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Abstract: Consumers, industry, and government entities are becoming increasingly 

concerned about the issue of global warming. With this in mind, manufacturers have 

begun to develop products with consideration of low-carbon. In recent years, many 

companies are utilizing product families to satisfy various customer needs with lower 

costs. However, little research has been conducted on the development of a product 

family that considers environmental factors. Therefore, low-carbon product family 

design that integrates environmental concerns is proposed in this paper. In low-carbon 

product family design, a new method of platform planning is investigated with 

consideration of cost and greenhouse gas (GHG) emission of a product family 

simultaneously. In this research, a low-carbon product family design problem is 

described at first, and then a GHG emission model of product family is established. 

Furthermore, to support low-carbon product family design, an optimization method is 

adopted to make a significant trade-off between cost and GHG emission to implement 

a feasible platform planning. Finally, the effectiveness of the proposed method is 

illustrated through a case study. 

  

Keywords: low carbon design, carbon emissions, platform planning, product family 

design 

1. Introduction 

  Climate change is one of the greatest challenges facing human society. The fourth 
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assessment report of IPCC(2007) indicated that climate changes and global warming 

are attributed to greenhouse gas (GHG) emission result from human activities [1]. 

Products are viewed as one of the major sources of GHG emissions. Therefore, the 

enterprises have started to take steps to reduce GHG emission from their products and 

services under the mounting pressure stemming from the implementation of the Kyoto 

protocol and Copenhagen protocol [2]. These measures include product 

manufacturing with consideration of energy saving, green supply chain design, and so 

on. Cutting back on GHG emissions has become an inevitable trend. If an enterprise 

fails to promote relevant measures, it will soon find its products replaced by similar, 

but more environmental products. 

  “The product design and development phase influences more than 80% of the 

economic cost connected with a product, as well as 80% of the environmental and 

social impacts of a product, incurred throughout its whole life cycle” [3]. Hence, at 

the design stage, enterprises ought to considerate the GHG emission of a product. One 

of the most well-known research works is the work by Song et al. [4], who developed 

a low-carbon product design system based on BOM using the embedded GHG 

emissions data of the parts. The low-carbon product design system allows quick 

calculation of the GHG emission of a product, and a designer can easily and quickly 

evaluate alternative parts for the design of a low-carbon product. In further research, a 

collaborative framework has been established by Kuo [5] to help enterprises collect 

and calculate products’ carbon footprints in a readily and timely manner throughout 

the entire supply chain. 

  In recent years, it is popular that products are designed and produced in the manner 

of a product family based on product platforms. The choice of platform not only 

affects the costs of a product family, but also influences the GHG emission of all 

product variants in the product family. For example, if a product platform with high 

carbon emission is shared in a product family, it will lead to higher GHG emission of 

some product variants. Recently, module sharing in a product family mainly pays 

attention to the cost-savings benefits. However, there are few researches focused on 

platform planning with consideration of environmental concerns, and current research 
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on low-carbon product design is focused on a single product, not suitable to be 

employed to design a low-carbon product family. Therefore, in this research, the 

planning of product platform with simultaneous consideration of costs and GHG 

emissions is proposed, which is called low-carbon product family design. 

  The remainder of the paper is organized as follows. In section 2, we review relevant 

research about low-carbon product design and product family design. In section 3, the 

problem of a low-carbon product family design is presented. In section 4, the GHG 

emissions model of a product family is constructed, and the mathematical model of 

low-carbon product family design is illustrated. Section 5 gives an optimization 

method to support low-carbon product family design. In section 6, a case study is 

included. The last section gives conclusions of the paper. 

2. Literature review 

2.1 Low-carbon product design 

  It is a fact that low-carbon products have become increasingly important. Recently, 

there has been growing interest in low-carbon product design. Jeong et al. [6] 

proposed an assessment method for eco-design improvement options using global 

warming and economic performance indicators. The external cost which converts the 

external effect of global warming into a monetary value and the life cycle cost of the 

product was chosen as the global warming and economic performance indicators, 

respectively. The global warming and economic performance indicators were 

combined to represent the total cost of the product. Wu et al. [7] proposed the policy 

design to stimulate the modular integrated application of low-carbon technologies. 

Bocken et al. [8] developed a novel eco-ideation tool to facilitate the generation of 

radical product and process that could lead to step-change in GHG emission 

reductions. Zhang et al. [9] proposed a way of calculating carbon footprints of 

products by focusing on the connection characteristics between components for 

low-carbon product structure design. The product was considered as the organic 

combination of connection units. By analyzing the parts’ connection characteristics, 



 4 

the GHG emissions of connection units are calculated by recursive distribution 

approach of connection units’ carbon footprint based on analytic hierarchy process 

method. The connection units with high GHG emissions are identified for low-carbon 

product design. To reduce the environmental impact and cost of the finished products, 

Su et al. [10] studied environmental impact in product’s conceptual design phase and 

proposed a quantitative assessment of environmental impact and cost in the design 

phase. Kuo et al. [11] presented a method to decrease carbon footprints to an 

allowable value, while ensuring cost effectiveness, and also to make assessment of 

raw material suppliers. The environmental impact of the products and manufacturing 

cost are considered at the same time. In a word, more and more researches are focused 

on low-carbon product design in order to mitigate the impact of global warming on 

the environment. 

2.2 Product family design  

  Today’s product market has forced the companies to offer a large variety of 

products to match the diverse needs of customers while at the same time having to 

keep a low price. A successful way that many companies to offer this needed variety, 

meanwhile reducing the need for production cost is to launch product families based 

on a common platform. A product family is composed of sharing modules and variety 

modules. If the sharing modules design is reasonable, it can result in economies of 

scale from producing large volumes of the same modules, lower design costs from 

reduction of component types, and many other advantages arising from sharing 

modules.  

  Different criteria have been used for determining which components or modules to 

be shared in the family. Cost considerations have been the most common concern in 

regard to family design and platform development [12]. Fujita et al. [13] investigated 

product variety optimization under modular architecture with consideration of 

minimization of costs, and the cost saving from same design module instances that 

rise from the efficiency of production due to learning effects by reasonable module 

instances sharing in a product family. Martin et al. [14-16] developed three indexes—
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commonality index, CI, differentiation point index, DI, and setup cost index, SI—that 

provide surrogates for the indirect costs associated with product variety. A production 

cost model to support product family design optimization was developed by Park et al. 

[17]. This cost model based on a production cost framework is associated with the 

manufacturing activities. Johnson et al. [18] applied a process-based costing model to 

simultaneously assess the economic effects of material sharing and component 

sharing. Wang et al. [19] developed a method for constructing the product platform, 

under the objective of minimizing costs such as development cost and performance 

loss cost. This method is shown to be of higher computational efficiency for large 

product sets. Focusing on robust product family design, Hernandez et al. [20] 

presented a quantitative method for determining product platform extent for specific 

markets, considering conflicting demands including costs, performance and 

manufacturing considerations. Perera et al. [21] studied the effects of component or 

part standardization on life-cycle costs. They have explained how the component 

standardization reduces the costs of different phases of the product life cycle, and they 

also pointed out some of the possible disadvantages of component standardization. 

Expect for cost consideration, other criteria have been used in order to determine the 

components to be shared: Bill of Materials (BOM) (e.g. Steva et al. [22]), product 

attributes (e.g. Tucker and Kim 2008 [23]), product design variables (e.g. Khajavirad 

and Michalek 2008 [24], Khajavirad et al.2009 [25]), etc. 

  From the literature stated above, it is not difficult to find that strategy of sharing 

module between product variants in a family mainly emphasizes the cost. However, in 

product design, other factors should also be taken into account, such as the 

environmental performance of a product. Until now, little research work has been 

done on product platform planning with consideration of environment concerns, 

which still deserves extensive research. In this paper, a new method of platform 

planning is investigated with consideration of cost and GHG emission of a product 

family simultaneously. 
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3. Low-carbon product family design problem description 

  With modularity, each product variant in a product family normally consists of a set 

of modules, some of which are unique module and some are replaceable module. The 

unique module is not shared by any other member of the family. The reason for not 

sharing may be something is essentially different between unique modules, or these 

module instances commonality may lead to obviously narrowing the difference 

among product variants. The other is replaceable module type. The notion of 

replaceable module type here is similar to that of ‘variant module’ proposed by [26]. 

For the replaceable module, customers do not care about these modules unless their 

performance level falls below a least value of customer needs. Therefore, the 

high-performance instance of a replaceable module may substitute the 

low-performance instance of the same module when configuring the product variants. 

A replaceable module is to provide a chance for the strategy of module sharing. For 

example, as shown in Fig. 1, each product variant has an initial module instance 

configuration based on the least value of customer needs. Suppose M1 is a replaceable 

module type, then module instance M1(3) can substitute M1(2) and M1(1) for design 

product variants P
(1)

 and product variant P
(2)

 respectively. In this situation M1(3) is 

regarded as a platform, and it is shared by all the product variants. Such the strategy 

of module sharing is widely used in industries for taking advantage of economies of 

scale. However, module sharing may lead to higher GHG emissions of the product 

family if it is not reasonably planned. For example, the performance level of an 

instance may be depending on its size, volume, and so on; and usually the larger size 

or volume of the instance, the higher performance level of the instance. In that case, if 

a low-performance instance is replaced by a high-performance instance, the higher 

GHG emissions of a product family cannot be avoided due to the performance level of 

the instance is related to the amount of raw materials. Furthermore, excess 

performance level of a module may lead to increasing power consumption in the 

usage phase also resulting in higher GHG emission of a product. Therefore, research 

on platform planning with consideration of GHG emission is essential for obtaining a 
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low-carbon product family. 

 

Fig. 1. The possibility of module sharing between product variants  

  As shown in Fig. 2, it is considered that there is a set of product variants in a 

product family according to market demand. Based on customers needs, each of 

product variants has an initial module instance configuration without any 

consideration of instance sharing. Each module may have more than one candidate 

instance, and different candidate instances provide different performance levels. This 

research is concerned with the following question: How to select instance of each 

module of each product variant with consideration of cost and GHG emission of the 

product family? 

 

Fig. 2. An example of module instance configuration 



 8 

4. Mathematical model of a low-carbon product family design  

4.1 Decision variables for low-carbon product family design 

  According to the low-carbon product family design problem description, the 

problem can be translated into the simultaneous determination of which of candidate 

instance is used for a module j (1, 2...., J) of each product variant P
(i)

, and it can be 

formulated by using binary variables, 
( )j i

kx  which is defined as follows: 

if the th instance of moduleis selected for product variant

( 1,  2, . 1,  2, , 1,  2, , )

otherwise

1

0

k

k i

i I j J k K
x

= …… = …… = ……

⎧
⎪
⎪

= ⎨
⎪
⎪⎩

j(i) ；
        (1) 

  Whether module instance Mj(k) is selected or not for product family design is 

determined by following equation. 

( )

1

otherw e

if 1

is

1

0

I

j i

k

i

j

k

x
γ =

⎧
⎪

= ⎨
⎪⎩

∑ ≥

                                            (2) 

  If j

kγ =1, the module instance Mj(k) is selected for product family design, it means 

Mj(k) is eventually developed and produced, otherwise it is not developed and 

produced. 

4.2 Constraints of the model 

  The problem of low-carbon product family design is described with three types of 

constraints, including performance level constraints, compatibility constraints and 

module instance combination constraints. 

Performance level constraints. These are constraints arising from the fact that a 

high-performance module instance cannot be replaced by the module instance with 

low performance level when configuring the product variants. For example, suppose 

the initial instance configuration of module 2 of P
(1) 

is M2(2), then M2(1) cannot be 

selected to design P
(1) 

due to the limit of its performance level, while M2(3) can be 

selected. Performance level constraints can be expressed as follows: 
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( ) ( )

( ) ( )

i i

Mj k Mj initialP P≥                        (3) 

where, ( )

( )

i

Mj initialP  is the performance level of initial instance configuration of module j 

of P
(i)

, it is the lowest performance level selection of module j to design P
(i) 

. ( )

( )

i

Mj kP  is 

the performance level of Mj(k) which is selected to design P
(i)

.  

Module instance compatibility constraints. These are constraints imposed on 

modules combination. They are mainly arising from the functional coupling between 

module instances. For instance, if a module instance A has to be combined with 

module instance B for realizing a function, then module instance A is only compatible 

with B. If a design scheme of product variant includes module instances with 

incompatibility, it is an infeasible design scheme. 

  To model the compatibility constraints, module instance compatibility matrix J is 

defined for representing the compatibility among module instances. The elements of 

matrix 
ij
J  are given by: 

if module instance is compatible with module instance

otherwise

1

0
ij

j
J

⎧
= ⎨
⎩

  (4) 

  For the example of Fig. 1, suppose all module instances are compatible except for 

M1(2) is not compatible with M3(2). Then the compatibility matrix J can be 

represented as follows: 

1(1) 1(2) 1(3) 2(1) 3(1) 3(2) 3(3) 4(1) 4(2) 4(3)

1 1 1 1 1 1 1 1 1 11(1)

1 1 1 1 1 0 1 1 1 11(2)

1 1 1 1 1 1 1 1 1 11(3)

1 1 1 1 1 1 1 1 1 12(1)

1 1 1 1 1 1 1 1 1 13(1)

1 0 1 1 1 1 1 1 1 13(2)

1 1 1 1 1 1 1 1 1 13(3)

1 1 1 1 1 1 1 1 1 14(1)

1 1 1 1 1 1 1 1 1 14(2)

1 1 1 1 1 1 1 14(3)

M M M M M M M M M M

M

M

M

M

M

M

M

M

M

M

J =

1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

      (5) 

Module instance combination constraints. It is a design constraint which restricts 

the mix of module instances to provide a feasible design scheme for product variant. 

Some module instances need to satisfy some design constraints based on a specific 

problem. For example, in an electronic product, if there is a module to provide power 
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for several other modules, selection of such a module is affected by the selection of 

other related modules. Such constraints can be expressed as follows: 

( ) ( )

( ) ( )

1 1 1 1

( 1,  2 , )
J K J K

j i j i

Mj k k j Mj k k j

j k j k

P x P i Ix
= = = =

α β = ……∑∑ ∑∑≥             (6) 

where, 
( )Mj kP  is a performance level of Mj(k), 

j
α  and 

j
β  are binary variables. For 

example, in an electronic product, 
( )Mj kP  is demand or supply power capacity of 

Mj(k), if module j is power supply module, then 
j

α =1, 
j

β =0, otherwise, 
j

α =0, 

j
β =1. 

4.3 Objective for low-carbon product family design 

  To design a low-carbon product family, the cost and GHG emissions of a product 

family are taken into account simultaneously. The objective function of cost C  and 

GHG emissions GT of a product family are formulated as follows, respectively. 

Cost model 

 In this paper, we adopt the cost model from [13], which was proposed for product 

variety optimization. The total cost consists of fixed and variable cost.  

f vC C C= +                                  (7) 

The fixed cost fC  is to be calculated with the following equations. 

0 ( )

1 1 1

I K J
f f f Mj j

p i fk k

i k j

C C C C γ
= = =

= + +∑ ∑∑                         (8)

( )

( )

1 1

( 1,2 , )
K J

f p j j i

p i f k k

k j

C N i Ixα
= =

= ……= ∑∑                      (9) 

1,2 ; 1,2,
Mj Mj j

fk f k J k KC Nα = …… = ……= （j ）               (10) 

where, 
0

fC  is hidden fixed cost that does not relate to any kind numbers and unit 

number, 
( )

f

p iC  is fixed cost per product kind, Mj

fkC  is fixed cost per module kind, 

j

kN  is the number of primitive elements of kth instance of module j , and the 
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primitive elements can be explained according to the product to be designed. It is 

assumed that the performance level of module is simply proportional to the number of 

the primitive elements such as in typical microchips, where the number of transistors 

is representative to their performance under the same mounting density [13]. p

fα  and  

Mj

fα  are coefficients related to a product and a module respectively. 

  The variable cost v
C  consists of material cost 

v

ma
C , manufacturing cost of 

modules 
v

mu
C  and assembly cost of products 

v

as
C . They are formulated as follows: 

v v v v

ma mu as
C C C C= + +                              (11) 

1 1

( )
K J

v mj j mj j

ma v k v k

k j

C N Uα β
= =

= +∑∑                     (12) 

( ) ( )

1

1,2 ; 1,2,
I

j i j i

k k

i

J k KU U x
=

= …… = ……=∑ （j ）           (13) 

1 1 1

( ) ( )

j
kUK J

v fj j f

mu v k

k j u

C N L uα
= = =

=∑∑∑                         (14) 

1

( )

P
U

v v a

as a

u

C c L u

=

=∑                                (15) 

where, ( )mj j mj

v k vNα β+  is a unit material cost per module, j

kU  is product unit number 

of ( )Mj k , fj j

v kNα  is the initial unit manufacturing cost per module ( )Mj k , mj

v
β  is 

material cost for interfaces. 
v

a
c  is the initial unit assembly cost per product. 

mj

v
α , mj

v
β and 

fj

vα  is the coefficient that depend on module j . ( )fL u  denotes the 

learning effect in module manufacturing, which is calculated with 2( )

f
vInr

f InL u u= under 

the learning ratio 
f

vr . 2( )

a

v
Inr

a InL u u=  indicates the learning effect in product 

assembly. ( )i
U  is the production unit number of product variant ( )i

P . P
U  is the total 

unit number of products, and it is calculated with ( )

1

I

P i

i

U U

=

=∑ . 

GHG emission model 
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  The GHG emissions model of a product family is established in this paper. The 

total GHG emissions of a product family are related to module instance configuration 

of each product variant, production volumes of each product variant, and so on. Total 

GHG emission of a product family is defined by summing GHG emissions of five 

phases, which can be formulated as follows: 

  
T tm tp td tu trG G G G G G= + + + + 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (16) 

 

where , 

GT: the total amount of GHG emission of a product family；  

Gtm: the amount of GHG emission from use of raw materials stage of a product 

family; 

Gtp: the amount of GHG emission from manufacturing stage of a product family; 

Gtd: the amount of GHG emission from distribution stage of a product family; 

Gtu: the amount of GHG emission from use stage of a product family; 

Gtr: the amount of GHG emission from end of life stage of a product family. 

Calculation of the GHG emissions in each stage follows the method described 

below. 

Gtm: The GHG emission of this stage mainly stems from the refinement and 

transport of raw materials. In this paper, it is assumed that the different instance of the 

same module is made from the same raw materials for simplicity. Gtm is calculated by 

the following equations.  

 

1 1

J K
j j M

tm k k weight j

j k

G U G E−
= =

=∑∑                           (17) 

1,2 ; 1,2,
j j

k weight N k J k KG m N− = …… = ……= （j ）            (18) 

where, M

j
E  is the amount of GHG emissions per unit raw materials j (kg

2
CO e/kg), 

and the module j  is made of the raw materials j , j

k weightG
−

 is the amount of raw 

materials to manufacture Mj(k) (kg), mN is the coefficient that depends on the amount 

of raw materials to manufacture j

kN . 
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Gtp: During the manufacturing stage, all modules are manufactured, and all product 

variants are assembled. Hence, it is considered here that Gtp consists of GHG 

emissions f

tmmvG  of module manufacturing stage and GHG emissions v

tpavG  of 

product assembly stage. Gtp is defined as follows: 

f a

tp tmmv tpavG G G= +                              (19) 

  In this paper, the direct GHG emissions in the manufacturing process are omitted, 

and only the GHG emissions associated with energy consumption are considered. The 

amount of GHG emissions from manufacturing stage is difficult to assess. Because it 

is determined by many factors such as product attributes, process route, processing 

method, etc. Here, we consider the module manufacturing on production lines, and 

suppose the energy consumption per unit time of the equipment is fixed, then energy 

consumption of manufacturing module depends on the time of manufacturing module. 

Hence, energy consumption of manufacturing module stage is indirectly obtained by 

calculation of the time of manufacturing module. The total production time 
1f

tmmvT  of 

manufacturing module is calculated by summing unit production time across 

implemented modules over products as follows: 

1

1 1 1

( )

j
kUK J

f fj f

tmmv vk

k j u

T t L u
= = =

=∑∑∑                             (20) 

where, fj

vkt  is the initial unit manufacturing time per module ( )Mj k , it is defined with 

the following equation. 

1, 2 ; 1, 2,
fj fj j

vk v k J k Kt t N = …… = ……= （j ）             (21) 

where, fj

vt  is the coefficient that depend on module j . 

  The total GHG emissions from module manufacturing stage can be calculated with 

the following equation. 

    
1

/

1

( )
U

f f M

tmmv tmmv av u u

u

G T E e
=

= ∑                       (22) 

where, 
/av u

E is the amount of uth energy consumption per unit production time in 
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module manufacturing process, 
M

u
e  is the GHG emission factor of the uth energy. 

U  is the kind number of energy consumption in module manufacturing process. 

  By the same way, we can obtain the amount of GHG emissions from product 

assemble stage. The assembly time of all product variants can be calculated using 

Eq.(23). 

1

( )

P
U

a a a

tpav v

u

T t L u
=

=∑                                (23) 

where, a

v
t is the initial unit assembly time per product. 2( )

a

v
Inr

a InL u u=  indicates the 

learning effect in product assembly. 

  The amount of GHG emissions of a product family from product assembly stage 

can be calculated as follows: 

/

1

( )
F

a a A

tpav tpav as f f

f

G T E e
=

= ∑                             (24) 

where, 
/as fE  is the fth energy consumption per unit assembly time of a product, 

A

fe  

is the carbon emission factor of the fth energy. F is the kind number of energy 

consumption in product assembly process. 

Gtd: The GHG emissions of this stage stem from the fuel combustion of mobile 

sources. During the distribution stage, the GHG emissions are related to weight of 

transport, transport model, travel distance, etc. It is assumed that the weight of a 

module is equal to the amount of raw materials to manufacture the module, and the 

summing of weight of all modules is equal to the weight of the product. In this paper, 

suppose all product variants are transported to the same location, and the transport 

model is same. Gtd is calculated as follows: 

( ) ( )

1 1

(i 1,  2, , )
K J

p i j j i

weight k weight k

k j

G IG x−
= =

= = ……∑∑                 (25) 

( ) ( )

1

(i( ) 1,  2, , )
n

p i i D

td weight

i

G G U IE S
=

= ……= ∑                    (26) 

  The GHG emission for transport model is measured in (ton-km). D
E is a 



 15 

coefficient, and it depends on the transport mode (kg
2

CO e/tkm). S  is the transport 

distance (km). 

Gtu: In the use stage, the GHG emissions mainly stem from the energy consumption 

of a product. It is influenced by the time of operation in use and the lifetime of the 

product. In this paper, it is assumed that the power consumption of a product is 

approximately equal to the sum of power consumption of all constituent modules. 

Such assumption may be only employed for some product types, such as electronic 

product. It cannot be employed for all product types. In this paper, it is assumed that 

the electrical energy is used to support the working of a product, then Gtu is calculated 

as follows: 

( ) ( )

1

(i 1,  2, , )
n

p i i

tu us

i

G G U I
=

== ……∑                       (27) 

( ) ( ) (i 1,  2, , )p i i

us power wG P T IEF = ……= × ×                   (28) 

( ) ( )

1 1

(i 1,  2, , )
K J

i j j i

power k m k

k j

P P Ix−
= =

= = ……∑∑                   (29) 

where, 
( )p i

us
G  is the total amount of GHG emissions of P

(i)
 from use stage, ( )i

power
P is 

the electric power of P
(i)

, 
w
T  is the total operating time of a product in whole life 

cycle, EF is the emission factor for electricity, j

k mP −
is the electric power of module 

Mj(k). 

tr
G : During this stage, the recovery methods of the recyclable materials and 

disposal modes are remaining waste. The amount of GHG emissions depends on the 

type and weight of raw material of the module. tr
G  is calculated using the equation as 

follows: 

1 1

K J
j j end

Tm k k weight j

k j

G U G E−
= =

=∑∑                        (30) 

where, end

jE  is a coefficient, it depends on the amount of GHG emissions for disposal 
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per unit raw materials j . 

  To summarize, the objective for a low-carbon product family design for the trade 

off between total cost 
1
f  and total GHG emissions 

2
f  is represented as follows:  

1

2

min

min T

f C

f G

=⎧
⎨

=⎩
                             (31) 

5. An optimization method for low-carbon product family design 

As shown in Fig. 3, the proposed optimization method for low-carbon product 

family design is divided into three steps: (1) For product variant P
(i)

, generate an 

initial design scheme set represented by matrix M
(i)

; (2) After filtering some 

unfeasible design schemes from M
(i)

 according to constraints, get a feasible design 

scheme set represented by matrix Q
(i)

; (3) Based on Q
(i)

, a low carbon product family 

planning scheme which is represented by matrix D is generated by genetic 

algorithm(GA) optimization with simultaneous consideration of cost and GHG 

emission. 

 

Fig. 3. Outline of the optimization method 

Step 1: M
(i)

 generation 
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  In this step, the initial design scheme set of each product variant i will be generated 

based on their initial module instance configuration and feasible candidate module 

instances. Here, a feasible candidate module instance means that the performance 

level of the candidate module instance can meet the demand of customers. All the 

initial design schemes of a product variant can be obtained by an enumeration 

algorithm, and they are stored in a matrix M. For example, as shown in Fig. 2, 

according to the initial module instance configuration of (1)
P  and feasible candidate 

module instance, the initial design scheme set of P
(1)

 was obtained as shown in Fig. 4. 

Each column of M
(1)

 represents a initial design scheme of P
(1)

. The element of the 

matrix, (1)

,i jM k=  to represent the module instance ( )Mi k , is used within the jth initial 

design scheme of P
(1)

. For example, (1)

2,1 2M =  representing M2(2) is selected within 

the first initial design scheme of P
(1)

. i

cn
P  indicates the nth initial design scheme of 

initial design scheme set of P
(i)

. The M
(i)

 of each product variant i can be obtained in 

the same way. 

 

Fig. 4. An process of generation M
(1)  

Step 2: Q
(i)

 generation 

  Not all initial design schemes in M
(i) 

are feasible for product variant i . Because 

some initial design schemes violate compatible constraints and module instance 

combination constrains. These infeasible design schemes shall be removed. In this 
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step, the feasible design scheme set of P
(i)

 will be obtained by removing infeasible 

design scheme in M
(i)

, and the feasible design scheme set of P
(i)

 is represented by 

matrix Q
(i)

. As shown in Fig. 5, the infeasible design scheme is removed in M
(1)

, only 

those feasible design schemes are remained. Finally, the feasible candidate design 

scheme set of P
(1)

 are obtained, and they are stored in matrix Q
(1)

. Each column of Q
(1)

 

represents a feasible design scheme for P
(1)

. 
i

fmP  indicates the mth feasible design 

scheme of P
(i)

. 

 

 

Fig. 5. An process of generation Q
(1)  

Step 3: generation of a low-carbon product family planning based on GA 

  In this step, low-carbon product family planning will be generated based on a GA. 

GA is a search heuristic that mimics the process of natural evolution (i.e., selection, 

crossover and mutation). This heuristic is routinely used to generate useful solutions 

to optimize and search problems. In a genetic algorithm, a population is made up of 

strings. Each string represents a candidate solution to an optimization problem, which 

consists of a series of chromosomes. The algorithm seeks to evolve towards better 

solutions through a series of iterations. Two key issues of the GA need to be discussed 

to support low-carbon product family planning. 

1. The coding of chromosome 

  The coding of the chromosome is the first step for the implementation of the 

genetic algorithm. In this paper, a coding approach of chromosome is presented for 
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supporting low-carbon product family planning. An example of the chromosome is 

shown in Fig. 6, and it is described by natural number string. The chromosome has six 

genes, it denotes that a product family with six product variants. Q
(i)

 of each product 

variant i  is stored in each gene respectively. For example, Q
(1)

 has been stored in the 

first gene. Similar, Q
(2)

 has been stored in the second gene. A feasible design scheme 

of each product variant combination forms the product family planning scheme which 

is represented by matrix, D. Which feasible design scheme of product variants is 

selected to form the product family planning depends on the natural number of the 

gene. For instance, as shown in Fig. 6, the number ‘3’ appears in the first gene, it 

denotes that the third column of Q
(1)

 is chosen to form the product family planning. 

The natural number in each gene is changeable based on genetic operations (i.e., 

selection, crossover and mutation). Therefore, the ‘best’ low-carbon product family 

planning scheme will be obtained by genetic operations. At the same time, the 

platform set which is represented by MP will be obtained also. The different number 

of each row of matrix D will form each row of M. For example, as shown in Fig. 6, 

two different numbers ‘2’ and ‘4’ appear in the second row of D, they form the 

second row of MP，and it means that M2(2) and M2(4) are two instance platforms of 

module M2 for product family design, and they will eventually be developed and 

manufactured. 
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Fig. 6. An example of chromosome 

2. Fitness function 

  The fitness function is regarded as a tool for evaluating the quality of the solution. 

Once the genetic representation and the fitness function are defined, a GA proceeds to 

initialize a population of solutions and then improves these solutions through 

repetitive application of mutation, crossover, inversion, and selection operators. There 

are many approaches which are developed to construct the fitness function for 

multiple-objective optimization problems. The weighted additive utility function is 

one of the most famous methods [27-28], and it is used in this paper. Let 
ikf be the ith 

objective function of alternative k . The weighted additive utility function for 

alternative k with two objectives can be represented as follows: 

1 1 2 2( ) k kU k w f w f= +                       (32) 

where, 1w  and 2w  are the importance weights of each objective function. Each 

objective can be given a weight ranging from 0-1 such that the total weight of two 

objectives has to be equal to 1. Each weight can be set based on decision-maker's 

preference. Perhaps the performance indicators of different objective are on different 
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scales. Hence, the weighted additive utility function with normalized objectives is 

represented as follows: 

1 1 2 2( ) ' 'k kU k w f w f= +                         (33) 

where 
1
'kf  and 

2
'kf  are normalized values of 

1kf  and 
2kf , respectively. Note that 

each normalized objective 'ikf is defined as: 

,min

,max ,min

'
ik ik

ik

ik ik

f f
f

f f

−
=

−
                         (34) 

where 
,minikf  and 

,maxikf  represent the given minimum and maximum values for 

objective function 
ikf , respectively. In this paper, two objectives are GHG emission 

and cost of a product family. 

6. Case study 

For comparison, as shown in Fig. 7, the television receiver circuits in [13] was used 

to ascertain the validity optimization method presented in this paper. The television 

receiver circuit consists of seven modules. These modules are turner circuit M1, 

picture signal processing circuit M2, deflection circuit M3, color circuit M4, RGB 

driver M5, sound circuit M6 and power supply circuit M7. The candidate instances of 

each module and initial instance configuration of each product variant are shown in 

Fig. 2. 

 

Fig.7. Modules of television receiver circuits 

  The coefficients of the cost are given as follows: 

0
10,000,000fC = , 3,000

p

fα = , 9,000
Mj

fα = , 0.65
mj

v
α = , 1.5

fj

vα = , 5
mj

v
β = for all j . 
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0.95
f

vγ = , 10
a

v
c = , 0.95

a

v
r = . The production unit number of respective product 

variants is shown in Tab. 1. 

Table 1 Production unit number of each product variant 

Product variant  P
(1)

 P
(2)

 P
(3)

 P
(4)

 P
(5)

 P
(6)

 

Product volume 36,000 24,000 12,000 36,000 24,000 12,000 

The coefficients of the GHG model are assumed, based on practical information: 

mN=0.005kg, M

j
E =5kgCO2e/kg, fj

vt =0.005h for all j; U=1, Eav/1=100kWh/h, 

1

M
e =1.1169 kgCO2e/kWh, a

v
t =0.1h, F=1 , Eas/1=60kWh/h, 

1

A
e =1.1169kgCO2e/kWh, 

E
D
=0.66kgCO2e/tkg, S=1000km , Tw=22500h, EF=1.1169kgCO2e/kWh, 

End

jE =4kgCO2e/kg. These coefficients are selected for demonstration purpose rather 

than for precise assessment. 

When the instances of each module of each product variant is selected based on 

initial module instance configuration, the cost and GHG emissions of the product 

family are shown in Fig. 8 and Tab 2 respectively. Perhaps the amount of GHG 

emissions of the product family is the lowest in such scenarios due to no consideration 

of any over-design. 

 

 

Fig .8. The cost of the product family under the initial instance configuration 
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Table 2 GHG emission of the product family under the initial instance configuration 

Stage Raw 

material 

Manufacturin

g 

Distribution Use End of 

life 

Total 

GHG(kgCO2e) 1,758,000 22,353,900 232,056 371,525,616 1,406,400 397,263,972 

In low-carbon product family design, a designer has his/her preference range for 

the lowest cost and GHG emissions. However, since cost and GHG emission may be 

conflict with each other, the decision-maker should determine the importance weight 

of each objective function based on his/her preference. When a higher weight is 

assigned to the objective function of cost, the solution could bring about a lower cost. 

However, GHG emission could be greater. In contrast, when a higher weight is 

assigned to the objective function of GHG emission, the solution could lead to a lower 

GHG emission with a higher cost. In this paper, four different cases are analyzed as 

follows: 

Case 1: When the minimum cost is considered by decision-maker, the importance 

weights are given as w1=1 and w2=0. The optimal procedure of GA is shown in Fig. 9. 

. 

Fig. 9. GA optimal procedure 

  The product family planning scheme D(1) and platform set MP(1) are obtained as 

follows: 
(1) (2) (3) (4) (5) (6)

1

2

3

4

5

6

7

1 1 1 1 1 1 1 1

2 2 4 4 2 2 4 2 4

3 1 3 3 1 3 3 1 3

(1) (1)4 2 2 2 2 2 2 2

5 1 1 1 1 1 1 1

6 1 3 3 1 3 3 1 3

7 5 8 8 5 8 8 5 8

M

M

M

M

M

M

M

P P P P P P

M

M

M

D MPM

M

M

M

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→  
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  The result of optimization is the same as [14]. According to MP(1), it can be 

observed that the total kind number of different module instance in product family 

planning scheme D(1) is decreased. For example, according to initial module instance 

configuration of the product family, module instances M2(1), M2(3), M3(2), M4(1) 

and M6(2) are required, while they cannot be found in MP(1), it means that these 

module instances will not need to be designed and manufactured if product family is 

planned on the basis of scheme (1)D , and they are replaced by other module instances. 

For instance, M2(2) and M2(4) are two instance platforms of M2, they have 

constituted other instances of M2 for the product family design. According to product 

family planning scheme D(1), the total cost and GHG emission of the product family 

are calculated as shown in Fig. 10 and Tab. 3, respectively. Comparing with the initial 

module instance configuration of the product family, it can be observed that the total 

cost in case 1 is reduced by the platform strategy, while the GHG emission is 

increased due to over-design of some product variants. 

 

Fig.10.The cost of the product family planning scheme D(1) 

 

 

Table 3.GHG emission result for the product family planning scheme (1)D  

Stage Raw 

material 

Manufacturin

g 

Distribution Use End of 

life 

Total 

GHG(kgCO2e) 1,821,000 22,431,900 240,372 507,832,092 1,456,800 533,782,164 
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Case 2: When the decision-maker focus on cost, but the GHG emission is considered 

proper for social responsibility, the importance weights can be set as w1=0.6 and 

w2=0.4. The optimal procedure of GA is shown in Fig. 11. 

 

Fig. 11. GA optimal procedure 

  The product family planning scheme D(2) and platform set MP(2) are obtained as 

follows: 

(1) (2) (3) (4) (5) (6)

1 1 1 1 1 1 1 1 1

2 2 3 4 2 2 3 2 2 3 4

3 2 2 3 2 2 3 3 2 3

(2) (2)4 2 2 2 2 2 2 4 2

5 1 1 1 1 1 1 5 1

6 2 2 3 2 2 2 6 2 3

7 6 4 4 6 6 4 7 4 6

P P P P P P

M M

M M

M M

D MPM M

M M

M M

M M

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→
 

  It can be observed that platform planning scheme and module instance 

configuration of some product variants are different with case 1. For example, M6(3) 

is shared by P
(2)

, P
(5) 

and P
(6) 

in D(1), while it cannot be shared by any product 

variants in D(2). There are two possible reasons for this change. One possible reason 

is instance M6(3) with high GHG emission, such as it requires much raw materials to 

manufacture or it needs a lot of energy in using stage, etc. The other possible case is 

that M6(3) affects other module instance selection of a product variant because of the 

mutual constraint between module instances. The instance sharing scheme of other 

modules in product family planning scheme D(2) is also changed apart from M6. 

According to product family planning scheme D(2), the cost and GHG emissions of 

the product family are shown in Fig. 12 and Tab. 4 respectively. Comparing case 2 
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with case 1, we find that the cost in case 2 is greater than that in case 1, while the 

GHG emission in case 2 is lower than that in case 1. 

 

Fig. 12. The cost of the product family planning scheme D(2)  

 

Table. 4 GHG emission result for the product family planning scheme D(2) 

Stage Raw 

material 

Manufacturin

g 

Distribution Use End of 

life 

Total 

GHG(kgCO2e) 1,824,000 22,351,900 240,768 482,802,363 1,459,200 508,678,231 

Case 3: When decision-maker think that protection the environment against pollution 

is as import as saving cost, the importance weights can be set as w1=0.5 and w2=0.5. 

The optimal procedure of GA is shown in Fig. 13. 

 
Fig. 13. GA optimal procedure. 

  The product family planning scheme D(3) and platform set (3)MP  are obtained as 
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follows: 

(1) (2) (3) (4) (5) (6)

1 1 1 1 1 1 1 1 1

2 2 4 4 2 2 4 2 2 4

3 1 2 3 1 2 3 3 1 2 3

(3) (3)4 2 2 2 2 2 2 4 2

5 1 1 1 1 1 1 5 1

6 1 2 3 1 2 2 6 1 2 3

7 1 8 8 6 6 8 7 1 6 8

P P P P P P

M M

M M

M M

D MPM M

M M

M M

M M

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

→  

  It can be observed that the total kind number of module instance in MP(3) is greater 

than that in MP(1) as well as in MP(2). It means that more module instances type will 

be designed and manufactured if the product family is planned in accordance with 

D(3). In addition, the platform planning scheme and sharing module instance scheme 

have also changed. According to planning scheme D(3), the cost and GHG emissions 

of the product family are shown in Fig. 14 and Tab 5 respectively. Comparing case 3 

with case 2, the cost in case 3 is greater than that in case 2 due to more attention has 

been paid to the GHG emission in case 3. Although GHG emission is further 

decreased in case 3, it is greater than that in case 1. It is because some product 

variants still take the way of over-design in case 3.  

 

Fig. 14.The cost of the product family planning scheme D(3) 

 

Table. 5 GHG emission result for the product family planning scheme D(3) 

Stage Raw 

material 

Manufacturin

g 

Distribution Use End of 

life 

Total 

GHG(kgCO2e) 1,789,000 22,341,900 236,214 375,144,372 1,431,600 400,943,586 



 28 

Case 4: The important weights w1 and w2 are studied ranging from (w1, w2) = (0,1) to 

(w1, w2) = (1,0) with an increment of 0.2 and w1+w2=1. The optimization result is 

shown in Fig.15. The result demonstrates that different important weights generate 

different results in accordance with bi-objective function values. In other words, as w1 

increases with an increment of 0.2, the cost decreases and the GHG emission 

increases; as w2 increases with an increment of 0.2, the GHG emission decreases and 

the cost increases. Therefore, it represents a significant trade-off between cost and 

GHG emission, and the decision-maker can choose product family planning scheme 

based on these Pareto optimal solutions. 

 

Fig.15. Plots of cost versus GHG with two important weights ranging from 0 to 1 

7. Conclusions 

  As the issues concerning GHG emission have gradually attracted the attention of 

enterprises, product design with consideration of low-carbon has become more and 

more common. The platform planning method not only influences cost of a product 

family, but also determines the GHG emission of all product variants in the family. 

The cost has been mainly focused for platform planning in previous study, and 

environment concerns have been ignored. This paper has proposed a low-carbon 

product family design. In low-carbon product family design, product platform 

planning not only pays close attention to production cost, but also considers 



 29 

environmental impact. In this paper, the GHG emission model of a product family is 

constructed to evaluate the environment impact of product family. A bi-objective 

low-carbon product family design model is developed to optimize both the cost and 

the GHG emission. Moreover, an optimization method is employed to solve 

bi-objective problem for low-carbon product family design. The optimization method 

has three steps: (1) through an enumeration algorithm the initial design scheme set 

M(i) of each product variant i is generated. (2) the feasible design scheme set Q(i) of 

each product variant i is obtained by filtering some unfeasible design scheme from 

M(i) (3) generation of a low-carbon product family planning based on bi-objective 

GA. Finally, a case study is introduced for testing the effectiveness of the method. 

The result is shown that the different module instance sharing scheme and different 

product platforms are obtained by setting weight for each objective in bi-objective GA 

based on decision-maker's preference. 

For a real application, the future work is needed to investigate the methodology on 

how to gather appropriate information from practice that can fit with our optimization 

framework, and then the cost and carbon emission modeling should be considered to 

improve and expand. In addition, a better optimization method should be considered 

to develop in low-carbon product family for saving computational cost. 
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