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Abstract

Scheduling of scientific workflows on hybrid cloud architecture, which contains private and public clouds, is a challenging task

because schedulers should be aware of task inter-dependencies, underlying heterogeneity, cost diversity, and virtual machine

(VM) variable configurations during the scheduling process. On the one side, reaching a minimum total execution time or

makespan is a favorable issue for users whereas the cost of utilizing quicker VMs may lead to conflict with their budget on the

other side. Existing works in the literature scarcely consider VM’s monetary cost in the scheduling process but mainly focus

on makespan. Therefore, in this paper, the problem of scientific workflow scheduling running on hybrid cloud architecture is

formulated to a bi-objective optimization problem with makespan and monetary cost minimization viewpoint. To address this

combinatorial discrete problem, this paper presents a hybrid bi-objective optimization based on simulated annealing and task

duplication algorithms (BOSA-TDA) that exploits two important heuristics heterogeneous earliest finish time (HEFT) and

duplication techniques to improve canonical SA. The extensive simulation results reported of running different well-known

scientific workflows such as LIGO, SIPHT, Cybershake, Montage, and Epigenomics demonstrate that proposed BOSA-TDA

has the amount of 12.5%, 14.5%, 17%, 13.5%, and 18.5% average improvement against other existing approaches in terms

of makespan, monetary cost, speed up, SLR, and efficiency metrics, respectively.
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Introduction

Recently, information technology (IT) was undergone a rev-

olution. In this line, cloud computing attracted great attention

in both industries and research communities for the sake

of its pervasiveness, elasticity, and economy of scale [1].

Meanwhile, cloud computing is an amazing option for both

individuals and organizations that do not have any exact

resource usage pattern [2, 3]. For instance, in the case of

the garment industry for Valentine’s Day or Christmas, pri-

vate cloud owners can exploit the public cloud to cover their

sporadic burst of resource demand instead of proactively
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resource procurement. Cloud has a wide range of applica-

tions from business to even academic projects. One of its

abundant academic projects is in scientific workflow schedul-

ing. Workflows include a set of tasks with different sizes,

characteristics, and data dependency control flow between

sub-tasks [4]; it is of comprehensive and complicated com-

putation tool. Workflows such as LIGO [5, 6], SIPHT [5,

6], Epigenomics [5, 6], Cybershake [5, 6], etc., which are

modeled in the form of directed acyclic graphs (DAGs), are

popular paradigms in both industries and sciences [7]. Take

that a university that has its private datacenter intends to exe-

cute such scientific workflows and requests more storage and

computing resources during this process. Therefore, it can

engage the public cloud to make hybrid cloud architecture.

Note that the hybrid cloud is deemed a unique entity for

users. One of the most important issues in the execution of

workflows on cloud infrastructure is to schedule tasks and

to allocate resources to these types of projects efficiently so

that the maximum execution time of the last task, the so-

called makespan, is minimized [8]. In this regard, schedulers
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encounter several challenges such as being aware of tasks

inter-dependencies, underlying infrastructure heterogeneity,

difference in VMs speed and pricing schemes, data transfer

time on network channels, etc.

Several works have been published in the literature to

solve workflow scheduling on cloud infrastructure with total

execution time reduction, energy efficiency, reliability maxi-

mization viewpoints, but less paid attention to monetary costs

which may have a big conflict with users’ monetary budget.

For instance, a load-aware heuristic strategy for dynamic

workload and service scheduling in a cloud environment

has been proposed by Lu et al. [9]. The main objective of

the proposed algorithm was to improve execution perfor-

mance; then, it has been validated by series of experiments. A

novel hybrid discrete particle swarm optimization (HDPSO)

algorithm was proposed to reduce maximum workflow exe-

cution time on cloud heterogeneous platforms [1]. To do

so, this problem has been formulated into a single objective

optimization problem. Although it had great improvement,

it has not considered VMs’ monetary costs. An energy-

aware workflow scheduling algorithm has been presented

with the aim of datacenter power management and keep-

ing users’ service level agreement (SLA) in [10]. Utrera

et al. [11] have proposed an efficient algorithm to balance

imbalance parallelizable programs on spare nodes with the

aid of maximum resource utilization. Although it improves

infrastructure resource utilization by packing tasks on the

same processor, it does not consider user requirements as one

of the most important stakeholders in the system. A multi-

objective optimization workflow scheduling with execution

time and energy efficiency has been propounded by Durilo

et al. [12]. They applied the HEFT method as a list sched-

uler algorithm which has two important phases; at first, it

constructs an ordered list of tasks guaranteeing topological

order and dependency constraints; at the second phase, it

picks a task with the highest priority to map on the pro-

cessor which finishes the task execution at the quickest as

possible time. It seems the suggested work is not suitable

for users with tight budget constraints. Since workflows

are modeled in the form of DAGs and there exist depen-

dencies between tasks, data transfer between tasks worsens

execution time, network traffic, and monetary costs as well.

Therefore, the duplication technique may decrease network

bandwidth usage and also can improve parallel path and

degree of parallelism [13]. Specifically, it is a promising tech-

nique for communication-intensive DAGs which have a high

communication-to-computation (CCR) rate. Qi Tang et al.

have outlined task scheduling on a homogeneous platform

by applying the duplication technique [14]. The outcome of

their design was promising, but the duplication technique

burdens more monetary costs as the scheduler must rent a

couple of VMs instead of one. However, their algorithm did

not take into account limitations for the number of allowable

task duplications.

Reviews of published works in workflow scheduling on

cloud platforms reveal that there exists a big gap in the liter-

ature for considering user monetary cost budget apart from

the makespan minimization perspective. The most impor-

tant innovation of the current paper which it conveys is that

it formulates workflow scheduling problems on cloud plat-

forms with makespan and monetary cost viewpoints. This is

a bi-objective optimization problem under some constraints

which is an NP-Hard problem. Since it is a discrete opti-

mization problem, the simulated annealing (SA) algorithm

is utilized which is very adaptive with discrete search space.

However, canonical SA is a point-wise meta-heuristic com-

putation; it cannot explore search space efficiently. This is

the reason that a new population-based version of SA is pre-

sented; it is done by defining new operators and applying the

crowding distance concept to make a bi-objective version of

SA (BOSA). Also, to reach concrete results, the proposed

algorithm is combined with the HEFT approach. In this way,

it can explore search space efficiently to lead Pareto set of

potentially conflicting objectives. The main contributions of

the paper are as follows:

1. To present a new duplication-based list scheduler

2. To present a pricing model for VM deployment in cloud

computing environment

3. To formalize workflow scheduling problem on heteroge-

neous cloud platforms into a bi-objective optimization

problem with makespan and monetary cost optimization

viewpoints

4. To present a bi-objective optimization based on simu-

lated annealing task duplication scheduling algorithm

(BOSA-TDA) along with new operators to solve the

stated discrete bi-objective optimization problem

The rest of the paper is organized as follows. “Related

works” classifies task scheduling algorithms in the form of

related works. “Problem background” presents the problem

background. Several proposed models are outlined in “Sys-

tem, application, scheduling, and pricing models”. “Problem

statement” states problem formulation. Our proposed BOSA-

TDA algorithm is elaborated in “Proposed bi-objective

optimization based on simulated annealing task duplication

scheduling algorithm (BOSA-TDA)”. To validate the current

work, “Simulation and evaluation” is dedicated to simulation

and evaluation. Finally, “Conclusion and future work” con-

cludes this article along with future work inclination.
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Fig. 1 Classification of Task
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Related works

Task scheduling is an important concept in all fields of com-

putation domains especially when it is subjected to resource

constraints; this is the reason that it has a long history. Fig-

ure 1 shows the categories of task scheduling algorithms in

the literature.

A review in the literature reveals that the traditional task

scheduling research has focused on list scheduling algo-

rithms; chief amongst are heterogeneous earliest finish time

(HEFT) [19] and critical path on a processor (CPOP) [19].

The basic idea of the HEFT version of list scheduling is that

it consists of ordering a list of tasks by assigning priority

to each one. The tasks are selected to the assigned priority

and the ready task with the highest priority is removed from

the task list to be assigned to an available virtual machine

that guarantees the earliest finish time (EFT). In this cate-

gory, another list scheduler, CPOP maps each task which is

in the critical path, on the fastest VMs/processors in heteroge-

neous parallel platforms whereas the other tasks are mapped

on VMs based on the EFT concept. Although the two afore-

mentioned list schedulers were promising techniques in the

primary era of scheduling, several improvements on these

versions have been published in the literature to enhance

schedulers’ performance. In this regards, different exten-

sions of list schedulers are such as CCP, CEFT, RHEFT,

DHEFT, PEFT which have been customized for cloud envi-

ronments [54–56]. For instance, robust HEFT (RHEFT) and

distributed HEFT (DHEFT) have been developed to embed

user’s quality of service (QoS) requirements in the model

apart from makespan [56]. A cost-effective fault-tolerance

(CEFT) scheduling algorithm for real-time tasks in cloud

environment was presented in [21]. This scheduling algo-

rithm is applied in cloud environment with permanent or

transient failure. The simulation result shows the CEFT gains

promising balance between low cost and deadline guaran-

tee in real-time cloud systems. In addition to, a novel list

scheduler algorithm which combines machine learning tech-

niques and HEFT (known as QL-HEFT) was presented in

[22]. The QL-HEFT scheduler utilizes upward ranking val-

ues from HEFT which are used for reward in Q-learning

process. After an ordered list is provided; then, QL-HEFT

engages the earliest finish time procedure to schedule high

prior task which is placed in an ordered list by Q-learning

process, on the fastest VM that returns the optimal result.

The QL-HEFT was compared with three different classic

list schedulers upward, downward, and CPOP approaches

that were presented in [19]. The simulation results proved

the superiority of QL-HEFT against counterparts in term of

average response time. Also, Arabnejad and Barbosa in [54]

have presented a novel list scheduler, predictable earliest fin-

ish time (PEFT) by introducing a look-ahead feature with

computation of an optimistic cost table. It preserves time

complexity against other existing approaches, but it lacks

to consider rented VMs’ cost. Some other famous list sched-

ulers are: Highest Level First with Estimated Times (HLFET)

[15], Modified Critical Path (MCP) [16], Dynamic Critical

Path (DCP) [17], Dynamic Level Scheduling (DLS) [18],

and Longest Dynamic Critical Path (LDCP) [20] in which

their concentration are mostly on critical path management

of given DAGs.

Recently, heuristic-based approaches became popular

besides list schedulers. A heuristic-based algorithm normally

finds a near-optimal solution in polynomial time. It searches

for a path in the solution space at the expense of ignoring

some possible trajectories [34]. Clustering and duplication

are two prominent heuristic-based task schedulers in parallel

systems [13, 25, 28–30, 57–62]. The heuristic-based schedul-

ing algorithms can be classified as cluster-based schedulers

such as [28, 57, 58] and task duplication-based schedulers
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Table 1 Chronological comparison of emerging scheduling Algorithm in literature

Technique Before 2012 2013–2016 2017–2021

Genetic algorithm (GA) [33, 34] [31, 32, 71] [8, 65]

Simulated annealing (SA) [35, 36] [37, 38, 68, 72, 73]

Particle swarm optimization (PSO) [39, 41–44] [40] [1]

Ant colony optimization (ACO) [45, 47, 49, 66] [46, 74] [48, 51]

Artificial bee colony (ABC) [52] [67]

Cuckoo search (CS) [53, 75]

Clustering [28, 57, 58] [24]

Duplication [28, 60, 61] [12, 13] [14, 30]

Fuzzy [76]

Other approaches [19, 26, 70] [64] [30, 69]

such as [13, 25, 29, 30, 59–62]. In the former method, the

scheduler reduces communication costs by creating high

communication-intensive dependent tasks as a cluster and

mapping that clustered tasks on the same VM/processor

whereas, in the latter approach, the duplication-based sched-

uler increases the degree of parallelism by executing a key

subtask on more than one processor. Lin et al. [13] and Mishra

et al. [28] have utilized clustering and duplication techniques

in task scheduling problems. In [13], authors make some new

graphs from input DAG by utilizing clustering, duplication,

and replication methods. The main objective is to minimize

makespan subject to keeping throughput and utilization at

appropriate levels; then, one of the newly generated graphs

which optimizes objective function and meets problem con-

straints is selected as a final solution. This work was validated

in both real datasets and random task graphs which proved its

superiority against some comparative algorithms. However,

these heuristics are not appropriate in the platforms with a

limited number of parallel VMs/processors [1, 8]. In addition,

the duplication method was applied for task scheduling on

homogeneous platforms in [14]. The outcome of their design

was promising in makespan reduction, but their algorithm

did not consider limitations for the number of allowable task

duplications since it burdens users more monetary charge.

Several heuristics have been devised to solve scheduling

Bag-of-Tasks applications on hybrid clouds under due data

constraints in [63]. This paper’s trend was to optimize the

total cost function which contains tardiness penalties and

public cloud usage cost. Clustering and Scheduling System

II (CASS II) has been presented to improve scheduling per-

formance. To do so CASS II engages tasks on critical path

to construct a cluster. Then, it assigns this cluster on the

fastest available processor without considering any duplica-

tion technique [23]. Another duplication scheduling heuristic

is discussed in an extended report published by Oregon state

university [27].

Despite list schedulers and heuristic-based approaches

which are biased deterministically, stochastic-search-based

algorithms incorporate a combinatorial process in the search

space for finding optimal solutions. Some stochastic-search-

based algorithms such as meta-heuristic-based or even hybrid

meta-heuristic-based approaches typically require sufficient

sampling of candidate solutions in the search space and have

shown robust performance on a variety of scheduling prob-

lems. In this regards, genetic algorithms (GAs) [8, 31–33,

64, 65] particle swarm optimization (PSO) [40, 43], Hybrid

discrete PSO (HDPSO) [1], ant colony optimization (ACO)

[47, 66], artificial bee colony algorithm (ABC) [52, 67] sim-

ulated annealing (SA) [35, 36, 68] cuckoo search algorithm

(CS) [52, 93], the memetic discrete differential evolution

algorithm [69] and tabu search (TS) [64, 70] have been suc-

cessfully applied to different scheduling problems. Among

them, GAs have been widely utilized to evolve solutions for

many task scheduling problems [8, 31–33, 64, 65]. Table 1,

chronologically, depicts the most cited related works in lit-

erature.

For instance, a shuffled genetic-based algorithm has been

presented for task scheduling algorithms [8]. In its initial

population, two individuals are filled by upward and down-

ward ranking algorithms and the third individual is filled by

level ranking which is drawn from the HEFT approach; then,

the rest population is created by shuffling these individuals

to produce feasible chromosomes. The same approach has

been done by hybrid discrete particle swarm optimization

(HDPSO) algorithm which produces initial swarm followed

by two proved theorems [1]; then, it is randomly combined

with the Hill Climbing method to make a good balance

between exploration and exploitation in search space. Both

presented models formulated scheduling problems as a single

objective optimization by reducing the makespan viewpoint.

A multi-objective optimization workflow scheduling with

execution time and energy efficiency inclination has been
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propounded by Durilo et al. [12]. Although this improves

makespan and power consumption at the same time, it is

not suitable for users with tight budget constraints. Another

bi-objective optimization task scheduling with maximiz-

ing reliability and minimizing energy perspectives has been

propounded by Zhang et al. [77]. This bi-objective HEFT

(BOHEFT) scheduler weights system reliability more than

performance metrics and maps tasks on heterogeneous VMs

till low energy consumption and high reliability are simul-

taneously achieved. This algorithm ignores makespan and

utilized VMs’ cost taking into consideration. Since the task

scheduling problem is a discrete optimization problem, the

simulated annealing (SA) algorithm seems to be an efficient

approach to reach the global optimum in discrete space [78].

Several versions of SA have been developed to figure out dif-

ferent scheduling problems [72, 73, 79]. As the SA algorithm

is a point-wise optimization approach, it has two basic draw-

backs. Firstly, it cannot explore search space efficiently in

comparison with population-based evolutionary algorithms

such as GA because it cannot generate a handful of candidate

solutions. Secondly, it is hard to customize point-wise SA

for multi-objective optimization problems. In [37] a hybrid

genetic and simulated annealing algorithm (GASA) has been

presented to solve scheduling problem in a cloud environ-

ment. This work is based on a list scheduler but to generate a

handful of promising lists, it utilizes GA algorithm along with

its strong crossover operator. To improve the gained solu-

tions, it utilizes SA operators. Also, in [38] another hybrid

genetic and thermodynamic simulated annealing algorithm

(GATSA) was proposed to solve workflow scheduling in a

cloud environment with regards to makespan minimization

viewpoint. The proposed GATSA utilizes thermodynamic

laws to gradually and variable decrease the temperature in

the cooling phase. To this end, it applies variable cooling

amount based on discrepancies fitness between each pair of

consecutive solutions whereas it was neglected in the canoni-

cal SA. The conducted simulations in different circumstance

proved the dominance of the GATSA against other counter-

parts in terms of scheduling evaluation metrics. In this line,

a min-max ant colony optimization algorithm has been pre-

sented in literature to solve job scheduling in grid computing

systems [50].

An overall review of the literatures associated with work-

flow scheduling reveals that there is a clear lack of workflow

scheduling algorithms that optimizes both equally impor-

tant makespan and monetary cost functions. In this line, the

development of an intrinsic discrete-nature meta-heuristic

algorithm such as SA can efficiently explore discrete search

space. To solve the discrete bi-objective workflow scheduling

problem, this paper extends a hybrid population-based bi-

objective optimization algorithm based on simulated anneal-

ing and task duplication scheduling techniques in such a way

that it can cover existing aforementioned shortcomings.

Problem background

In this section, a few concepts from the multi-objective opti-

mization theory and canonical SA for a better understanding

of this work are succinctly introduced.

Multi-objective optimization and crowding distance
concepts

A multi-objective optimization problem is an issue that has

several conflicting objectives which need to be optimized

simultaneously. Without loss of generality, Eq. (1) outlines

a multi-objective optimization problem with minimization

inclination [80].

minimize F(x) � (F1(x), F2(x), . . . , Fk(x))T . (1)

An element x∗ ∈ X=(x1, x2,…, xN ) is called an N-

dimensional feasible solution or a feasible decision. A vector

z∗ :� F(x∗) ∈ R
k for a feasible solution x∗ is called

an objective vector or an outcome. In multi-objective opti-

mization, there does not typically exist a feasible solution

that minimizes all objective functions simultaneously. There-

fore, attention is paid to non-dominated solutions (or Pareto

optimal solutions); those solutions cannot be improved in

any of the objectives without worsening at least one of the

other objective. In mathematical terms, a feasible solution

X1=(x11, x12,…, x1N ) ∈ X N is said to dominate another

solution X2=(x21, x22,…, x2N ) ∈ X N as Eq. (2) indicates:

{

∀i : Fi (X1) ≤ Fi (X2) and ∃ j : F j (X1) < F j (X2) |i, j ∈ {1. . . . .k}
}

.

(2)

In the multi-objective domain, two concepts of con-

vergence and diversity are very important issues where it

differentiates other multi-objective optimization algorithms

in term of performance. For instance, the famous NSGA-II

algorithm introduces two effective selection criteria namely,

Pareto non-dominated sorting and crowding distance to guide

the search towards the optimal front [81]. The Pareto non-

dominated sorting is used to divide the individuals into

several ranked non-dominated fronts according to their domi-

nance relations. The crowding distance is used to estimate the

density of the individuals in a population; it is beneficial when

the algorithm encounters memory size limitations. The multi-

objective algorithm prefers two kinds of individuals: 1) the

individuals with lower rank and 2) the individuals with larger

crowding distance if their rank is the same [81]. For the last

criterion, the crowding distance is employed that was defined

in [82]. Our criterion is to prefer solutions with the lower

rank and higher crowding distance value; the higher value

of crowding distance means the solution sets were derived
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from broader area. Finally, the non-dominated solutions are

returned.

Simulated annealing (SA)

Simulated annealing is one of the most popular meta-

heuristics developed that derives its inspiration from the

natural world. In the case of simulated annealing, this inspi-

ration comes from the behavior of fluids when they are

subjected to control cooling such as in the production of large

crystals. Simulated annealing for combinatorial optimization

was introduced by Ref. [78] and independently by Ref. [83].

Despite other meta-heuristic approaches which have evolu-

tionary trend, the SA tends to examine the worse solution

apart from the good solution because in this way it runs away

from getting stuck in a local optimal trap. During the anneal-

ing process, if a better solution is gained, it is accepted but

in the case of producing a worse solution it is accepted by

the amount of probability [84, 85]. It can be tuned in such

a way that acceptance of the worse solution can happen at

the beginning phase of the algorithm and when it reaches the

end, the probability of worse solution acceptance is near to 0.

In the other words, when SA became familiar with the search

space, it behaves similar to other evolutionary algorithm at

the last epochs; namely, it accepts only better solutions. The

SA has one plus point and one negative point. The plus point

is relevant to its flexibility for discrete optimization like task

scheduling problems, but the negative point is relevant to its

nature which is a point-wise algorithm. This is the reason the

population-based of SA is presented to gain better results; as

a matter of fact, the final results proved this idea.

System, application, scheduling, and pricing
models

To present the proposed algorithm, some models are intro-

duced for better understanding. Also, this paper presents

mathematical optimization models. The nomenclature tab-

ulated in Table 2 applied in the paper makes the paper easy

to follow.

Systemmodel

In this section, understudy system model is introduced

which executes DAG applications. The system contains a

set of L different heterogeneous VMs which are intercon-

nected with high-speed networks; namely, VMset � {VMPr
1 ,

VMPr
2 , . . . , VMPr

k , VMPu
k+1,…VMPu

k+m�L}. In this model, the

number of k VMs out of L makes a private cloud whereas

the number of m VMs out of L makes a public cloud. Here,

there is no difference between VMs of private and public

clouds provided the underlying network is high speed. For the

sake of simplicity, it is taken a heterogeneous cloud platform

with L different integrated VMs which is deemed a unique

entity for users, but the heterogeneity is based on proces-

sors’ architecture, speeds, and pricing schemes. For pricing

model, the private cloud is considered on-demand whereas

the public cloud is considered with charge period basis (c.f.

Eqs. (17–21)). Moreover, the processing power in term of

number of MIPS and monetary cost in term of $/hour associ-

ated with each VM are variable and determined in advance.

Such a system is depicted in Fig. 2.

In this model, the front-end layer is the user layer in which

the user submits his/her request. The scheduling layer con-

tains resource manager, job scheduler, DAG maker, and task

scheduler which pays attention to the user’s QoS request and

his/her cost budget. In the back-end, there exists both private

and public cloud that makes hybrid architecture. The main

concentration of the current paper is on task scheduling in

a hybrid architecture. For simplicity, a uniform high-speed

network is considered in which all VMs can uniformly com-

municate with each other with the same bandwidth BW. So,

for each i, j � 1,…,L where i �� j; B(VMi ,VM j ) � BW.

Applicationmodel

Each workflow application is modeled to directed acyclic

graph (DAG); it is considered a directed acyclic task graph

in G � (T , E). Each vertex v ∈ T � {t1, t2, . . . , tn} in a

DAG represents a task. Also, a DAG has two special nodes

tentry and texit that do not have predecessor and successor

nodes respectively. The set of edges E in the graph where {e
(

ti , t j

)

∈ E |ti �� t j } represents dependency between tasks

ti and t j . That is a precedence constraint that indicates the

task t j can start its execution only after completion of the

task ti . The set
{

t j ∈ T : e
(

t j , ti
)

∈ E
}

of all immediate

predecessors of ti is referred to as Pred(ti ) and the set
{

t j ∈ T : e
(

ti , t j

)

∈ E
}

of all immediate successors of ti is

referred to as Succ(ti ). A task without any predecessor is

called an entry task, i.e., Pred(ti ) � ∅ and a task without

any successor is called an exit task, i.e., Succ(ti ) � ∅. The

size of the task ti and the weight assigned to edge e
(

ti , t j

)

for

computation and communication are represented by Size(ti )

and e
(

ti , t j

)

respectively. The amount of execution time for

the task ti on VMk is calculated via Eq. (3). Besides, the

average execution time of the task ti on this heterogeneous

platform is gained via Eq. (4). Where ES (VMk) and nP are

execution speed of VMk in terms of MIPS and the number

of virtual processors in the system.

ET(ti , vmk) �
Size(ti )

ES(VMk)
, (3)

ET (ti ) �

∑

∀VMk∈VMset ET(ti , VMk)

n P
. (4)
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Table 2 Nomenclature of used
notations Symbol Meaning

T Set of tasks in the application

E Set of edges for precedence constraints among the tasks

nT Number of tasks

n P Number of Virtual machines in heterogeneous cloud system

ti The ith task in the application

TaskList List of tasks in the first part of a chromosome

DuplicationList List of duplication of tasks in the second part of a chromosome

Size(ti ) Number of instruction in task ti in term of Million Instructions (MIs)

γ Duplication number for each task

t
γ

i The γth duplication of ith task in application

tentry The entry task with no predecessor

texit The exit task with no successor

Succ(ti ) The set of immediate successors of task ti

Pred(ti ) The set of immediate predecessors of task ti

Ranku(ti ) The upward rank of task ti

Rankd(ti ) The downward rank of task ti

e(ti , t j ) A directed edge from task ti to task t j

B(VMk , VMl ) Bandwidth between virtual machines VMk and VMl

TT(ti , t j ) Transfer time in edge e(ti , t j ) where tasks ti and t j are running on different virtual
machines VMk and VMl respectively via common bandwidth B

VM
β

k The k-th VM in the virtual machine set with types β � {public VM, private VM}

vmList A list of virtual machines and task features is provided in each virtual machine

ES(VMk ) Execution speed of VMk in term of Million Instruction Per Seconds (MIPS)

EUnit(VMk ) Monetary cost for the execution of one unit of task on VMk

VMk .List List of tasks assigned to VMk

BUT(VMk ) Boot-up time of VMk (VMk startup latency)

ET(ti , VMk ) Execution time for the task ti on VMk

ET (ti ) Average execution time of the task ti on a cloud platform with heterogeneous VMs

EC(ti , VMk ) Execution cost for the task ti on VMk

EST(t
γ

i , VMk ) The earliest start time of the task ti on VMk

EFT(t
γ

i , VMk ) The earliest finish time of the task ti on VMk

AST(t
γ

i ) The actual start time of γ duplication of ti task

AFT(t
γ

i ) The actual finish time of γ duplication of ti task

AUV(t
γ

i ) The actual utilized virtual machine for execution of γ-th duplication associated to task ti

Makespan Total execution time

TEC Total execution monetary cost

TTC Total transfer monetary cost

ToC Total monetary cost

CCR Communication to computation ratio

SLR Scheduling length ratio
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Fig. 2 Three-layer system model to execute dependent tasks on heterogeneous virtual machines

Moreover, the data transfer time (TT) between each pair

of VMs can be calculated via Eq. (5) in which the amount of

data being transferred and common bandwidth are effective

in the TT parameter [86].

TT
(

ti , t j

)

�

⎧

⎪

⎨

⎪

⎩

0 if ti and t j

are scheduled on the same VM
e(ti ,t j)
BW

otherwise

.

(5)

This algorithm is evaluated using synthetic data from five

real-world scientific workflow applications, such as Mon-

tage (generation of image mosaics of the sky), Epigenomics

(mapping of the epigenetic state of human cells), SIPHT (The

bioinformatics project that is conducting a wide search for

small untranslated RNAs in bacteria), CyberShake (generat-

ing seismic hazard maps for earthquake detection), and LIGO

(detection of gravitational waves in the universe) [5]. Fig-

ure 3a–e illustrate the aforementioned DAGs form projects.

Schedulingmodel and duplication technique

The scheduling model determines which task is assigned on

which type of VM in regards to objective functions. The

scheduling model that this paper applies is a list scheduler

which has two important phases; at the first phase, it provides

a list of ordered tasks with priority weight whereas at the next

phase it picks a high priority task to assign on the available

VM which guarantees the earliest finish time not the earli-

est start time. For the first phase, three approaches upward,

downward, and level rankings of the HEFT algorithm are

applied with the incorporation of duplication method if nec-

essary. For the VM selection, two functions are engaged

which are: Earliest Finish Time (EFT) and Earliest Start Time

123



Complex & Intelligent Systems (2022) 8:1085–1114 1093

Fig. 3 Five real-world scientific workflow applications: a Montage [5], b Epigenomics [5], c SIPHT [5], d LIGO [5], and e Cyber Shake [5]

(EST). The first function indicates the earliest time in which

a virtual machine VM
pr/pu
k can finish the execution of the

subtask ti whereas the second indicates the earliest time that

the execution can be started. To do so, two famous functions

downward ranking Rankd(.) and upward ranking Ranku(.)

are applied. The former starts from the entry task to the exit

task to weigh each task a priority whereas the latter starts

from the exit to the entry task. Both of them have recursive

behavior. The downward ranking of a task ti is recursively

calculated by Eq. (6) where its value is considered zero for

the entry task which Eq. (7) indicates.

Rankd(ti ) � max∀t j ∈pred(ti )

(

Rankd
(

t j

)

+ET (t j ) + e(t j , ti )
)

, (6)

(7)Rankd
(

tentery

)

� 0,

where pred(ti ) is the set of an immediate predecessor of

task ti and e(t j , ti ) is the average communication cost of

edgee(t j , ti ), and ET (t j ) is the average computation cost of

the task t j . Rankd(ti ) is the longest distance from the entry

task to the task ti , excluding the computation cost of the task

Fig. 4 An example of a DAG application with 10 tasks [97]

itself [19]. Similarly, the upward rank of a task ti is recur-

sively defined by Eq. (8) [19]. Also, for creating a sequence
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ordered of tasks based on upward ranking, each upward rak-

ing value for each task ti , except for exit task, is calculated

via Eq. (8) whereas upward value for exit task is set by its

average computation cost which Eq. (9) shows.

Ranku(ti ) � ET (ti ) + max∀t j ∈Succ(ti )

(

e(ti , t j ) + Ranku
(

t j

))

, (8)

Ranku(texit) � ET (texit). (9)

The term Succ(ti ) is the set of immediate successors of

task ti . In addition, the term Ranku(ti ) is the length of the

critical path from task ti to the exit task texi t , including the

computation cost of the task ti . The third heuristic is the

level ranking approach in which it assigns a level number

to a task. The entry task has level 0, but for other tasks, the

level is recursively calculated by Eq. (10). Then, the tasks

are sorted based on their level ranking with increasing order.

Level(ti ) � max∀t j ∈pred(ti )

(

Level
(

t j

))

+ 1. (10)

In addition, in this paper, task scheduling performance is

improved by utilizing the duplication technique which dou-

bles critical tasks on different VMs because this technique

enhances running parallelism. On the other hand, duplication

may shorten the time interval in which VMs are at service;

therefore, it can potentially decline monetary cost. Note

that, duplication technique intrinsically leads to charge for a

couple of VMs rent instead of one VM, so, there exists a clear

conflict between makespan reduction and monetary costs.

This is the reason this issue is formulated as a bi-objective

optimization problem by applying the dominance concept

for finding solutions that compromise between objectives. To

apply the duplication technique to an ordered list, a random

number is dedicated to each task ti which has the minimum

value, min � 1 and the maximum value, max � min

{count{VMs}, max{count(Pred{ti }), count(Succ{ti })}};

these numbers are determined based on the number of VMs,

the number of predecessors, and the number of successors

associated with each task. Then, it can be balanced in the

proposed enhanced simulated annealing process. After an

ordered list is prepared by any ranking heuristic; then, the

duplication technique is applied. Hereafter, each duplicated

task is treated the same as the original task in the list. To

apply the VM selection phase, new EST (ti , VMk) is defined

which is used to show the last time the task ti whether

original or duplicated task can wait for execution on VMk .

If ti is an entry task in a DAG or it is the first task must

be assigned in the VMk
′ s task list that the V Mk .List � ∅

shows the case, the EST (ti , VMk) is equal to the boot-up

time of VMk , shown by BUT(VMk); otherwise, the term

EST (ti , VMk) is calculated with Eq. (11). In this equation,

t
γ

j is γ-th duplication of task t j that is a member of the

predecessor of ti , otherwise task t j is an original predecessor
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Fig. 5 Task encoding model chromosome

(a) (b)

(c) (d)

(e)

Fig. 6 Output of illustrative example with a NSGAII, b HEFT-TD, c Lookahead HEFT-TD, d SOGA, and e BOSA-TDA algorithm

of task ti . The important note is that, the fastest duplicated

task and the slowest original task in the predecessor of task

ti should be taken into consideration. In addition to, the

function Avail (VMk) is used to indicate the time which this

VM’s last task has been finished and it is available for the

new task.

(11)

EST (ti , VMk )

� max
{

Avail (VMk ) ,

{

max∀t j ∈pred(ti )

{

AFT
(

t j

)

+ TT
(

t j , ti
)}

,

min∀t
γ

j ∈duplicat(t j )

{

AFT
(

t
γ

j

)

+ TT
(

t
γ

j , ti

)}}}

.

When a new virtual machine VMk is intended to be started

before the task scheduling can be performed, it is needed to

boot up the virtual machine VMk in the system; where the

function BUT(VMk) is considered to measure this boot-up

time. This overhead is negligible for long-term scheduling,

but it can become a problem when running a virtual machine

is unnecessary. A scheduling algorithm may terminate a run-

ning task to save cost, but it can be restarted to meet the

executing task. The overhead caused by launching a new vir-

tual machine may not justify the cost. The time which is

determined by BUT(VMk) is effective at the initial run of

the virtual machine and it can also affect the monetary cost

[87].

The value of Earliest Finish Time function, EFT(ti , VMk)

for each task ti , whether it is duplicated or an original on the

virtual machine VMk is calculated by adding two values EST

(ti , VMk) and ET(ti , VMk) which Eq. (12) shows.

EFT(ti , VMk) � EST(ti , VMk) + ET(ti , VMk). (12)

The function AFT(ti ), in Eq. (11), is utilized for the actual

finish time of the task ti which can be measured via Eq. (13)

and also Eq. (15).

AFT(ti , VMindex) � min ∀VMk∈ VMs{EFT(ti , VMk)}. (13)

The term VMindex is used for calculating AST(ti , VMindex)

according to Eq. (14). The term VMindex indicates task ti is

started on it. The term AFT(.) can be measured via Eq. (15).

AST(ti ) � EST(ti , VMindex), (14)

AFT(ti , VMindex) � AST (ti ) + ET (ti , VMindex). (15)
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In this paper, the first objective function is to minimize the

makespan parameter which is determined by Eq. (16).

makespan � min
{

max∀ti ∈T (AFT(ti ))
}

. (16)

Pricingmodel

Cloud computing follows the pay-per-use pricing model

which means users being charged for the whole time dura-

tion even if they use only a fraction of it. Thus, in the

proposed model, each instance of leased VMk is charged

per hourly time interval [88–93]. Infrastructure as a service

(IaaS) providers offer instances of the virtual machine from

the set of available V Ms to its clients. Each V M has dif-

ferent configurations like memory size, CPU type, and cost

per time unit. The V M configuration determines that the cost

of faster V Ms are costlier as compared to the slower ones.

The function EUnit(VMk) shows monetary price that must

be paid per each unit of execution time on VMk . Also, the

function EC(ti , VMk) shows that the fee to be paid for each

ti execution on VMk according to Eq. (17) similar to liter-

atures in [88, 94, 95]. In Eq. (17), the term EFT(ti , VMk)

indicates the time interval needed for execution of task ti on

VMk which is gained via Eq. (12). The upper bound is used

to round the execution time because the payment of VMs

is based on unit of time in cloud environment. For instance,

if one deploys an a1.medium instance from Amazon EC2

which attributed with vector a1.medium � ( vCPU � 1, Mem

� 2 GiB); its on-demand hourly rate is $0.0255/h [89]. So,

the EUnit(VMk) value is $0.0255/hour. If one deploys such

on-demand VM for 20 h and 35 min duration, he/she must

pay for 21 h. Consequently, the bill is $0.5355.

EC(ti , VMk) � ⌈ET(ti , VMk)⌉ ∗ EUnit(VMk). (17)

The function Tunit(VMk, VMl) is used to show the mone-

tary price which must be paid per each unit of communication

data between VMk and VMl . Also, the term TC
(

ti , t j

)

shows

the total fee to be paid for communication cost from tasks ti
to t j between VMk and VMl provided each task is assigned

on different virtual machines VMk and VMl where k �� l,

according to Eq. (18).

TC
(

ti , t j

)

� ⌈TT
(

ti , t j

)

⌉ ∗ Tunit(VMk, VMl). (18)

Since this article considers hybrid cloud architecture

as infrastructure to execute workflows, both private and

public cloud must be taken into consideration. Note that,

the pricing procedures of the two clouds are different.

The private VM scheduler uses an on-demand provisioning

approach. The term on-demand is the standard model that

is considered by most existing scheduling techniques [88,

96]. Metered services, also called pay-per-use models, are

any type of payment structures in which customers have

access to potentially unlimited resources but only pay for

what they use. VM instances can be launched and termi-

nated at any time. Because of this, scheduling algorithms

need to estimate an optimal number of instances to be

allocated before begin of execution provided it is not spec-

ified by users; so, it must determine additional instances

if it is required during the execution. In this line, those

instances that no longer contribute to the workflow execution

should also be switched off to save cost. On the other hand,

the public VM scheduler uses the charge period provision-

ing approach. With this assumption, scheduling algorithms

try to exploit all the leftover resource utilization of the

charged periods and decide whether to terminate machine

instances at the end of their charge periods to minimize

the cost. With this fine-grained assumption, the scheduler

should be aware of fitting tasks within the charged period

to take cost-effective procedure; this makes it complicated

as considering these points during the scheduling process

[96].

Therefore, the amount of total monetary cost (ToC) vari-

able comprises both total execution and transfer costs which

are brought in Eq. (19). So, the second objective function is

to minimize the ToC cost function.

ToC � TEC + TTC. (19)

The total execution cost (TEC) variable represents the

amount of monetary cost that will be paid for the execution

of all tasks in a workload. The TEC value varies depends on

one uses the public virtual machine VM
pu
k ∈ {public VMs}

or private virtual machine VM
pr
k ∈ {private VMs} because

private VM scheduler applies on-demand provisioning and

public VM scheduler applies charge period provisioning

approaches respectively. According to Eq. (20), the TEC

value is measured whether private cloud or public cloud

is applied. Thus, for private VM usage, this cost value is

calculated in such a way that this is the cost of each task

that is executed within
(

∀ VM
β

k |β ∈ private VM
)

and for

public VM cost calculation is for the time between the period

start and end time of using (∀ VM
β

k |β ∈ public VM ). The

decision variable xk is used to indicate whether VMk is uti-

lized or not.

(20)

TEC �
∑

VMk∈ private VM
∑

ti ∈VMk .List

⌈EC (ti , VMk)⌉.xk

+
∑

VMk∈ public VM

⌈(EFT(tLast, VMk)

−EST (tFirst, VMk)) ∗ EUnit(VMk).xk⌉.
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Fig. 7 Comparison of proposed BOSA-TDA against other approaches in terms of evaluation metrics: a makespan and monetary, b SLR (c),
speedup (d), and efficiency for an illustrative example

The terms tLast and tFirst indicate to the end of the last

task execution time and the start of the first task on VMk .

Also, such as TEC, the measurement of TTC variable in

hybrid cloud environment has different values depending on

which type of underlying public/private virtual machines are

applied. Only in the case of communication is inside or starts

from public VMs (VM
β

l |β ∈ public VM), the transfer mon-

etary cost can be ignored. Equation (21) demonstrates how

to calculate the TTC variable.

TTC �
∑

VMk ∈ private VMs, VM
l

∈ public VMs

VMk �� VMl

∑

e
(

ti , t j

)

ti ∈ VMk .List

t j ∈ VMl .List

TC(VMk , VMl ).

(21)

Note that, the proposed pricing model is a general model

in which it can be utilized for both private cloud owners

and individuals without any infrastructure, but both are on a

tight budget intend to utilize the public cloud. For the sake

of simplicity, in the simulation, only public cloud adoption

is taken into consideration. To this end, the part associated

with a private cloud is overlooked from the pricing model,

although it does not have any side effect on the proposed

model.

An illustrative example

To present the effectiveness of the proposed model, a

sample DAG depicted in Fig. 4 is considered. Then,

the results relevant to executions of different approaches

are reported. This sample graph consists of ten tasks

from t1 to t10. The data transfer time between the

tasks is shown by the number above each arc. For

executing the tasks in this workflow, a set V Ms �

{VM1, VM2, VM3} of three heterogeneous VMs is consid-

ered in this model. The values of functions ET (ti ), AST
(

t
γ

i

)

, AFT
(

t
γ

i

)

, AUV
(

t
γ

i

)

, Ranku(ti ), and Rankd(ti ) for

each task ti are given in Table 3. Note that, the lease

time interval and boot-up time of the V Ms are taken to

be zero in this illustrative example. Table 3 also illustrates
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the task ti ‘s execution time and monetary cost on each

VM j .

For encoding the candidate solution, it has two parts;

namely, the first part is the task list and the second part is the

number of corresponding duplicated tasks. Figure 5 depicts

the valid chromosome relevant to a DAG drawn in Fig. 4. In

this Figure, tasks t1 and t4 were duplicated two times. Note

that Cmax notation is used for workflow’s maximum comple-

tion time or makespan.

Figure 6 illustrates a comparison between the novel

BOSA-TDA algorithm versus several proposed algorithms

in the literature.

As Fig. 6 demonstrates BOSA-TDA (depicted in Fig. 6e)

outperforms others in terms of makespan. After the BOSA-

TDA, NSGAII (Fig. 6a), Single objective GA (SOGA)

(Fig. 6d), HEFT-TD (Fig. 6b), and Lookahead HEFT-TD

(Fig. 6c) have the next ranking order in term of makespan.

Note that, SOGA only intends to minimize makespan metric

in which it neglects to take cost reduction improvement; then,

based on its solution, the cost of utilized VMs is calculated

and reported. Usually, it has a good result in the first objective

function. In this regards, Fig. 7 depicts the effectiveness of

BOSA-TDA in comparison with other approaches in terms

of monetary cost, SLR, speedup, and efficiency which are

evaluation metrics.

Regarding Fig. 7, it can be concluded that BOSA-TDA

outperforms other approaches in terms of evaluation metrics.

Problem statement

The problem, in this paper, is to map a set of tasks of a

given workload on a set of VM instances in such a way

that total monetary cost (ToC) and makespan of the work-

flow scheduling are simultaneously minimized while some

constraints are preserved. This problem is formulated to a bi-

objective optimization problem with service cost and service

time minimization viewpoints; this formulation is drawn in

Eqs. (22–26). Note that the first and the second objectives

have been elaborated in Eq. (16) and Eq. (19) respectively.

minimize F
(

−−−−→
solution

)

�
[

fMakespan

(

−−−−→
solution

)

, fToC

(

−−−−→
solution

)]

, (22)

fMakespan

(−−−−→
solution

)

: min
(

{max∀ti ∈T (AFT(ti ))}
)

, (23)

fToC

(−−−−→
solution

)

: min
(

TEC
(−−−−→

solution
)

+ TTC
(−−−−→

solution
))

,

(24)

s.t : T oC ≤ Budget, (25)

makespan ≤ Deadline. (26)

In this formal presentation, two constraints (25, 26) can

be adjusted by users depending on their monetary budget

and time sensitivity. Since the objectives in a bi-objective

optimization problem usually conflict with each other, the

Pareto dominance concept is commonly used to compare

generated solutions [87].

Proposed bi-objective optimization based
on simulated annealing task duplication
scheduling algorithm (BOSA-TDA)

The problem statement in the previous section reveals some

important points. Namely, the issue we face is an NP-Hard

problem with discrete search space. In addition, it is a multi-

objective optimization problem the reason why it needs

profound exploring search space to find abundant Pareto

solutions. To have abundant solutions, the SA suffers to pro-

vide a handful of candidate solutions since the canonical

SA is a point-wise algorithm. So, a new population-based

BOSA-TDA algorithm is devised that takes benefit of HEFT

approaches, i.e., upward, downward, and level rankings, and

also duplicated list of tasks in their initial population. Algo-

rithm 1 illustrates the novel proposed BOSA-TDA.
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This pseudo-code in Algorithm 1 is relevant to the main

algorithm; it receives a DAG and underlying hybrid platform

specifications; then, it returns a set of non-dominated solu-

tions as PS. Since diverse solutions are preferable against

dense solutions in multi-objective problems, before the main

algorithm returns the final non-dominated solutions which

were gained from the first front-ranking, it calls the Crowd-

ingDistance procedure to find diverse solutions such as in

[81] . Similar to other population-based algorithms, the pro-

posed algorithm starts with random initial individuals. Note

that each individual in the population is a record of three

fields. Namely, the fields Chrom, Obj1, and Obj2 which are

used for solution encoding, the first and the second objec-

tives respectively. In this line, the first three individuals of

the population are created according to upward, downward,

and level ranking approaches, for the rest of the population

the CreateRandomSolution algorithm is called to produce

other individuals, which is depicted in Algorithm 2. After

the individuals are prepared, the objective functions can be

calculated via Eq. (16) and Eq. (19) respectively. Then, it

plummets into the main loop of Algorithm 1 through lines

(17–56). This repeats MaxIteration times which is set 50

times in this paper. In each iteration, for all individuals of the

population, several instructions are run. For each individual

as a candidate, the SA is run to explore the neighborhood of

each solution. To do so, a neighborhood operation is defined

which calls randomly one of the four algorithms: Algorithm 3

through Algorithm 6; by this, search space will be efficiently

permutated. If a new solution is better than the current one,

it is accepted. In the other words, if the new solution domi-

nates the previous one it is substituted in line#43, otherwise

the worse solution is probabilistically accepted in line #46.

The SA utilizes the temperature concept, temp, to take over

the algorithm. This is set the temp to the big value at the

outset and it gradually decreases it to reach freeze value.

The exponential function exp(−�newPop/temp) is used

to calculate the probability of worse solution acceptance;

the temperature temp value is near to freeze, the chance of

acceptance is near to 0. The parameter �newPop is used

to have the effectiveness of normalized objective functions

in the decision. The coefficient α is applied to indicate the

importance of objective functions. For now, this article takes

0.5 as the same importance for each of both. After that, the

small cooling stage happens to reach in stable point. Since the

range of two objective functions is different, the individuals’

objective functions are normalized based on the minimum

and maximum of both objective function values of the whole

population in each round.

Initial population

The proposed BOSA-TDA similar to other meta-heuristic

computations starts with the initial population. As the main

algorithm depicts, the first three individuals of the popu-

lation are placed by upward, downward, and level ranking

algorithms which are HEFT-based approaches. For the rest

individuals, Algorithm 2 is called which has random treat-

ment. It guarantees the casual traversing of search space. For

this reason, Algorithm 2 is called to create populations with

more plenitude solutions. To do so, it generates new chromo-

somes in two steps. The first step is to create a random order

of tasks for the first part of chromosome <T askList > and

the second is to create a random number of duplications in

< DuplicationList > for each task tr . The initial value of

< T askList > is set to null. In this pseudo-code, the list

of tasks that have no predecessor, namely Pred(ti ) � ∅;

or input nodes are put in set {AvailSet}. The variable list

{AvailSet} is a set of tasks that can be selected at any time

for inserting to the list< T askList >. In the CreateRandom-

Solution algorithm in lines (4–14), while loop is dedicated

to continuing until the set {AvailSet} has any member of

predecessors. The variable Visited is an array that holds the

visited task number at any time. In this regard, in line 5, a

random task tr is selected from the set {AvailSet}. If all pre-

decessors of tr are visited before then tr is removed from the

set {AvailSet}. Then, the values Succ(tr ) are added to the

set {AvailSet}. Afterward, the selected task tr is added to

< T askList > otherwise the task tr is removed from the

set {Avail List} because tr in the forthcoming rounds will

be added.

After adding all tasks of set T to the list < T askList >

separately, it is turned to the second step which is placed

in lines (15–19). In this section, there should be a random

number assigned to the task that represents the number of

duplicates for each task. However, the values assigned to the

task list must have at least one and a maximum value of

Max D because the value more than this number will only

cause additional duplication and burdens redundant mone-

tary costs without any performance improvement.
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Simulated annealing process

As the main body of the algorithm calls an SA-like pro-

cedure, it needs some operators to permute discrete search

space efficiently. For this, four different neighbors of cur-

rent state algorithms are applied; each of which is randomly

called in every round. As a candidate solution has chromo-

some encoding which has two parts task list and duplication

list, our new operators target both parts. Note that, both

task lists and duplication lists are incorporated in pro-

posed meta-heuristic operations. The name of four neighbor

algorithms are CrossoverTask, CrossoverDuplication, Muta-

tionTask, and MutationDuplication Algorithms.

CrossoverTask algorithm

The CrossoverTask procedure receives two chromosomes

from the Population in the form of < T askList > as input

and crossover them to generate a new chromosome. The first

one is Pop[i] and the second one is a random Pop[rand]; then,

it returns a better child. For doing this, x1 and x2 are consid-

ered as inputs and Y 1 and Y 2 are new children. Firstly, the

algorithm generates a random number R and acts as a single

point crossover of the genetic task scheduling algorithm such

as in [8], i.e., it copies x1[1..R] to corresponding elements

of Y 1 and copies x2[1..R] to Y 2. Then, all tasks in x2 that

do not exist in Y 1 will be inserted to Y 1 in the same order.

Also, all tasks in x1 that do not exist in Y 2 will be inserted to

Y 2 in the same order; this procedure guarantees dependency

constraints. Then, it returns dominated child. Algorithm 3 is

presented to show this type of crossover. Also, Fig. 8 illus-

trates its functionality.
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CrossoverDuplication algorithm

The CrossoverDuplication procedure receives two chro-

mosomes from the population in the form of <

DuplicationList > as input and crossover them to generate

a new chromosome. The first one is Pop[i] and the second

one is a random Pop[random]; then, it returns a better child.

For doing this, firstly it generates a random number R; then, it

puts values [ch D1[1..R], ch D2[R + 1..nT ]] in Y 1, and also

it puts values [ch D2[1..R], ch D1[R + 1..nT ]] in Y 2. Algo-

rithm 4 depicts the CrossoverDuplication procedure. Also,

Fig. 9 illustrates its functionality.
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Fig. 8 Example of crossover task procedure

MutationTask procedure

This procedure receives a chromosome chT from <

T askList > as input and mutates it to generate a new

chromosome to < T askList >. For doing so, this firstly

generates random number i ; then, it checks all elements

after place chT [i] until it reaches the end of the list or

reach a member t j that is the successor of chT [i]. Then,

in line #10 of Algorithm 5, it selects a random number h

between chT [i + 1.. j − 1], if all predecessor of chT [h] is

in chT [1..i − 1] (call it HeadT asks), it swaps chT [h] and

chT [i] values. Algorithm 5 depicts the MutationTask proce-

dure. Also, Fig. 10 illustrates its functionality.
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MutatationDuplication procedure

Such as all evolutionary algorithms the operation of muta-

tion may help to avoid getting stuck in local optimal; this

is the reason to customize mutation operation in both task

and duplication lists. By getting a chromosome, the value

of its < DuplicationList > part is mutated. This func-

tion randomly mutates one or more members of the list

< DuplicateList >. Also, the new values do not violate

the minimum and maximum conditions. Algorithm 6 depicts

the MutationDuplication procedure. In addition to, Fig. 11

illustrates its functionality.

Simulation and evaluation

This section is dedicated to the simulation and evaluation of

the novel BOSA-TDA. To do so, miscellaneous scenarios are

conducted to reach robust results. As such, different scenar-

ios and datasets are generated. Forthcoming subsections are

considered for scheduling metrics; scenarios; and datasets;

experiments; and data analysis for this reason. Each scenario

has been independently executed 20 times each of which sets

MaxIteration � 50 in its main loop; then, the average of exe-

cution results was reported.

Schedulingmetrics

To have better evaluation and comparisons, several metrics

are applied which are being pervasively used in literature.

These metrics are enlisted in this section.

Communication to computation ratio (CCR)

The unpleasant feature of network delay is considered in this

model whenever there needs to be communication between

virtual machines. Unfortunately, network delay has a dras-

tic impact on execution time; this is the reason the scheduler

must be aware of the workload nature. The edges of the DAG

representing the dependencies can be weighted to indicate the

data transfer requirements. In this regard, the communication

to computation ratio (CCR) of a graph is used for know-

ing how to extend the workload communication-intensive

or computation-intensive is and to define how long the data

transfer on the network will take. This CCR parameter is

calculated via Eq. (27). It is the ratio of the average com-

munication cost to the average computation cost. If a DAG’s

CCR value is very low, it can be considered as a computation-

intensive application [1, 19].

CCR �

1
|E |

∑

∀e(ti .t j)∈{E} e
(

ti .t j

)

1
nT

∑

∀ti ∈{T } ET (ti )
(27)

Schedule length ratio (SLR)

Since each graph has its feature to be utilized in the schedul-

ing process, the makespan gained as a result of each algorithm

is no longer meaningful. To obviate this problem, consider-

ing a lower bound for execution time is a beneficial approach

to give a bright clue. To avoid confusion, it needs to be nor-

malized. To do so, it leverages the critical path (CP) concept

to make a new parameter schedule length ratio (SLR). The

graph’s CP is the longest path from entry node to exit node

in which it cannot be parallelizable owing to dependency. If

the scheduler executes nodes relevant to CP on the fastest

available processors/VMs, the makespan parameter cannot

be less than CP’s length. Then, the new parameter SLR which

is a normalized metric regardless of the studied graph can

be measured via Eq. (28). This metric is defined relative to

the critical path rather than the total execution time. This is

because the shortest execution time of a job on a highly par-

allel platform is determined by the length of its critical path.

Note that, SLR value of each schedule is greater than one. If
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Fig. 9 Example of crossover duplication procedure

Fig. 10 Example of mutatetask procedure

Fig. 11 Example of mutate duplication procedure

this value is close to one, then it can be said that the scheduler

is working very well.

SLR �
Makespan

∑

ti ∈Critical Path min(ET(ti , VMk))∀VMk ∈ {VMs}

(28)

Speed up

This metric indicates how many times the algorithm runs

faster in comparison to on a single processor or a VM,

preferably the faster processor [1]. This metric is attained

via Eq. (29).

(29)

Speed up �
serial execution on the fastestV M

Makespan

�
min∀VMk∈{V Ms}

(

∑

∀ti ∈{T }ET (ti , VMk)
)

Makespan

Efficiency

The complementary metric is efficiency because the speed

up metric does not determine you gained this level of speed

up with spending how many processors [1]. This metric is

calculated via Eq. (30).

Efficiency �
speed up

numberof usedV M
∗ 100%. (30)

Scenarios and datasets

To assess the performance of the proposed BOSA-TDA, the

famous workloads such as synthetic data from five real-world

scientific workflow applications are used [47], such as Mon-

tage (generation of image mosaics of the sky), Epigenomics

(mapping of the epigenetic state of human cells), CyberShake

(generating seismic hazard maps for earthquake detection),

LIGO (detection of gravitational waves in the universe), and

SIPHT (used in biology) [5]. In this line, the evaluation is

based on the comparison between the proposed algorithm

against other state-of-the-arts in terms of prominent evalua-

tion metrics of scheduling domain such as makespan, cost,

SLR, speedup, and efficiency. Moreover, to demonstrate the
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Fig. 12 Comparison of all comparative algorithms in term of makespan value in all scenarios for different workloads

Fig. 13 Comparison of all comparative algorithms in term of monetary cost value in all scenarios for different workloads

effectiveness of novel BOSA-TDA on a wide workload spec-

trum with a different attribute from computation-intensive

to communication-intensive graphs, a new extension of such

graphs is produced. Since different VMs’ configurations have

variable performance and pricing schemes, different correla-

tions between variables VM speed and VM price are utilized.

The VMs’ processing power is considered such as Amazon

EC2 instances A, T, M, etc. [93]. In addition to, the pricing

scheme is considered hourly range from $0.011/h to $0.27/h

($94/year to $2367/year) [92]. Since some clouds neglect

in/out data transfer charges and for the sake of simplicity, the

data transfer cost and model constraints are omitted. In this

dataset, it is taken a positive correlation coefficient near to 1

value for ES and EC vectors. This indicates that once execu-

tion speed increases, the execution cost also increases. Also,

the datasets are conducted in such a way that having diverse

workloads in terms of CCR; in this way, the robust evalua-

tion can be made. To do so, four different values for CCR

which are 0.1, 0.5, 1.0, and 5.0 considered respectively for

computation-intensive, rather computation-intensive, mod-

erate, and communication-intensive graphs. As the result of

extensive simulations for communication-intensive graphs

with parameter CCR equal and more than 5 proves that there

is not any meaningful discrepancy between the performance

of comparative algorithms, the last condition is ignored. Note

that, in case of last condition, all algorithms behave such as a
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Fig. 14 SLR comparison of all comparative algorithms in all scenarios

Fig. 15 The speedup comparison of all comparative algorithms in all scenarios

serial algorithm [1]. Overall, 15 scenarios have been consid-

ered to be examined for the efficiency of the current proposed

work. Namely, there are five famous workloads each of which

with three different CCR parameters.

Experiments and data analysis

Experiments

In this section, experimental results that are drawn from

extensive simulations of proposed BOSA-TDA in compar-

ison with state-of-the-arts NSGAII [81], HEFT-TD [30],

Lookahead [30], and SOGA [85] are reported. Note that,

the average result of 20 independent executions is reported

in terms of makespan, total monetary costs, SLR, speed up,

and efficiency metrics. Figures 12 through 16 are dedicated to

these contrasts. As such, Figs. 12 and 13 respectively depict

algorithms comparison in terms of makespan and monetary

costs separately relevant to computation-intensive (CCR �

0.1), rather computation-intensive (CCR � 0.5), and mod-

erate (CCR � 1.0) of understudy workloads. Figure 12 is

condensed to show the comprehensive behavior of compar-

ative algorithms in term of makespan value of all scenarios.
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Fig. 16 The efficiency comparison of all comparative algorithms in all scenarios

Table 4 Then comparison of BOSA-TDA versus state-of-the-arts in term of RPD of makespan

Dataset CCR Makespan (s) Relative percent deviation (RPD)

NSGA|| HEFT_TD Lookahead SOGA BOSA-TDA NSGA|| (%) HEFT_TD
(%)

Lookahead
(%)

SOGA (%)

Montage 0.1 97 104 104 103 97 0 7 7 6

Montage 0.5 29 36 38 29 29 0 19 24 0

Montage 1.0 39 44 44 47 32 18 27 27 32

Epigenetics 0.1 64 63 63 67 63 2 0 0 6

Epigenetics 0.5 17 20 20 24 17 0 15 15 29

Epigenetics 1.0 23 28 28 21 19 17 32 32 10

SIPHT 0.1 114 111 119 117 105 8 5 12 10

SIPHT 0.5 41 47 47 46 40 2 15 15 13

SIPHT 1.0 69 69 81 71 64 7 7 21 10

LIGO 0.1 161 177 180 169 161 0 9 11 5

LIGO 0.5 67 81 78 83 59 12 27 24 29

LIGO 1.0 83 86 86 91 70 16 19 19 23

CyberShake 0.1 56 57 57 57 56 0 2 2 2

CyberShake 0.5 19 27 27 20 18 5 33 33 10

CyberShake 1.0 28 31 31 27 27 4 13 13 0

Average 6 15 17 12

In this regard, the Fig. 13 is also condensed to illustrate the

comprehensive behavior of comparative algorithms in term

of monetary cost value of all scenarios.

For computation-intensive workload case studies which

have CCR � 0.1, Fig. 12 demonstrates that BOSA-TDA

outperforms against other algorithms in term of makespan

metric except for in workloads LIGO and Montage that the

BOSA-TDA has the same behavior with NSGAII; also, in

Epigenomics dataset in which it has the same behavior with

HEFT-TD and Lookahead algorithms; in other cases, the

BOSA-TDA has significant dominance against counterparts.

For monetary cost analysis, Fig. 13 proves the dominance of

BOSA-TDA against other state-of-the-arts in all cases.

In addition to, for rather computation-intensive graphs

which have CCR � 0.5, Fig. 12 proves that BOSA-TDA beats

other algorithms in terms of makespan except for in Montage

and Epigenomics workloads so that the BOSA-TDA has the

same behavior with NSGA II. Also, the BOSA-TDA does
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Table 5 The comparison of BOSA-TDA versus state-of-the-arts in term of RPD of monetary cost

Dataset CCR Monetary cost (Cent) Relative percent deviation (RPD)

NSGA|| HEFT_TD Lookahead SOGA BOSA-TDA NSGA|| (%) HEFT_TD
(%)

Lookahead
(%)

SOGA (%)

Montage 0.1 77 52 52 44 37 52 29 29 15

Montage 0.5 19 13 12 13 13 32 3 − 5 3

Montage 1.0 22 18 18 27 16 30 16 16 43

Epigenetics 0.1 41 47 47 35 30 26 37 37 15

Epigenetics 0.5 11 10 10 10 8 27 22 22 16

Epigenetics 1.0 8 11 11 13 12 − 46 − 8 − 7 8

SIPHT 0.1 79 81 87 95 75 5 7 13 21

SIPHT 0.5 19 24 15 17 17 10 26 − 14 − 2

SIPHT 1.0 19 21 15 18 19 − 1 8 − 26 − 4

LIGO 0.1 114 118 132 115 76 33 36 42 34

LIGO 0.5 34 35 36 52 32 8 11 11 39

LIGO 1.0 40 37 37 40 30 26 20 20 27

CyberShake 0.1 205 198 198 209 191 7 4 4 9

CyberShake 0.5 40 34 34 31 29 27 14 14 7

CyberShake 1.0 39 39 39 39 36 8 7 7 8

Average 16 15 11 16

Table 6 The comparison of BOSA-TDA versus state-of-the-arts in term of RPD of SLR

Dataset CCR SLR Relative percent deviation (RPD)

NSGA|| HEFT_TD Lookahead SOGA BOSA-TDA NSGA|| (%) HEFT_TD
(%)

Lookahead
(%)

SOGA (%)

Montage 0.1 1.49 1.60 1.60 1.58 1.49 0 7 7 6

Montage 0.5 2.08 2.77 2.92 2.08 2.08 0 25 29 0

Montage 1.0 3.00 3.38 3.38 3.61 2.46 18 27 27 32

Epigenetics 0.1 1.82 1.80 1.80 1.91 1.80 1 0 0 6

Epigenetics 0.5 2.43 2.86 2.86 3.42 2.43 0 15 15 29

Epigenetics 1.0 4.00 3.50 3.50 2.62 2.37 41 32 32 10

SIPHT 0.1 2.07 2.01 2.16 2.12 1.90 8 5 12 10

SIPHT 0.5 3.72 4.27 4.27 4.18 3.63 2 15 15 13

SIPHT 1.0 6.27 6.27 7.36 6.45 5.81 7 7 21 10

LIGO 0.1 2.14 2.36 2.40 2.25 2.14 0 9 11 5

LIGO 0.5 4.47 5.40 5.20 5.53 3.93 12 27 24 29

LIGO 1.0 5.53 5.73 5.73 6.06 4.66 16 19 19 23

CyberShake 0.1 1.86 1.90 1.90 1.90 1.86 0 2 2 2

CyberShake 0.5 3.16 4.50 4.50 3.33 3.00 5 33 33 10

CyberShake 1.0 4.66 5.16 5.16 4.50 4.50 3 13 13 0

Average 8 16 17 12

not have any dominance against SOGA in term of makespan

improvement in only Montage workload. In term of mone-

tary cost, as Fig. 13 shows, the BOSA-TDA has improvement

in cost reduction against others in the majority workloads

except for in Montage and SIPHT workloads where the

Lookahead algorithm has dominance against BOSA-TDA.

In the aforementioned workloads, only SOGA and BOSA-

TDA have the same results.

In the moderate workloads where CCR � 1.0, Fig. 12

demonstrates BOSA-TDA beats other approaches in all cir-

cumstances in term of makespan improvement except for

in contrast with SOGA where it has not any dominance

in the Cybershake graph. Also, the BOSA-TDA has supe-

riority against other algorithms in term of monetary cost

improvement in LIGO and Montage workloads, but it fails

to outperform versus HEFT-TD, Lookahead, and NSGAII
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Table 7 The comparison of BOSA-TDA versus state-of-the-arts in term of RPD of speed up

Dataset CCR Speedup Relative percent deviation (RPD)

NSGA|| HEFT_TD Lookahead SOGA BOSA-TDA NSGA|| (%) HEFT_TD
(%)

Lookahead
(%)

SOGA (%)

Montage 0.1 1.95 1.82 1.82 1.84 1.95 0 7 7 6

Montage 0.5 1.31 1.06 1.00 1.31 1.31 0 24 31 0

Montage 1.0 0.97 0.86 0.86 0.80 1.18 22 37 37 48

Epigenetics 0.1 2.65 2.69 2.69 2.53 2.69 2 0 0 6

Epigenetics 0.5 2.00 1.70 1.70 1.41 2.00 0 18 18 42

Epigenetics 1.0 1.06 1.21 1.21 1.61 1.78 68 47 47 11

SIPHT 0.1 2.54 2.61 2.43 2.47 2.76 9 6 14 12

SIPHT 0.5 1.41 1.23 1.23 1.26 1.45 3 18 18 15

SIPHT 1.0 0.84 0.84 0.71 0.81 0.90 7 7 27 11

LIGO 0.1 2.20 2.00 1.97 2.10 2.20 0 10 12 5

LIGO 0.5 1.06 0.88 0.91 0.85 1.20 14 37 32 42

LIGO 1.0 0.85 0.82 0.82 0.78 1.01 19 23 23 29

CyberShake 0.1 2.67 2.63 2.63 2.63 2.67 0 2 2 2

CyberShake 0.5 1.58 1.11 1.11 1.50 1.67 6 50 50 11

CyberShake 1.0 1.07 0.96 0.96 1.11 1.11 4 16 16 0

Average 10 20 22 16

Table 8 The comparison of BOSA-TDA versus state-of-the-arts in term of RPD of efficiency

Dataset CCR Efficiency Relative percent deviation (RPD)

NSGA|| HEFT_TD Lookahead SOGA BOSA-TDA NSGA|| (%) HEFT_TD
(%)

Lookahead
(%)

SOGA (%)

Montage 0.1 39.17 36.53 36.53 36.89 39.17 0 7 7 6

Montage 0.5 26.20 21.11 20.00 26.20 26.20 0 24 31 0

Montage 1.0 19.48 17.27 17.27 26.95 29.68 52 72 72 10

Epigenetics 0.1 66.40 67.46 67.46 63.43 67.46 2 0 0 6

Epigenetics 0.5 50.00 42.50 42.50 35.41 50.00 0 18 18 41

Epigenetics 1.0 35.41 30.35 30.35 40.47 44.73 26 47 47 11

SIPHT 0.1 63.59 65.31 60.92 61.96 69.04 9 6 13 11

SIPHT 0.5 47.15 41.13 41.13 42.02 48.33 3 18 18 15

SIPHT 1.0 21.01 21.01 23.86 27.23 30.20 44 44 27 11

LIGO 0.1 55.12 50.14 49.00 52.51 55.12 0 10 12 5

LIGO 0.5 26.49 21.91 22.75 21.38 30.08 14 37 32 41

LIGO 1.0 21.38 20.63 20.63 19.50 33.80 58 64 64 73

CyberShake 0.1 53.57 52.63 52.63 52.63 53.57 0 2 2 2

CyberShake 0.5 31.57 37.03 37.03 30.00 41.66 32 13 13 39

CyberShake 1.0 53.57 48.38 48.38 27.77 27.77 − 48 − 43 − 43 0

Average 13 21 21 18

algorithms in Epigenomics workload and against SOGA and

Lookahead algorithms in SIPHT workload. In addition to,

the BOSA-TDA and SOGA have the same result in the

CyberShake graph. Totally, in CCR � 1.0, the BOSA-TDA

has superiority in 24 cases out of 25 in term of makespan

improvement and 19 cases out of 25 in terms of cost reduction

improvement. Figure 14 is dedicated for analysis of compar-

ative algorithms in term of SLR value.

However, in term of SLR, the BOSA-TDA beats other

approaches in the majority of scenarios, but it is not dom-

inated by the rest. In Fig. 14, for computation-intensive

graphs, the BOSA-TDA has the same result in a few

cases where in the most cases it has dominance against

other approaches. In rather computation-intensive graphs, the

BOSA-TDA has the same output with NSGAII and SOGA
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in two cases; in other cases it beats others. In the moderate

graphs, the BOSA-TDA beats others in all cases.

Accordingly, Fig. 15 is dedicated for comparison of com-

parative algorithms in term of speedup; it shows that the

BOSA-TDA has superiority versus other approaches in term

of speedup metric in all of the scenarios except for in some

limited cases where the BOSA-TDA has the same result as

the NSGAII indicates.

One of the most important metrics which releases us from

the misleading conclusion is the efficiency metric. To this

end, the Fig. 16 is dedicated for analyzing the comparison of

comparative algorithms in term of efficiency.

Evaluation associated with the execution of different sim-

ulations points out that the BOSA-TDA dominates other

algorithms in terms of efficiency except for in moderate Cybe-

shake graphs (with CCR � 1.0) in which three algorithms

NSGAII, HEFT-TD, and Lookahead have dominance against

BOSA-TDA. In the other words, the BOSA-TDA dominates

in 22 cases out of 25 cases versus other approaches. As Fig. 16

depicts, in CCR � 1.0 scenarios, the NSGA II competes

with the BOSA-TDA in terms of evaluation metrics only in

some datasets, but in other cases, the BOSA-TDA outper-

forms other state-of-the-arts significantly.

Data analysis

This section presents data analysis to a better understand-

ing of the proposed algorithm’s performance in contrast with

other approaches in terms of prominent metrics derived from

literature. In addition, a relative percentage deviation (RPD)

metric is applied to point out the amount of enhancement

gained via proposed BOSA-TDA approach [1]. To do so,

Tables 4, 5, and 6 are dedicated to this reason. Table 4

illustrates a makespan comparison of different comparative

algorithms. To have a ranking list in terms of makespan met-

ric from the best to the worst algorithm, NSGAII, SOGA,

HEFT-TD, and Lookahead algorithms are placed in the

ranking list, but after the BOSA-TDA. The negative cell

value means deterioration whereas the zero value means no

improvement was gained.

Table 5 illustrates the cost reduction comparison of dif-

ferent algorithms. For cost reduction metrics, Lookahead,

HEFT-TD, NSGAII, and SOGA algorithms are placed in the

ranking list from the best to the worst, but after the BOSA-

TDA which is in the first place.

In this regard, Table 6 illustrates the SLR metric compar-

ison of different comparative algorithms. For SLR metric,

NSGAII, SOGA, HEFT-TD, and Lookahead algorithms are

placed in the ranking list from the best to the worst, but after

the proposed BOSA-TDA.

Table 7 illustrates the Speedup metric comparison of dif-

ferent comparative algorithms. For Speedup metric, again

NSGAII, SOGA, HEFT-TD, and Lookahead algorithms are

placed in the ranking list from the best to the worst, but after

BOSA-TDA.

Table 8 illustrates the Efficiency metric comparison of dif-

ferent comparative algorithms. Also, for the efficiency metric,

NSGAII, SOGA, HEFT-TD, and Lookahead algorithms are

placed in the ranking list from the best to the worst, but after

BOSA-TDA.

Conclusion and future work

The majority of existing workload scheduling algorithms in

the cloud environment only intend to minimize makespan

metric whereas they neglect to consider user service bill.

Since cloud providers provision different processing power

in terms of VM configurations, it burdens variable charges

for subscribers. This is the reason that this article formu-

lated workload scheduling in hybrid cloud architecture as a

bi-objective optimization problem. To deal with the combi-

natorial problem, a novel hybrid population-based simulated

annealing algorithm by applying the duplication technique

has been presented which is named BOSA-TDA. To evaluate

the performance of BOSA-TDA in terms of derived promi-

nent metrics from literature, extensive scenarios on set of

well-known workloads have been conducted. The reported

results from the simulation of extensive scenarios proved the

superiority of the proposed algorithm against other state-of-

the-art approaches in terms of metrics in this ambit. For future

work, we intend to model cloud reliability for mission-critical

workloads; then, the scheduling problems can be formulated

as a new bi-objective optimization algorithm with total exe-

cution time and reliability perspectives.
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