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Abstract. The Vehicle Routing Problem with Time Windows is a com-
plex combinatorial optimization problem which can be seen as a fusion
of two well known sub-problems: the Travelling Salesman Problem and
the Bin Packing Problem. Its main objective is to find the lowest-cost
set of routes to deliver demand, using identical vehicles with limited ca-
pacity, to customers with fixed service time windows. In this paper, we
consider the minimization of the number of routes and the total cost
simultaneously. Although previous evolutionary studies have considered
this problem, none of them has focused on the similarity of solutions in
the population. We propose a method to measure route similarity and
incorporate it into an evolutionary algorithm to solve the bi-objective
VRPTW. We have applied this algorithm to a publicly available set of
benchmark instances, resulting in solutions that are competitive or better
than others previously published.

Key words: Vehicle routing problem, multi-objective optimization,
evolutionary algorithm, similarity of solutions.

1 Introduction

There are many theoretical combinatorial problems that can be directly applied
to real-life, one of them being the Vehicle Routing Problem (VRP) [19], which is
relevant to transportation logistics such as post, parcel and distribution services.

The VRP’s main objective is to obtain the lowest-cost set of routes to deliver
demand to customers, but we can also think about reducing the cardinality of the
set of routes. In addition, we can contemplate other objectives like the makespan,
workload balance, etc. [8]. This means that it is often useful to consider the VRP
as a multi-objective problem. Moreover, VRP has several important variants of
increased difficulty, in particular, the one with time windows (VRPTW) which
has time as well as capacity constraints, and is the main problem to be studied
in this paper.

Optimal solutions for small instances of VRPTW can be obtained using exact
methods, but the computation time required increases considerably for larger
instances [5]. This is why many published studies have made use of heuristic
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methods. The recent surveys by Bräysy and Gendreau [2, 3] provides a complete
list of studies of VRPTW and a comparison of the results obtained.

Over the years, there have been several publications employing evolutionary
algorithms to solve VRPTW as a single-objective optimization problem [13, 18,
20, 1]. Recently, Le Bouthillier and Crainic [9] presented a parallel cooperative
multi-search method for VRPTW, based on the solution warehouse strategy, in
which several search threads cooperate by asynchronously exchanging informa-
tion on the best solutions identified. Each of these search methods implements a
different meta-heuristic, an evolutionary algorithm or a tabu search procedure.
Homberger and Gehring [7] proposed a two-phase hybrid meta-heuristic to solve
VRPTW, where the first phase was aimed at the minimization of the number of
routes by means of a (µ,λ)-evolution strategy, whereas in the second phase the
total distance is minimized using a tabu search algorithm.

In the past few years, a couple of studies have been published that are of spe-
cial relevance to us because they considered VRPTW as a bi-objective optimiza-
tion problem, minimizing the number of vehicles and the total travel distance,
and used a genetic algorithm for solving it. The first is due to Tan et al. [17], who
used the dominance rank scheme to assign fitness to individuals. They designed
a crossover operator for the specific problem called route-exchange crossover and
used a multi-mode mutation which considered swapping, splitting and merging
of routes. They also used three local search heuristics which were applied ev-
ery 50 generations. The second is the study of Ombuki et al. [12]. They also
proposed the problem-specific genetic operators best cost route crossover and
constrained route reversal mutation, which is an adaptation of the widely used
inversion method. However, unlike the work we present later in this paper, nei-
ther of these two studies considered using a method to measure similarity of
solutions and hence preserve diversity.

It is also worth noting that many existing well known and successful multi-
objective evolutionary approaches, such as SPEA2 [21] and NSGA-II [4], are not
suitable here because they require the definition of niche spaces, which would
be problematic since most good solutions of the VRPTW reside in a very small
portion of the vehicle number dimension [12].

In our preliminary work [6], it became clear that the lack of population
diversity was leading our algorithm to become stuck in suboptimal solutions,
and so we proposed a method to restrict the number of clones in the population.
This algorithm eventually forced the population to have no clones at all, but the
solutions were still not good enough. Consequently, in this paper, we look for a
mechanism to improve further both the quality and diversity of solutions.

The approach we shall follow will focus on the similarity of solutions, based
in the genotype space. Several methods for calculating the similarity between
two solutions using a permutation representation exist in the literature [14, 10,
15], but, as we are not using a permutation encoding, we cannot apply any of
them. So, the need to find a suitable similarity measure arose.

The work presented in this paper is concerned with the solution of VRPTW
as a bi-objective problem using an evolutionary algorithm (BiEA), which incor-
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porates a similarity measure applied in the genotype space, based on Jaccard’s
similarity coefficient, to select parents for the recombination process, leading to
the finding of good solutions to the problem. We have tested this algorithm on
publicly available benchmark instances, and when our results are compared with
those from recent publications, our algorithm appears very competitive.

The remainder of this paper is organized as follows. First, in Section 2, we
introduce VRPTW in more detail. In Section 3 we present our proposed similar-
ity measure for solutions to VRPTW. Our proposed BiEA for solving VRPTW
as a bi-objective problem is described in Section 4. In Section 5 we present the
results achieved by our algorithm, as well as the comparison with some others
already published. Finally, we give our conclusions in Section 6.

2 The Vehicle Routing Problem with Time Windows

The Vehicle Routing Problem (VRP) is a complex combinatorial optimization
problem, which can be seen as a fusion of two well-known problems: the Travel-
ling Salesman Problem (TSP) and the Bin Packing Problem (BPP). So, it is at
least as difficult as each of them. VRP has several variants of increased difficulty,
in particular, the one with time windows (VRPTW) which has both capacity
and time constraints.

Before defining VRPTW, we need to specify the information involved in an
instance of this problem. First of all, we have a set V = {v1, . . . , vn} of vertices,
called customers. We know that customer vi, ∀ i ∈ {1, . . . , n}, is geographically
located at position (xi, yi), has a demand of goods di > 0, has a time window
[bi, ei] during which it has to be supplied, and requires a service time si to unload
goods. There exists a special vertex v0, called the depot, located at (x0, y0),
with d0 = 0, and time window [0, e0 ≥ max {ei : i ∈ {1, . . . , n}}], from which
customers are serviced utilising a fleet of identical vehicles with capacity Q ≥
max {di : i ∈ {1, . . . , n}}.

The travel between vertices vi and vj has an associated symmetric cost cij =
cji, ∀ i, j ∈ {0, . . . , n}, which is usually considered to be the Euclidean distance.
In addition to distance, time also plays an important role, as it is not possible to
supply a customer before or after its time window. A vehicle could arrive early
at the customer location, but then it has to wait until the beginning of the time
window. Arriving late is not allowed. It is common to take the time tij to travel
between vertexes vi and vj to simply be tij = cij .

The problem consists of designing a minimum-cost set of routes, so that each
route begins and ends at the depot, and each customer is serviced by exactly one
vehicle. Thus, each vehicle is assigned a set of customers that it has to supply,
but the sum of their demands can not exceed the vehicle capacity Q.

Let us denote as rk = 〈uk
1 , . . . , u

k
nk
〉 the k-th designed route that supplies nk

customers, with uk
i the i-th vertex to visit in the route. Note that in this notation

we are omitting the depot, but we have to consider it before the first customer
and after the last customer. Then, the customers demand Dk associated with
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route rk is given by

Dk =

nk∑

i=1

duk

i

≤ Q . (1)

Likewise, we can define the cost Ck associated with route rk as

Ck = c0uk

1
+

nk−1∑

i=1

cuk

i
uk

i+1
+ cuk

n
k
0 . (2)

Once we have defined the problem, we can identify at least two objective func-
tions that could be minimized. If R = {r1, . . . , rm} is the set of designed routes,
we can consider minimizing the number of routes

f1(R) = |R| (3)

and the total cost

f2(R) =

|R|∑

k=1

Ck . (4)

It is these two objectives that we concentrate on in this paper

3 Measuring similarity of solutions to the VRPTW

Different solution representations require different distance measures. For ex-
ample, for binary representations, the Hamming distance is the most common
measure, for representations using a vector of real numbers, a variation of the
Minkowski-r-distance can be employed [15], and we can find in the literature
many methods for solutions represented as a permutation, like the exact match

distance and deviation distance [14], the R-type distance [10] and the edit dis-

tance [15]. Since we are not using any of these representations, and considering
distance in the phenotype space is likely to be misleading, we need to identify a
suitable new similarity measure.

Taking the above into consideration, we have designed a new similarity
measure, based on Jaccard’s similarity coefficient. This is applied in the geno-
type space, and consequently provides a more reliable diversity measure than a
phenotype-oriented method. Moreover, probably most interestingly and impor-
tantly, this new similarity measure is independent of the solution encoding.

The Jaccard’s similarity coefficient is a statistic used for comparing the sim-
ilarity of two sets. It is defined as the cardinality of the intersection of the sets
divided by the cardinality of the union of them, i.e.

J(A, B) =
|A ∩ B|

|A ∪ B|
. (5)

It is easy to see that if sets A and B contain the same elements, A = B = A∩B =
A∪B, so Jaccard’s similarity coefficient J(A, B) = 1. On the other hand, if sets
A and B do not share any element at all, |A ∩ B| = 0, so J(A, B) = 0.
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Now we can define the similarity between two solutions to VRPTW, accord-
ing to the Jaccard’s similarity coefficient, simply as the ratio of the number of
shared arcs to the number of total arcs used in both solutions.

Let yijk = 1 if arc (i, j) from vertex i to vertex j is used by any vehicle in
solution rk , and yijk = 0 otherwise. Then the similarity ςpq between solutions p

and q is

ςpq =

∑n

i=0

∑n

j=0
yijp · yijq∑n

i=0

∑n

j=0
sign (yijp + yijq)

, (6)

where yijp ·yijq = 1 iff arc (i, j) is used by both solutions, and sign (yijp+yijq) =
1 if any of the solutions use it. If solutions p and q are the same, the sum in
the numerator will equal the sum in the denominator, and therefore ςpq = 1.
On the other hand, if they are two completely different solutions with no arc in
common, the numerator will equal 0, and then ςpq = 0.

In the same manner, if we want to compute the similarity Sp of individual p

with the rest of the population P of size N − 1, we have to calculate the average
similarity of p with every other individual q ∈ P , that is

Sp =
1

N − 1

∑

q∈P

ςpq . (7)

4 Evolutionary approach

We present in this section our proposed EA for solving VRPTW as a bi-objective
problem. We detail the encoding of the solutions, and the stages of processing
involved. We also describe our main contribution, which is the incorporation of
the similarity measure method presented above.

4.1 Solution encoding

We are using a tree representation, in which each node has at most two children.
The left child represents the following customer to visit in a route. The right
child points to the next route in the solution. A solution to an example instance
and its representation are shown in Figure 1. The allocation of customers to

(a) Solution (b) Encoding

Fig. 1. Solution to an example instance of the VRPTW and its encoding.
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routes, and the sequence they will be serviced within each route, proceeds as
follows: customers 1, 2 and 3 to the first route, customers 4 and 5 to the second,
6, 7 and 8 to the third, and 9 and 10 to the fourth.

4.2 Fitness assignment

When solving a single-objective problem using an evolutionary algorithm, fitness
is assigned to an individual according to its objective function evaluation. In the
multi-objective case, this assignment cannot be done straightforwardly, due to
there being not only one objective function, but at least two of them. We have
used in this work the non-dominance sort criteria [4] to assign fitness to solutions,
where the population is divided into several non-dominated fronts and the depth
specifies the fitness of the individuals belonging to them. In this case, the lower
the front, the fitter the solution.

4.3 Evolutionary process

Our algorithm starts with a set of feasible random solutions, each containing a set
of randomly generated routes. These routes are constructed using the following
process: First, a customer is selected and placed as the first location to visit
on that route. Then, a second customer is chosen and, if capacity and time
constraints are met, it is placed after the previous one. If any of the constraints
are not met, a new route is created and this customer will be the first location
to visit in the new route. This process is repeated until all customers have been
assigned to a route.

Then, the objective functions are evaluated for every solution in the popula-
tion and these are assigned a fitness value. Finally, the similarity of each solution
with respect to the rest of the collection is computed.

The evolution proceeds with the recombination of two parents that are se-
lected using a standard tournament method, but under different criteria: fitness
is used to select the first parent and similarity the second. The recombination of
two example parents is shown in Figure 2(a). Here, the algorithm aims at pre-
serving routes from both parents. First, a random number of routes are chosen

(a) Copying routes from parents (b) Offspring

Fig. 2. The recombination process.
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from the first parent and copied into the offspring. Next, all those routes from
the second parent which are not in conflict with the customers already copied
from the first, are replicated into the offspring. In this case, both routes on the
left from the first parent were selected to be copied into the offspring, and we
can only copy from the second parent the route on the right, as the other two
contain customers already present in the offspring. If there remain unassigned
customers, these are allocated, in the order they appear in the second parent,
to the route where the lowest travel distance is achieved, like in the example
given in Figure 2(b). If a solution would become infeasible after inserting such a
customer, a new route is created. This means that there is no need for a repair
process to correct invalid individuals.

Once an offspring has been generated, it is submitted to the mutation pro-
cess. In our algorithm, we have five possible mutation operators, which can be
categorised as inter- and intra-route. In the former, the algorithm will perform
changes between two routes, thus modifying the assignment of customers to
routes, and in the latter, the changes will be done within a route, hence affecting
the travel sequence.

In the first category we can identify two viable processes which are: (i) re-
moving a sequence of customers from a route and inserting it into another, and
(ii) swapping two sequences of customers from different routes. In the case of
intra-route, we use three operations: (i) the inversion of the sequence of a sub-
route, (ii) the shift of one customer, and (iii) splitting a route. Examples of these
operations are shown graphically in Figure 3. The dotted lines in each figure rep-

(a) Original offspring (b) Insertion (c) Swap

(d) Inversion (e) Shift (f) Split

Fig. 3. The mutation operators used in BiEA.
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Fig. 4. The full mutation process.

resent the changes in the sequences. In Figure 3(b), customer 10 was removed
from the route on the left and has been inserted in the route on the right. Figure
3(c) shows the swap of customer 4 with customers 2 and 3. In Figure 3(d) we
have the inversion of the sequence of customers 7, 8 and 9. Figure 3(e) shows
how customer 9 has been shifted between customers 6 and 7. Finally, in Figure
3(f), the route on the right has been split between customers 7 and 8.

Not all of the mutation operators are applied each time an offspring is mu-
tated. First, the split operator is performed with a probability equal to the
inverse of the number of routes in the solution. Then the solution is submitted
to one of the inter-route operators. The decision of which to apply is random.
Finally, one of the intra-route operators is applied to the solution. The complete
mutation process is shown in Figure 4.

After this process, the algorithm evaluates the objective functions for each
solution in the offspring population and combines both parent and offspring pop-
ulations to assign fitness. Those solutions having the highest fitness are taken to
the next generation. If one front is in conflict with the population size, similarity
is computed for those solutions in that front, and the less common are consid-
ered for the next iteration. Similarity is computed again and the whole process
is repeated for maxGen generations.

5 Experimental set-up and results

To test our new algorithm, we used the publicly available benchmark set due to
Solomon [16], which includes 56 instances of size n = 100. These instances are
categorised as Clustered (C1, C2), Random (R1, R2), and Mixed (RC1, RC2).
Solomon [16] provides a complete description of the test data, and the data-sets
themselves are publicly available from his web site1.

1 http://w.cba.neu.edu/~msolomon/home.htm
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These data-sets have been previously studied in detail, and a recent analysis
by Tan et al. [17] suggests that categories C1 and C2 have positively correlating
objectives, which means that the travel cost of a solution increases with the
number of vehicles. However, many of the instances in categories R1, R2, RC1
and RC2 have conflicting objectives.

Following the discussion above, the analysis of our results has three objec-
tives: (i) to compare results from single- and bi-objective algorithms, (ii) to
examine the difference between results from our algorithm with and without
considering the similarity measure, and (iii) to study the performance of our
algorithm when compared with others previously published.

We ran our algorithm 30 times for every instance and recorded the solutions
in the Pareto approximation each time. The parameters of our algorithm were
set to convenient round numbers that worked well as follows:

population size = 100 crossover rate = 0.9
number of generations = 500 mutation rate = 0.1
tournament size = 10

5.1 Single- and bi-objective optimization

In this section we compare the results from our algorithm with those from a
single-objective genetic algorithm (GA), namely the version of our BiEA which
only minimizes one of the two objective functions. For simplicity, the one that
minimizes the number of routes will be called GAR, and the one that minimizes
the total cost will be called GAC. Note that we are performing this compari-
son to first determine whether VRPTW really does behave as a multi-objective
problem, and then, if it does, to determine whether we can achieve better results
by considering it as a multi-objective problem.

In Table 1 is presented the average best results grouped by category set.
We have averaged the best results found over all iterations, and averaged these
over the set category. We show for each algorithm and instance set the average
number of routes (upper) and the average total cost (lower). The last column
presents the total accumulated sum, indicating the total number of routes and
the total cost for all 56 instances. In this table we are also showing the results
from the version of our algorithm that does not include the similarity measure
(BiEANS), but we will not analyse these until the following section.

We can see that the number of routes from GAR is lower than that from GAC
in four of the six categories, and only in two compared with BiEA. Our BiEA
algorithm achieved fewer routes in all cases compared with GAC. Comparing
the total cost, GAR obtained the highest costs, while our algorithm surpassed
GAC in four of the six groups. The last column in the table shows the overall
accumulated results for both objectives. In this matter, GAR has the lowest
accumulated number of routes, and BiEA the lowest accumulated total cost,
reducing by 47% and 3% that achieved by GAR and GAC, respectively.

Given the narrow difference in the total cost from GAC and BiEA for sets
C2, R2 and RC2, we decided to analyze in more detail the performance of these
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Table 1. Comparison of the average best results, averaged by set category, from the
single- and bi-objective algorithms.

Alg. C1 C2 R1 R2 RC1 RC2 Accum.

GAR 10.43 3.07 13.08 3.14 12.91 3.60 441.95
1685.22 898.33 1550.45 1448.03 1742.10 1769.78 84982.41

GAC 10.05 3.01 13.52 4.00 13.51 4.81 467.33
908.21 601.42 1273.83 954.24 1464.37 1111.69 59376.27

BiEA 10.00 3.00 12.96 3.79 12.65 4.53 448.70
842.29 597.52 1222.13 968.89 1378.40 1136.16 57800.63

BiEANS 10.03 3.00 13.26 3.63 13.26 4.28 453.52
918.86 604.23 1279.74 977.27 1471.58 1143.58 60131.52

algorithms. In Figures 5 to 7 we present box-and-whisker plots for all instances in
these sets, with the total cost normalized to the median of the results from BiEA.
For each instance there are two boxes, with the one on the left corresponding to
the results from GAC, and the one on the right to BiEA. The boxes have lines
at the lower quartile, median, and upper quartile values. Notches display the
variability of the median. The width of the notches are computed so that box
plots which notches do not overlap have different medians at the 5% significance
level [11].

In the case of the instances in category C2, depicted in Figure 5, there is not a
clear difference for instances C201, C202, C205 and C207 where the median and
its variability appears to be the same for both algorithms. For instances C206
and C208, despite notches that are overlapping, the variability of the median of
the results from GAC is larger than that of the results from BiEA. In the case
of instances C203 and C204, boxes from BiEA are lower and shorter that those
from GAC.

For instances in category R2, shown in Figure 6, we can observe that notches
from five out of 11 instances are overlapping (R204, R306, R207, R209 and
R210), where the variability of the median is pretty much similar. The median
of the results from GAC is lower in five of the six remaining instances and only
in one (R212) the median from BiEA is below that from GAC.

Finally, for instances in category RC2, in Figure 7, we can see overlapping
notches for half of the instances (RC203, RC204, RC206 and RC207), lower
boxes from GAC, consequently lower medians and their variability, for three of
the remaining instances, and only in one instance (RC208) results from BiEA
surpassed that from GAC.

5.2 Effect of the similarity measure

The same series of experiments was carried out using our algorithm but without
the similarity measure (BiEANS). In this case, the selection of parents for the
recombination process took only the fitness into account. The purpose of this
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Fig. 5. Box-and-whisker plot for instances in category C2.
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Fig. 6. Box-and-whisker plot for instances in category R2.
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Fig. 7. Box-and-whisker plot for instances in category RC2.

analysis was two-fold: to determine the performance of BiEA with and with-
out the similarity measure, and to determine whether the similarity measure is
accomplishing the goal of diversifying the population.

In Table 1, we can see that BiEANS, compared with BiEA, could find, on
average, solutions with a lower number of routes only for instances in category
R2 and RC2, and higher in all others. These solutions have a higher total cost
for all categories. The difference in these results is the effect of including the
similarity measure, as we are selecting one of the parents to be not so similar
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(d) RC201

Fig. 8. Solutions in the Pareto approximation for four instances. Solutions from BiEA
are represented with ‘+’, and solutions from BiEANS with ‘◦’.

to the rest of the population, and hence looking for solutions in other areas of
the search space. This selection could result, after recombination, in an offspring
with good quality and different from current individuals.

In Figure 8 we consider the solutions in the Pareto approximations, from
one of the repetitions. Because of the space limitations, only four instances are
shown, two in category R and two in category RC. In each case, the horizontal
axis shows the number of routes, and the vertical axis shows the total cost.
Values for the total cost are normalized to the minimum value across both sets.
It can be seen that solutions from BiEA are dispersed over at least two values
in the number of routes, in contrast with the solutions found by BiEANS, which
are in two at most. We can also observe that, in three of the four instances, the
approximation set from BiEA completely cover that from BiEANS. Although we
are displaying the results for only four instances, nearly all of the 39 instances
in categories R and RC exhibit similar results. This characteristic is due to the
fact that BiEA searches over a wide range of values, no matter if the number of
vehicles is higher, as long as the similarity of solutions remains low.

5.3 Comparison with recently published results

Unfortunately, other recent publications dealing with the same problem have not
presented Pareto approximations, even when their authors considered their ap-
proach to be multi-objective. Consequently, we cannot compare our results with
theirs from a proper multi-objective point of view. Instead, we have averaged
the best result in all iterations over the instances in each category set, as this
appears to be the most common way in the literature to present and compare
results. Our results are shown in Table 2, which has the same format as Table 1.
This table also includes the results from four recent studies that minimize both
objectives, the number of routes and the total cost, either one after another [7,
9] or simultaneously [17, 12]. Additionally, in the last two rows, we show the
percentage difference between our results and the lowest total cost (∆L) and the
highest total cost (∆H) for each instance set.

Analysing the results in Table 2, we can see that, for instance set C1, our
algorithm obtained, on average, the highest cost, but the gap between this and



Bi-objective VRPTW: Using Route Similarity to Enhance Performance 13

Table 2. Comparison of the best results, averaged by set category, with others previ-
ously published.

Author C1 C2 R1 R2 RC1 RC2 Accum.

[9] 10.00 3.00 12.08 2.73 11.50 3.25 407.00
828.38 589.86 1209.19 960.95 1386.38 1133.30 57412.37

[7] 10.00 3.00 11.91 2.73 11.50 3.25 405.00
828.38 589.38 1212.73 955.03 1386.44 1108.52 57192.00

[17] 10.00 3.00 12.92 3.55 12.38 4.25 441.00
828.74 590.69 1187.35 951.74 1355.37 1068.26 56290.48

[12] 10.00 3.00 13.17 4.55 13.00 5.63 471.00
828.48 590.60 1204.48 893.03 1384.95 1025.31 55740.33

BiEA 10.00 3.00 12.50 3.18 12.38 4.00 430.00
830.64 589.86 1191.22 926.97 1349.81 1080.11 56125.35

∆L 0.27 0.08 0.33 3.80 0.00 5.35 0.69
∆H 0.00 0.14 1.81 3.67 2.71 4.92 2.29

the lowest result is very narrow, only 0.27%. On the other hand, for set RC1,
our algorithm managed to find the lowest costs, and the difference between ours
and the highest is 2.71%. For the other categories, although the results from
our algorithm are not the overall best, they do show considerable improvement
over some of the other algorithms. In fact, they occupy the second or third
place among the five. Moreover, in the case of the accumulated total cost, the
difference between our results and the lowest is 0.69%, second best, and the
difference with the highest is 2.29%, despite our algorithm using a larger number
of routes. Another interesting observation is that our results for sets R, RC, and
Accumulated confirm that VRPTW really is a multi-objective problem, in the
sense that we obtained lower costs, compared with other the authors, despite
using more routes.

Finally, although we do not have room to show the details of our results in
this paper, we can note that our algorithm has found 11 new best solutions and
another 36 similar to the best published.

6 Conclusions

We have proposed in this paper an evolutionary algorithm for solving VRPTW
as a bi-objective problem, simultaneously minimizing the number of routes and
the total cost. Importantly, this EA includes a similarity measure, which is used
to select one of the two parents for the recombination process. As the other
parent is selected according to the quality of the solution, the resulting offspring
inherits the quality from this parent, while searching for solutions in a non-
common area of the search space. As a consequence, solutions in the resulting
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population are diverse, covering more than one value in the number of routes
dimension.

We have compared the results from our algorithm with those from a single-
objective genetic algorithm, with those from our algorithm without the similarity
measure, and with algorithms from four recent publications by other authors.

In the first case, we showed that, because the single-objective GA focuses on
only one of the two objectives, they do not take into account the likely improve-
ment that could be achieved if the other objective would also be minimized, like
the bi-objective evolutionary algorithm does. For this reason, it is highly possible
that the single-objective algorithm gets stuck in a suboptimal solution.

In the second case, we have demonstrated the high importance that the
similarity measure has, in the sense that the exploration of the search space
is wider. Moreover, the solutions from our algorithm are more dispersed, for
example, over two values in the number of routes, in contrast with those obtained
without considering similarity, which are concentrated in only one.

In the last case, we have shown that, when compared with other algorithms
from recent publications, although our results are not the overall best, they are
better than some, and, on average, competitive. Our algorithm also managed to
find solutions such that the accumulated travel distance is better than others,
despite the number of routes being larger, indicating the multi-objective nature
of VRPTW.

Given the promising performance of our algorithm, we are now looking at
further ways to exploit the similarity measure, further similarity measures, and
more rigorous comparisons of our results with other evolutionary multi-criterion
optimization methods using multi-objective performance metrics such as cover-
age and convergence. We are also exploring the extension of our approach to the
minimization of at least one more objective, which could be the makespan or the
waiting time. Finally, we are also planning to apply our BiEA to other variants
of the VRP, such as one with pick-ups and deliveries.
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