of the facet normals within a cluster to
the representative normal of that cluster. If we assume that
normals are the same in arbitrary points within a facet, and
specify sj ¼

R

fj
rðxÞdx of facet fj, theE can be discretized as

E ¼
X

k

i¼1

X

fj2Mi

sjknjk2 �
X

fj2Mi

sjnj

�

�

�

�

�

�

�

�

�

�

�

�

2

4

3

5; (2)

where nj is the unit normal of facet fj. In our case, we set
rðxÞ ¼ 1 and hence sj is the area of facet fj. We propose a
simple and efficient iterative clustering procedure to solve
this optimization problem.

Initialization. The number of groups k to be clustered
is decided by the results of vertex classification. For
sharp edge vertex, we suppose the vertex is at an inter-
section between 2 consistent regions, and k is set to be 2.
For corner vertex, we set k � 3. To initialize the groups,
we select k seed facets, so that each facet is assigned to a
different group at the beginning. The seed facets are
selected from the vertex’s one-ring facets, and they have
maximal normal difference.

Optimization. We adopt an iterative strategy to adjust the
boundary edges in all the groups, so that the energy E
decreases progressively. In each iteration, we process every
boundary edge of all groups. For each boundary edge e of
Mi, with facets fk and fh incident to it, we are going to
determine whether fk and fh should be clustered into Mi or
not. Without loss of generality, supposing that fk is already
in groupMi, there are two ways to deal with facet fh:

1) if fh has not been clustered into any facet group, we
add it toMi;

2) in case that fh has already belonged to a facet group
(e.g., Mj), we test whether a change of facet group
leads to a decrease of E. If the test is positive, we
would move either fh to Mi or fk to Mj, otherwise
keep the grouping unchanged.

The boundary test mentioned involves the computation
and comparison of three possible E values:

1) E1: fk 2 Mi and fh 2 Mj;
2) E2: fk 2 Mi and fh 2 Mi;
3) E3: fk 2 Mj and fh 2 Mj.

By checking with Emin ¼ minðE1; E2; E3Þ, we can decide
if a change of facet group is necessary.

When all the boundary edges have been tested, an itera-
tion ends. The process repeats until no further decrease of E
is found, and we suppose E has arrived its minimum. The
convergence of E in the optimization can be guaranteed by
a prove derived from Eq. (2).

In thecaseofcornervertices,kusually rangesbetween3and
6, we calculateEk for each value of k, and thenminimizeEk to
find the optimal k. As there is only a few number of candidate
values forkandasmallpercentageof cornervertices inamesh,
the proposed approach to solve the optimization is acceptable
in termsof computation complexity (seeTable 2 inSection 7.5).
There isnosignificant increaseofcomputational timeobserved
whensolvinganoptimal clustering fora cornervertex.

It is worth noticing that, our clustering algorithm can also
help in further distinguishing the nature of features. In fact,
it is common that normal tensor voting or other existing
classification techniques will misclassify features because of
the existence of noise. During our clustering process, when
there happens to have empty clusters, it means that the cur-
rent vertex is misclassified. For example, if the clustered
result contains an empty group in a corner vertex, this ver-
tex should be misclassified, and should be re-classified as a
sharp edge or a non-feature vertex. Fig. 3 shows an example
that the vertex classification results can be refined by the
neighboring facets clustering algorithm. Fig. 4 shows clus-
tering results for a noisy Fandisk model. It is observed that
a set of consistent facet groups are produced which demon-
strates the effectiveness of the clustering technique.

Fig. 3. Vertex classification results can be refined by the neighboring fac-
ets clustering algorithm. Left: the classification results of the normal ten-
sor voting. Right: the results are refined after performing the clustering.
Red points denote corner vertices and blue points denote sharp edge
vertices.
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5.3 Vertex Normal Field Estimation

Based on the results of vertex classification and neighboring
facets clustering, we estimate the vertex normal field. For a
non-feature vertex, as the variation of surface geometry is rel-
atively small, vertex and facet normals are usually consistent
to each other. Therefore, we obtain its vertex normal simply
from its surrounding facet normals through weighted inter-
polation. The estimation is performed with a weighted aver-
age of all normals from its one-ring neighboring facets, where
theweighting factor is selected to be the area of each facet.

For a feature vertex, the estimation based on simple aver-
age of closest facet normals will suffer from significant
errors due to the inconsistence. The estimation of its vertex
normal is performed with a plane-fitting operation on each
of the clustered facet group. The optimal plane is obtained
by fitting the vertices in a least-squares manner. We take the
normal of each optimal plane as the representative normal
of the facet group, and the vertex normal can be easily com-
puted by averaging the representative normals. The process
repeats for all feature vertices to form the vertex normal
field. Thus, we can obtain a more accurate vertex normal
field than traditional methods that indiscriminately average
a vertex’s one-ring facet normals for all vertices.

An accurate vertex normal field is important for mesh
denoising. Employing inaccurate vertex normal field may lead
to vertex drifts. Fig. 5 illustrates the vertex drifting problem
caused by an inaccurate vertex normal field. Most of the exist-
ing denoising approaches lead to vertex drifts, especially when
irregular surface sampling exists. This phenomenon also hap-
pens in our approach if inaccurate vertex normals are used.
However, once more accurate vertex normals are obtained,
such artifacts can be avoided (see the last column of Fig. 5).

5.4 Facet Normal Field Refinement

The local bilateral filter used for initializing the facet normal
field is performed on the entire neighborhood of each facet,
where multiple piecewise smooth regions probably exist.
This would result in less accurate facet normals, yet inevita-
bly lead to blurred sharp features and elimination of shal-
low features during denoising.

As mentioned, the vertex normal at a feature vertex is
computed by averaging the representative normals of the
clustered groups of its facet neighbors. This means the rep-
resentative normals can be considered as the decomposed
components of the vertex normal. Each component repre-
sents the normal of a piecewise smooth region around the
vertex, and the consistence of the two normal fields is strong
within each piecewise smooth region. To further optimize
the facet normal field, we improve Zheng et al.’s global
bilateral filter [5] by adding the piecewise consistence
around feature vertices as constraints.

In order to give readers an intuitive impression, we
briefly introduce the original global scheme here. Zheng
et al. formulated a global bilateral filter function Es to
encode the sum of squared error of each facet normal to the
normals of its neighboring facets. To be faithful to the raw
facet normal field, they formulated another function Ed to
encode the squared deviation of the new facet normal field
to its raw one. Though adding the raw normals as the con-
straints, Zheng et al.’s global scheme still suffers from fea-
ture blurring, since the bilateral weight factor in the Laplace
operator is defined on the entire neighborhood.

Our improved method, therefore, add one more con-
straint term:

El ¼
X

i2T

X

K2M
AK

X

j2K
n
0
j=jKj � ni;K

�

�

�

�

�

�

�

�

�

�

2

; (3)

Fig. 4. Neighboring facets clustering of the noisy Fandisk model. Left col-
umn shows clustering results for sharp edge vertices; right column
shows clustering results for corner vertices. Each color represents a dis-
tinct segment.

Fig. 5. From left to right: the cube model which is of sparse sampling on the left half part and dense sampling on the right part, and is corrupted by
Gaussian noise; denoising results by Sun et al.’s method [8], Zheng et al.’s method (local scheme) [5], our method with inaccurate vertex normals
obtained by traditional methods that indiscriminately average a vertex’s one-ring facet normal field, and our method with vertex normals obtained by
the proposed method. From the zoomed views we notice that the three preceding methods cause the edge drifts except our approach with well esti-
mated vertex normals.
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where T is the set of the feature vertices; M is the cluster
set of each considered neighborhood of each feature ver-
tex; AK is the ratio of the average triangle area of the clus-
ter K to the average triangle area of the entire mesh; n0

j are
the updated facet normals in cluster K; jKj is the number
of triangles in K; ni;K denotes the decomposed component
of the vertex normal representing cluster K. The constraint
term El encodes the total squared errors between each
facet normal in a cluster and the cluster’s representative
normal around all feature vertices. This new constraint
term can guarantee that the face normals do not diffuse
themselves outside of the boundary of piecewise smooth
patches, and thus, the negative effects from other piece-
wise smooth patches can be completely avoided during
the optimization.

Finally, the optimization is formulated as

argmin
n0
i

ð1� a� bÞEs þ aEd þ bEl; (4)

where a and b are two positive variables with the range of
aþ b 2 ½0; 1�. Here a is used to control the degree of retain-
ing the original normal field, while b is used to more accu-
rately recover the facet normals around the feature vertices.
Since the facet normal field has been initialized in Sec-
tion 5.1, a can be chosen relatively large. b can also be set
relatively large to preserve features, benefitting from the
rectified vertex normal field. We empirically set a ¼ 0:4 and
b ¼ 0:2which work well in our experiments.

Fig. 6 demonstrates the advantages of using the one more
energy term El. From the mean curvature visualization of
the Fandisk model with shallow feature highlighted, it is
observed that both Zheng et al.’s local and global filters
wipe away the shallow features more seriously. When the
extra energy term is combined in Zheng et al.’s global filter,
the result is improved obviously.

6 VERTEX POSITION UPDATE

After the bi-normal filtering, we update vertex positions
according to both the facet and vertex normal fields. There
exists a simple geometric fact that every mesh vertex lying
within tangent planes of its neighboring facets gives the
mesh a better approximation of the underlying surface [38].
Inspired by this idea, we formulate vertex updating as a
quadratic optimization problem.

We define the first quadric as

E1ðv0Þ ¼
X

f2NvðfÞ

�

n
T
f ðv0 � cfÞ

�2
; (5)

which encodes the sum of squared distances from vertex v0

to its one-ring facets, where nf is the refined unit normal of
facet f , and cf is its triangle barycenter. Minimizing Eq. (5)
probably yields a nice approximation if all mesh facets are
tangent to the underlying surface at certain points. How-
ever, existing normal filters, including our method of
embedding the piecewise consistence to the global bilateral
filter, cannot guarantee convergence [8] and produce mesh
facets exactly tangent to the underlying surface. In this
regard, only minimizing the above quadric derived from fil-
tered facet normals inevitably leads to feature blurring and
vertex drifts to some extent. Therefore, we define the second
quadric using the estimated vertex normals as

E2ðv0Þ ¼ ðv0 � vÞT ðv0 � vÞ �
�

n
T
v ðv0 � vÞ

�T �
n
T
v ðv0 � vÞ

�

; (6)

where nv represents the unit normal of vertex v. In Eq. (6),
the term n

T
v ðv0 � vÞ describes the projection from vector

ðv0 � vÞ to vertex normal nv; this quadric, in turn, encodes
the squared distance from the vertex normal line to the opti-
mized vertex v0. We encourage the vertex to move along its
normal direction in the optimization. Ideally, when vector
ðv0 � vÞ is parallel to nv, E2ðv0Þ equals zero.

Accordingly, we minimize the two quadrics together to
generate the new vertex position as

argmin
v0

E1ðv0Þ þ uE2ðv0Þ½ �; (7)

which only involves a simple system of linear equations.
The u serves for balancing the effects of E1ðv0Þ and E2ðv0Þ. If
u is relatively small, the resulting mesh tends to have
smoother patches, which is caused by the definition of
E1ðv0Þ; if u is relatively big, E2ðv0Þ has more effect in Eq. (7),
yet is more capable of preserving geometry details and
avoiding vertex drifts especially in feature vertices. Here,
we empirically set u ¼ 1:0 which assigns equal importance
to the two normal fields.

Fig. 7 demonstrates the behaviors of our quadratic opti-
mization in 2D. Assume a curve with two points c1, c2 on it,
v0 represents the optimized position of v, nv represents the
estimated normal at v, the two solid red lines individually
denote the filtered tangent lines at c1 and c2, while the
dashed red lines denote their corresponding real tangent
lines at the two points, E1 encodes the total squared distan-
ces from a point to its filtered neighboring tangent lines and
E2 encodes the squared distance from a point to its filtered
vertex normal line. Due to the deviation of current normal
filters, the filtered tangent lines (see solid red lines) would
not exactly match the noise-free ones (see dashed red lines).
The tangent lines have the capability of describing the local
structures of the curve. If these lines cannot be exactly esti-
mated, they probably lead to side effects, such as vertex
drifts and feature blurring. We notice from Fig. 7a that,
directly minimizing the first quadric we would obtain unde-
sirable ‘optimized’ vertex v0 because of inaccurate tangent
lines used. Whereas, from Fig. 7b, we notice that, one more

Fig. 6. Mean curvature visualization of the Fandisk model with shallow
features highlighted. From left to right: the original Fandisk model, the
noisy model (Gaussian noise with s ¼ 0:2 of mean edge length), denois-
ing results of Zheng et al.’s local scheme (sS ¼ 0:3; n1 ¼ 10; n2 ¼ 12) [5],
Zheng et al’s global scheme (� ¼ 0:02; sS2 ¼ 0:35; n2 ¼ 12) [5], Zheng
et al.’s global scheme with the extra energy termEl (sS2 ¼ 0:35; n2 ¼ 12).
The global filter combining the extra energy term is more useful to recover
the shallow geometry.
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quadric is added as the compensation of information lost for
the facet normal filtering. As a result, minimizing the two
quadrics can correct the optimization along the normal line,
where it produces the better result. The vertex adjustment
by minimizing the two quadrics is a strong characteristic of
this method which allows feature preservation while
removing noise very well.

Fig. 8 demonstrates the advantages of incorporating the
vertex normal field in the vertex position update. From the
example of the first row, we can notice that vertex drifts can
be avoided by the collaboration of the two normal fields.
From the example of the second row, it is observed that
more fined detailed can be preserved in the presence of the
vertex normal field. More experimental results can be found
in Section 7.

7 RESULTS AND DISCUSSION

We have performed our approach on multifarious mesh
models with either synthetic or raw noise. Several of them
are even factitiously resampled to simulate irregular surface
sampling. These models are applied to validate the
approach in dealing with challenging regions with features
at various sizes and/or irregular surface sampling. The syn-
thetic noise used in this paper is generated by a zero-mean
Gaussian with standard deviation s proportional to the
mean edge length of the mesh.

We have compared our approach with six exemplary
denoising techniques: Fleishman et al.’s bilateral mesh filter
[3], Sun et al.’s unilateral normal filter [8], Fan et al.’s sec-
ond-order bilateral filter [10], Zheng et al.’s local bilateral
normal filter and its global representation [5], Wang et al.’s
cascaded filter [11], and He and Schaefer’s area-based edge
filter [2]. All these approaches are anisotropic filters which,
in general, can better preserve features than isotropic ones.

Apart from visual comparison, we employ three quantita-
tive criteria, namely, the mean square angular error
(MSAE), the Hausdorff distance histogram, and the L2

vertex-based error to assess the fidelity of denoised results
to ground truths. Finally, we evaluate the time performance
of the proposed method.

To allow for fair comparisons, we carefully adjust the
parameters of each approach to produce visually best
results. The parameters of our approach include the stan-
dard deviation sS1 of normal difference and the iteration
number n1 used in the facet normal field initialization; the
weights a, b and the standard deviation sS2 in the facet nor-
mal field optimization; and the weight u and the iteration
number n2 used in vertex position update. In the following
experiments, if not specified, we set a ¼ 0:4, b ¼ 0:2, and
u ¼ 1:0, the sS1 in the local representation and the sS2 in the
global representation of the facet normal filter are all within
the range of [0.2-0.6] as suggested in [5]; the n1 is within [3-
20] and the n2 is within [1-15].

7.1 Denoising with Two Normal Fields

To illustrate the advantages of using the two normal fields
in denoising, we first compare our results with those of
Zheng et al.’s local and global bilateral filters, which use
only facet normal field in denoising. We perform the com-
parison on the Eros model. It is observed in the first column
of Fig. 9, this model has varieties of features and abundant
small details. It is ruined by synthetic noise as shown in the
second column of Fig. 9. It is found that Zheng et al.’s
two schemes usually over-smooth some of the weak fea-
tures, such as those in the eye region and hair region. In con-
trast, our method can better preserve these features as
shown in the blow-up images. These is because we simulta-
neously employ the two normal fields that are estimated
according to the piecewise consistence during denoising.

We further compare our method with widely-used or start-
of-the-art mesh denoising approaches. Fig. 10 shows the
denoising results of the CAD-like Octa-flower model. This
model has very sharp corners (the petal region) and many
curved edges (the helix region), which are difficult to be

Fig. 8. Collaboration of the two normal fields for vertex position update.
The upper row is a CAD-like model with irregular surface sampling at
three special regions (one around a corner, and two around sharp
edges), and the bottom row is a real scanned model with rich details.
Form left to right: the original noisy models, the denoising results with
only the facet normal field, and the denoising results with the collabora-
tion of the two normal fields.

Fig. 7. A 2D example of vertex position update by the proposed qua-
dratic optimization (in this case, three points, v, c1 and c2 are used to
approximate the local curve): (a) the updating of vertex v by the first
quadric leads to undesirable updated position (see v0) due to applying
inaccurate tangent lines, and (b) the updating of v by the two quadrics
guides v to converge to an appropriate position.
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Fig. 9. Denoising of the Eros model. From left to right: the original model, the noisy model (Gaussian noise with s ¼ 0:1 of mean edge length) and
denoising results with Zheng et al.’s local scheme [5] (sS1 ¼ 0:35; n1 ¼ 5; n2 ¼ 5), Zheng et al.’s global scheme (� ¼ 0:15; sS2 ¼ 0:4; n2 ¼ 8) [5], and
our method (sS1 ¼ 0:35; n1 ¼ 5; sS2 ¼ 0:3; n2 ¼ 4). The use of the two normal fields performs better in preserving weak features as in the blow-up
regions shown in the middle and bottom rows.

Fig. 10. Denoising of the Octa-flower model. From left to right: the original model, the noisy model (Gaussian noise with s ¼ 0:2 of mean edge length)
and denoising results of Sun et al.’s method (T ¼ 0:4; n1 ¼ 5; n2 ¼ 10) [8], Fan et al.’s method (k1 ¼ 35; k2 ¼ 8; Eps ¼ 2;MinPts ¼ 6) [10], Wang
et al.’s method (n1 ¼ 5; t ¼ 0:008; n2 ¼ 9) [11], He and Schaefer’s method (m ¼

ffiffiffi

2
p

;a ¼ 0:1g; � ¼ 0:02‘2eg) [2], and our method (sS1 ¼ 0:35; n1 ¼
8; sS2 ¼ 0:3; n2 ¼ 8). The top row zooms in at the petal region (see the blue rectangle) and the bottom row is the zoomed side view at the helix region
(see the red rectangle).

Fig. 11. Denoising of the Fandisk model. From left to right: the input noisy model (Gaussian noise with s ¼ 0:3 of mean edge length), denoising
results of Sun et al.’s method (T ¼ 0:35; n1 ¼ 20; n2 ¼ 40) [8], Fan et al.’s method (k1 ¼ 30; k2 ¼ 8; Eps ¼ 2;MinPts ¼ 6) [10], Wang et al.’s method
(n1 ¼ 6; t ¼ 0:01; n2 ¼ 9) [11], He and Schaefer’s method (m ¼

ffiffiffi

2
p

;a ¼ 0:1g; � ¼ 0:02‘2eg) [2], and our method (sS1 ¼ 0:35; n1 ¼ 20; sS2 ¼
0:3; n2 ¼ 14). The bottom row shows magnified fragments of a shallow feature on the model. Our method outperforms other techniques in preserving
the shallow feature.
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completely preserved when removing noise. It is obvious that,
in our result, noise around sharp edges is more nicely elimi-
nated and the corner and sharp edges are better preserved,
when comparedwith othermethods (see the blow-ups).

Fig. 11 shows the denoising results on the Fandisk model
corrupted by relatively high level of noise. One of the most
challenging tasks when handling this model is preserving
its shallow features (see the blow-up region) during denois-
ing. It is observed that, the first four methods can preserve
sharp features while effectively removing noise, but the
shallow feature is almost completely eliminated in the
results. Our result can well preserve both sharp and shallow
features, and more faithfully recover the shallow curved
surface as the original model (see the blow-up region of our
result). These experiments demonstrate that our method is
capable of well preserving both sharp features and shallow
features in a mesh model.

7.2 Denoising Irregularly Sampled Mesh

It is a challenging task to denoise irregularly sampled surfa-
ces, as most previous approaches do not adapt well to vari-
ably sampling density in the mesh. Fig. 1 shows the
denoising results of the Block model which is first subdi-
vided at three specially chosen regions and then corrupted
by Gaussian noise. The first column shows the wireframe of
the noisy and irregularly sampled mesh, and we can clearly
see that the corner regions are more densely sampled. When
different denoising approaches are applied on this model, it
is observed that the other four methods can preserve sharp

corners while removing noise to some extent. However, with
a careful investigation of magnified fragments, we can
observe that these approaches all unavoidably introduce
unevenness at the transition between irregular and regular
sampled regions and introduce vertex drifts. In contrast, our
method can avoid the artifacts at the transitional region, and
thus better preserve the corners and sharp edges.

Fig. 12 shows another experiment performed on a more
general model with irregular sampling and less shape cor-
ners. While all approaches can well remove noise to some
extent, our result is less influenced by the irregular surface
sampling at the eyes region (see the blow-ups) of the model
and more faithful to the ground truth.

7.3 Denoising Scanned Data

Apart from synthetic cases, we also verify the effectiveness
of our approach on two scanned models with raw noise as
shown in Figs. 13 and 14. It is observed that our approach
also outperforms other approaches in terms of preserving
fine details and sharp features for raw scanned models. For
example, at the wing and eye regions of the Angel model,
we can see that weak features remain after denoising in the
result of our approach but are lost in the results of other
approaches. Similar phenomena are also found in the
results of the Decorative pattern embossed model.

7.4 Quantitative Evaluation

From the above comparisons, we find that our approach can
produce visually better results than some state-of-the-art

Fig. 12. Denoising of the Julius model. From left to right: the original model, the model which is first resampled by simplifying the left half part of the
model and then corrupted by Gaussian noise with 0.2 of mean edge length, the wireframe display for showing the irregular sampling, denoising
results of Fleishman et al.’s method (n ¼ 5) [3], Sun et al.’s method (T ¼ 0:6; n1 ¼ 3; n2 ¼ 4) [8], Wang et al.’s method (n1 ¼ 3; t ¼ 0:01; n2 ¼ 4) [11],
He and Schaefer’s method (m ¼

ffiffiffi

2
p

;a ¼ 0:1g; � ¼ 0:02‘2eg) [2], and our method (sS1 ¼ 0:35; n1 ¼ 3; sS2 ¼ 0:3; n2 ¼ 2).

Fig. 13. Denoising of the Angel model. The Leftmost is the original model, and from middle-topmost to bottom-rightmost: denoising results of
Fleishman et al.’s method ðn ¼ 15Þ [3], Sun et al.’s method (T ¼ 0:55; n1 ¼ 5; n2 ¼ 10) [8], Wang et al.’s method (n1 ¼ 5; t ¼ 0:05; n2 ¼ 9) [11], He
and Schaefer’s method (m ¼

ffiffiffi

2
p

;a ¼ 0:1g; � ¼ 0:02‘2eg) [2], and our method (sS1 ¼ 0:4; n1 ¼ 5; sS2 ¼ 0:35; n2 ¼ 4).
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approaches in the experimental cases. To give a more objec-
tive comparison, we further evaluate these denoising results
using three widely-used quantitative metrics. The first met-
ric is the mean square angular error, which is used to com-
pare the denoised facet normals in terms of the number of
iterations with those of the ground-truth models [8], [5], [11].
The second metric is the Hausdorff distance histogram,
which is applied to evaluate fidelity of the denoising results
(after vertex position update) to the underlying surface [39],
[11]. The third is the L2 vertex-based mesh-to-mesh error
metric [8], [4], [5], which is used to compare our vertex
updating scheme with traditional gradient descent based
(GDM)method [8].

Fig. 15 plots MSAE of Zheng et al.’s local and global
bilateral filters [5], and our bi-normal filtering scheme. In
order to clearly observe the differences, we perform
Zheng et al.’s local scheme up to 50 times, though it is
not necessary in practice. Zheng et al.’s global scheme
and the improved global scheme in our bi-normal filtering
scheme are non-iterative, which are also plotted in the
same diagrams. Because we employ the piecewise consis-
tence in the bi-normal filtering, the facet normals near the
feature vertices are better recovered. Thus, in general, our
constrained global scheme can consistently result in lower
MSAE.

Fig. 16 shows a detailed plotting of the Hausdorff distan-
ces between the denoising mesh surface and the underlying
surface. We can notice that, regardless of CAD-like models
or general models, our approach consistently leads to
smaller Hausdorff distances than other approaches. This
indicates that our approach yields a closer mesh surface rel-
ative to the underlying surface, in addition to its high effec-
tiveness of noise elimination and feature preservation at
various sizes.

To validate the efficacy of the proposed vertex posi-
tion update scheme based on two normal fields, we com-
pare our quadratic optimization-based method (QOM)
with the gradient descent based methods used in [8], [4],
[5]. The GDM is designed to match the facet normal
field, while the proposed QOM is to simultaneously

match the facet and vertex normal fields. For the fair
comparison, we employ the normal field obtained by our
bi-normal filtering scheme as the input of both QOM
and GDM, and then measure the L2 vertex-based error
Ev between the denoised meshes and the ground truth
models. In addition, as QOM and GDM may take differ-
ent iteration numbers to obtain visually best results, we
calculate Ev at the two different iteration numbers for
each model. Table 1 shows the results. It is observed
that the Ev of QOM is always lower than that of GDM,
demonstrating the results of the proposed QOM are
more faithful to the ground truth models.

Fig. 14. Denoising of the Decorative pattern embossed model. The left most is the original model, and from middle-topmost to bottom-rightmost:
denoising results of Fleishmann et al.’s method ðn ¼ 7Þ [3], Sun et al.’s method (T ¼ 0:5; n1 ¼ 3; n2 ¼ 4) [8], Wang et al.’s method
(n1 ¼ 4; t ¼ 0:03; n2 ¼ 6) [11], He and Schaefer’s method (m ¼

ffiffiffi

2
p

;a ¼ 0:1g; � ¼ 0:02‘2eg) [2], and our method (sS1 ¼ 0:35; n1 ¼ 3; sS2 ¼ 0:3; n2 ¼ 2).

Fig. 15. Comparison of the MSAE resulting from Zheng et al.’s local bilat-
eral filtering, Zheng et al.’s global bilateral filtering and our bi-normal fil-
tering on the the Fandisk model (up) and the Eros model (bottom). The
horizonal axis represents the number of normal filtering iterations, and
the vertical axis shows the corresponding MSAE.
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7.5 Computational Cost

We record time performance of each step in our experimen-
tal cases and the results are shown in Table 2. Our method
is implemented using C++ and the experiments are per-
formed on a PC with a 2.90 GHz Intel core i5 and 8.0 GB of
RAM. It is observed that the vertex classification and the
vertex position update are quite fast while the bi-normal fil-
tering is relatively time-consuming, especially when the
model contains a large number of vertices and facets (such
as the Eros Model). This is because we take a lot of time to
optimize the facet normal field. Although our method is a
little more computationally intensive than existing methods
that just apply facet normal field to guide the denoising, the
time performance is still acceptable. For example, it just
takes around 4s to denoise a complicated model with 45;001
vertices and 89;998 facets. In the future, we will investigate
how to accelerate the bi-normal filtering by GPUs.

Limitations. First, we employ normal tensor voting algo-
rithm for vertex classification, which is able to handle rea-
sonably large noise, e.g., Gaussian noise with s ¼ 0:3 of
mean edge length. When higher level of noise is added, a
large number of pseudo-features would be detected, which
will degrade the performance of our method. However,
such large noise is not common in practice. Second, our
algorithm can not handle models with extremely irregular
surface sampling, as in this case, it is difficult to recover the
two normal fields from each other. Fig. 17 shows an exam-
ple, where shape edges and corners are formed by a lot of
irregular triangles, making it difficult to estimate the two
normal fields and achieve a good denoising result. Last, we
empirically fix some parameters and they work well for the
experimental models. However, they may not be suitable

for all models with different structures and/or different lev-
els of noise. But we have provided readers the principles on
how to choose these parameters.

8 CONCLUSION

In this paper, we present an effective mesh denoising algo-
rithm which can better preserve multifarious features than
existing techniques when removing noise. The effective-
ness of our approach comes from the bi-normal filtering of
the vertex normal field and the facet normal field and the
novel quadratic optimization based on the two fields. By
enhancing the piecewise consistence of the two normal
fields at feature regions, we can well preserve both sharp
and shallow features and produce visually and quantita-
tively better results. Extensive experiments on various syn-
thetic and real data demonstrate the capability of the

TABLE 1
L2 Vertex-Based Mesh-to-Mesh Error Comparison

Models iterations Methods Evð�10�3Þ
Block n2 ¼ 12 GDM 4.397

QOM 3.425
n2 ¼ 4 GDM 2.439

QOM 1.746

Octa-flower n2 ¼ 8 GDM 3.617
QOM 3.069

n2 ¼ 10 GDM 3.431
QOM 3.246

Fandisk n2 ¼ 14 GDM 5.483
QOM 4.662

n2 ¼ 40 GDM 4.917
QOM 4.822

TABLE 2
Time Performance of Our Method

Models Stage 1 Stage 2 Stage 3 Total

Block (0.0235 sþ
jV j: 2,627 0.0007 s 0.0069 sþ 0.0125 s 0.0636 s
jF j: 5,262 0.0001 sþ
Fig. 1 0.0200 s)
Eros (0.2393 sþ

jV j: 45,001 0.0174 s 0.1241 sþ 0.1362 s 4.1811 s
jF j: 89,998 0.0003 sþ

Fig. 9 3.6641 s)
Octa-flower (0.0730 sþ
jV j: 7,919 0.0034 s 0.0854 sþ 0.0760 s 0.5751 s
jF j: 15,834 0.0001 sþ
Fig. 10 0.3373 s)
Fandisk (0.0777 sþ
jV j: 6,475 0.0014 s 0.0400 sþ 0.0401 s 0.2490 s
jF j: 12,946 0.0001 sþ
Fig. 11 0.0898 s)

In the table, stage 1 means vertex classification, stage 2 means bi-normal filter-
ing, and stage 3 means vertex position update.

Fig. 17. An example for which our algorithm fails to recover its features
while removing noise. From left to right: the ground truth with an extreme
triangulation, the wireframe display, the noisy input, and our result.

Fig. 16. Comparison of the Hausdorff distances. The horizontal axis denotes the error (absolute distance value) between the denoising mesh and the
noise-free mesh, and the vertical axis represents the corresponding percentage in terms of each error value. The denoising results displayed here
are from Figs. 9, 10, and 11, respectively.
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proposed method. In the future, we will attempt to imple-
ment our approach on GPU for acceleration and solve the
problems mentioned in the limitation part.
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