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a b s t r a c t

A set of Hamiltonians that are not self-adjoint but have the spec-
trum of the harmonic oscillator is studied. The eigenvectors of
these operators and those of their Hermitian conjugates form a
bi-orthogonal system that provides a mathematical procedure to
satisfy the superposition principle. In this form the non-Hermitian
oscillators can be studied inmuch the sameway as in theHermitian
approaches. Two different nonlinear algebras generated by prop-
erly constructed ladder operators are found and the corresponding
generalized coherent states are obtained. The non-Hermitian os-
cillators can be steered to the conventional one by the appropriate
selection of parameters. In such limit, the generators of the nonlin-
ear algebras converge to generalized ladder operators that would
represent either intensity-dependent interactions or multi-photon
processes if the oscillator is associated with single mode photon
fields in nonlinear media.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In ordinary quantum mechanics the dynamical variables O that are susceptible to measurement
are called observables. These are usually represented by self-adjoint operators O = O† whose
eigenvectors form a complete set (i.e., the operators O are Hermitian). The latter means that the
superposition principle holds. In turn, the reason to restrict O to be self-adjoint is merely practical
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since it is the simplest form to associate its eigenvalues with the result of a measurement ofO, which
‘‘must always give a real number as result’’ [1]. However, the reality of the results of anymeasurement
does not imply that the related observables must be represented by self-adjoint operators. Actually,
there is a wide class of operators that have real spectrum although they are not self-adjoint. Notable
examples are thePT -symmetricHamiltonians [2,3], the pseudo-HermitianHamiltonians [4,5] and the
non-Hermitian Hamiltonians generated by supersymmetry, see e.g. [6–13]. Such operators could also
represent observables. In practice, they are useful for modeling systems whose phenomenology can-
not be explained in terms of the conventional Hermitian approach [14,15]. Some applications include
the propagation of light in media with complex-valued refractive index [16], transition probabilities
in multi-photon processes [17] and the refinement of diverse techniques of measurement [18].

Recently, we have introduced a class of one-dimensional Hamiltonians Hλ whose eigenvalues are
all real although the related potentials Vλ are complex-valued functions [13]. That is, the operators
Hλ are not self-adjoint so that their eigenvectors are not mutually orthogonal. This implies that the
Sturm–Liouville theory [19,20], which is useful to analyze the completeness of the eigenvectors of
any self-adjoint operator, does not apply in the study of Hλ. Thus, it is difficult to determine whether
any Hλ satisfies the conditions for representing an observable or not. We may start by assuming that
the measurement of a given dynamical variable will give as result any of the eigenvalues of Hλ. The
main problem is to find a way to satisfy the superposition principle since the eigenvectors of Hλ
are not necessarily complete. Nevertheless, we have shown [21] that the real and imaginary parts
of the eigenfunctions of Hλ (i.e., the eigenvectors of Hλ in position-representation) satisfy interlacing
theorems that are very similar to those of the Hermitian approaches. The latter is a clear evidence that
the eigenfunctions of Hλ might be complete and is consistent with the results reported in [22] for PT -
symmetric Hamiltonians. However, the reality of the spectrum of Hλ does not require the invariance
under PT transformations since Hλ is the result of applying the appropriate Darboux transformation
on a given Hermitian Hamiltonian H . The main point is that the related complex-valued potentials Vλ
satisfy a condition of zero total area (the imaginary part of Vλ is continuous in R and its integral over
all the real line is equal to zero), which includes the PT -symmetry as a particular case [21].

The process of adding quantum states to give new quantum states is connected with a math-
ematical procedure that is always permissible [1]. This demands indeterminacy in the results of
observations and was recognized as a breaking point from the classical ideas since the dawn of
quantum theory [23]. To ensure that such a fundamental principle is satisfied by the states associated
to Hλ, in this work we extend the orthonormal relation obeyed by the eigenvectors of H to an
orthonormal property which follows from the simultaneous consideration of the eigenvectors of Hλ
and those of H

†

λ . The approach provides a mathematical structure for working with Hλ and H
†

λ as if
they were two different faces of the same Hermitian Hamiltonian. Thus, the entire set of eigenvectors
of Hλ and H

†

λ form a bi-orthogonal system so that closure relations can be introduced to accomplish
the superposition principle. Moreover, the algebraic properties of the operators that act on the
eigenvectors of the non-Hermitian Hamiltonians are easily identified.

The physical model discussed in the present work is represented by a family of non-Hermitian
operators Hλ whose spectrum includes all the energies of the harmonic oscillator En, n ≥ 0, plus
an additional real eigenvalue ϵ < E0. Remarkably, the Hermitian oscillator-like systems reported
in e.g. [24,25], as well as the conventional oscillator, are recovered as particular cases from our
results. The non-Hermitian oscillators are constructed asDarboux transformations of the conventional
oscillator and admit two different kinds of ladder operators which give rise to two different families
of generalized coherent states. In this context we would like to emphasize that a coherent state
is essentially a superposition of the energy eigenvectors of the harmonic oscillator [26,27] (see
also [28]). For systems other than the oscillator, the so-called generalized coherent states are concrete
superpositions of the eigenvectors of a given observable [29,30]. Thus, to obtain superpositions with
properties like those of the coherent states, it is useful to have at hand a complete set of eigenvectors.
As the latter is not necessarily the case for non-Hermitian Hamiltonians, the construction of coherent
states is a big challenge for such a class of operators in general. However, as we are going to see,
the bi-orthogonal approach introduced in this work permits the derivation of such states in simple
form. More specifically, we are going to deal with generalized coherent states that are bi-orthogonal
superpositions of the energy eigenvectors of non-Hermitian oscillators. Within an approach that
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is very close to the one presented here, in [31,32] and [33] are reported generalized coherent
states for pseudo-boson systems and the λ-deformed non-Hermitian oscillators, respectively. Other
generalized coherent states have been obtained for PT -symmetric oscillators either bymodifying the
normalization of states [34] or by using the Gazeau–Klauder formalism [35].

On the other hand, the non-Hermitian oscillators studied in thiswork have the striking feature that
the state belonging to the ground energy determines a class of ladder operators that satisfy a quadratic
polynomial Heisenberg algebra. Indeed, such state is annihilated by both of the ladder operators. In turn,
the state of the first excited energy is also canceled by the annihilation operator. The above profile
leads to a variety of generalized coherent states that are eigenvectors of the annihilation operator
belonging to complex eigenvalues z, with the eigenvalue z = 0 twice degenerate. In addition, we find
another algebra that does not depend on the ground energy of the system and is a common property
of the non-Hermitian oscillators. This is called distorted Heisenberg algebra and is parameterized
by a non-negative number w ≥ 0. The generators are two additional ladder operators that also
annihilate the ground energy eigenstate while the state of the first excited energy is still canceled
by the annihilator. Thus, the space of states decomposes into the direct sum of subspaces where the
Heisenberg algebra holds. The eigenvalue z = 0 of the corresponding coherent states is also twice
degenerate.

Each one of the above described sets of coherent states is an over-complete basis in the bi-
orthogonal system of the non-Hermitian oscillators. They permit the construction of (i) a space
of analytic entire functions (the Fock–Bargmann representation [36,37]) for which the action of the
ladder operators is expressed in terms of the multiplication by the eigenvalue z and the derivatives
with respect to z, and (ii) the matrix representation of the density operator in diagonal form (the
Glauber–Sudarshan P-representation [38,39]). Such a representation has a noticeable property: unlike
the conventional oscillator, the eigenstate of the first excited energy belonging to the non-Hermitian
oscillators is P-represented by a delta distribution.

The paper is organized as follows. In Section 2 the non-Hermitian oscillator-like Hamiltonians Hλ
and H

†

λ are derived. It is shown that they are intertwined with the initial Hamiltonian H by a pair
of operators that also factorize H . The bi-orthogonal system formed by the eigenvectors of Hλ and
H

†

λ is constructed and the basic rules for operating with are introduced. In Section 3 we analyze the
transformations of vectors and operators that are associated with the intertwining relationships. The
Section 4 is devoted to the analysis of the algebras that are satisfied by the ladder operators of the non-
Hermitian oscillators. The corresponding generalized coherent states are derived in Section 5 and the
construction of the Fock–Bargmann spaces as well as the P-representation of operators is developed
in Section 6. We consider the special case of non-Hermitian oscillators with equidistant spectrum
in Section 7. Besides, we show that some results for Hermitian oscillator-like Hamiltonians already
reported in the literature can be recovered from ours as particular cases. Some applications involving
models of multi-photon processes are discussed. Finally, in Section 8 we give some concluding
remarks.

2. Oscillator-like Hamiltonians

Along this work the conventional expression for the dimensionless Hamiltonian of the harmonic
oscillator Hosc = 1

2

(

p̂2 + x̂2
)

will be replaced by its ‘mathematical’ form

H = p̂2 + x̂2. (1)

The latter because the factor 1/2 (which is commonly preferred in physics) produces unnecessary
complications to express in simple form the formulae we are going to deal with. Then, the traditional
expression of the energy spectrum n + 1

2
will be replaced by En = 2n + 1, with n = 0, 1, 2, . . . The

‘mathematical’ notation does not affect the relationships between the position x̂ and momentum p̂
operators, their commutation rule and uncertainty inequality are as usual [x̂, p̂] = iI, ∆x̂∆p̂ ≥ 1

2
,

where I stands for the identity operator1 . Notice however the modification (by a factor 2) in the

1 Hereafter the product between any complex-valued function f and the identity operator Iwill be abbreviated to just f .
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commutators [H, x̂] = −2ip̂ and [H, p̂] = 2ix̂. The Hamiltonian (1) can be factorized as H = â†â + 1,
where the operators â† and â satisfy the commutator relation [â, â†] = 2. Introducing the number

operator N̂ = 1
2
â†âwe also have H = 2N̂ + 1, with N̂|n⟩ = n|n⟩. As in the ordinary case, the position-

representation of the number eigenvectors |n⟩ is given by the Hermite polynomials. In contrast, the
action of the ladder operators on these vectors includes a factor

√
2. Namely, â|n⟩ =

√
2n|n − 1⟩

and â†|n⟩ =
√
2(n + 1)|n + 1⟩, with n ≥ 0. In position-representation, x̂ = x, p̂ = −i d

dx
, the

ladder operators and the Hamiltonian acquire the differential form â = d
dx

+ x, â† = − d
dx

+ x, and

H = − d2

dx2
+ x2.

2.1. Generalized factorization

The factorization of H is not restricted to the above algebraic expressions. In fact, we may look for
a new pair of operators A, B, and a real constant ϵ such that

H = AB + ϵ. (2)

The self-adjointness of H requires

H = B†A† + ϵ. (3)

One can show that A = B† is a sufficient but not a necessary condition to solve (2)–(3) in general [13].
For if we define the position-representation of the factorizing operators as

A = − d

dx
+ β(x), B = d

dx
+ β(x), (4)

with β(x) a complex-valued function, then the adjoint expressions are

A† = d

dx
+ β∗(x), B† = − d

dx
+ β∗(x), (5)

where the symbol ∗ represents complex-conjugation. Clearly A ̸= B† and A† ̸= Bwhenever Imβ(x) ̸=
0. After introducing (4) in (2) we obtain the Riccati equation

− β ′(x) + β2(x) = x2 − ϵ. (6)

If (5) is now substituted into (3) the result gives the complex-conjugate of (6), so that the self-
adjointness of H is automatically satisfied. The general form of β(x) can be written as [13]

β(x) = −α
′(x)

α(x)
+ i

λ

α2(x)
, λ ∈ R, (7)

where α(x) is the real-valued function

α(x) =
[

au2
1(x) + bu1(x)u2(x) + cu2

2(x)
]1/2

, (8)

with {a, b, c} a set of non-negative parameters such that 4ac − b2 = 4λ2, and

u1(x) = 1F1

(

1 − ϵ

4
,
1

2
; x2

)

e−x2/2, u2(x) = 1F1

(

3 − ϵ

4
,
3

2
; x2

)

xe−x2/2. (9)

The expression 1F1(a, c, z) stands for the confluent hypergeometric function [40].

2.1.1. Non-Hermitian Hamiltonians
Reversing the order of A and B in the product (2) we arrive at the operator

BA = − d2

dx2
+ β ′(x) + β2(x). (10)

The introduction of a function Vλ(x) such that

β ′(x) + β2(x) + ϵ = Vλ(x), (11)
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leads to the Schrödinger operator

Hλ = BA + ϵ = − d2

dx2
+ Vλ(x). (12)

The subtraction of (6) from (11) shows thatVλ(x) is aDarboux transformation of the oscillator potential

Vλ(x) = x2 + 2β ′(x). (13)

Hereafter, to avoid singularities in the real-valued functions

ReVλ(x) = 2ϵ − x2 + 2
α′(x)

α(x)
, ImVλ(x) = −4λ

α′(x)

α3(x)
, (14)

we shall use functions α(x) with no zeros in R.
The interlacing properties of the eigenfunctions ofHλ are not easily guessed for arbitrary complex-

valued potentials Vλ(x) [21]. However, the condition of zero total area
∫

R

ImVλ(x)dx = 2λ

α2(x)

⏐

⏐

⏐

⏐

R

= 0 (15)

implies that the related probability densities are such that (i) the number of their maxima increases
as the level of the energy (ii) the distribution of such maxima is quite similar to that of the Hermitian
problems, and (iii) the points of zero probability that are usual in the Hermitian problems are
substituted by local minima (see Conjecture 5.1 in [21]). Moreover, given λ ̸= 0, the simplest form
to satisfy (15) is by constructing α(x) such that |α(x)| → +∞ as |x| → +∞. This last produces
ImVλ(x)/ReVλ(x) → 0 as |x| → +∞. Then, it can be shown that there are no degenerate eigenvalues
of Hλ and that the corresponding eigenfunctions are normalizable on R (see, e.g. Sec. 5 of [41]).

The panel shown in Fig. 1 includes a series of complex-valued oscillator-like potentials Vλ(x) that
satisfy the condition of zero total area (15). Those in the upper row are PT -symmetric while the ones
in the lower row are non-invariant under the PT reflection. We have selected cases for which the gap
of the lowest two energies is different from the gap of any other pair of consecutive energies, so the
spectrum is not strictly equidistant. For the determination of the energy eigenvalues see Section 2.1.2;
the equidistant case will be discussed in detail in Section 7.

Clearly, for λ ̸= 0, the Schrödinger operator Hλ is non-Hermitian since it is formally different from
its adjoint

H
†

λ = A†B† + ϵ = − d2

dx2
+ V ∗

λ (x). (16)

As a consequence, the completeness of the eigenvectors of Hλ is not granted a priori because they are
not mutually orthogonal. The same can be said about the eigenvectors of H

†

λ . This is an usual difficulty
in the spectral problem of non-Hermitian Schrödinger operators and implies that the superposition
of eigenvectors is not able in the ordinary form. However, the Hamiltonians Hλ and H

†

λ belong to the
class of softly non-HermitianHamiltonians introduced in [41] as they certainly do not involve complex
coordinates in the definition of asymptotic boundary conditions. Thus, a bi-orthogonal resolution of
the identity is viable since there is nomore than one Jordan cell made of a normalizable eigenfunction
ofHλ and the corresponding one ofH

†

λ for any of the energy eigenvalues (see Section 3.1 for details and
Ref. [41]). That is, our non-Hermitianmodel is free of the puzzleswith self-orthogonal states described
in [42].

2.1.2. Solution to the eigenvalue problem
From (2) and (12) we obtain the intertwining relationship

HλB = BH, HA = AHλ, (17)

so that B|n⟩ is eigenvector of Hλ with eigenvalue En. In addition, the solution of A|ψϵ⟩ = 0 must be
considered since it also satisfies (Hλ − ϵ)|ψϵ⟩ = 0. Then, we may write

Hλ|ψn⟩ = E(λ)
n |ψn⟩, n ≥ 0, (18)
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(a) ϵ = 0.5. (b) ϵ = −3. (c) ϵ = −5.

(d) ϵ = 0.5. (e) ϵ = −3. (f) ϵ = −5.

Fig. 1. The real (solid-blue) and imaginary (dashed-red) parts of the complex-valued potential Vλ(x) defined in (13) for the

indicated ground energies ϵ < 1. In all the cases the horizontal dotted lines represent allowed energies, and the oscillator

potential (dotted-gray) is included as a reference. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

with

|ψn+1⟩ = θn+1B|n⟩, |ψ0⟩ = θ0|ψϵ⟩, E
(λ)
n+1 = En, E

(λ)
0 = ϵ. (19)

The θn in (19) stand for the normalization constants, which are to be fixed. Now, let us look at the
eigenvalue equation

Hλ|ψn⟩ = E
(λ)

n |ψn⟩, n ≥ 0, (20)

where Hλ ≡ H
†

λ . As with the previous case, the spectral properties of Hλ are intertwined with those
of H . In fact, (3) and (16) lead to the relationship

HλA
† = A†H, HB† = B†Hλ, (21)

so that

|ψn+1⟩ = θn+1A
†|n⟩, |ψ0⟩ = θ0|ψϵ⟩, E

(λ)

n = E(λ)
n , n ≥ 0, (22)

where |ψϵ⟩ is solution of B†|ψϵ⟩ = 0 as well as eigenvector of Hλ with eigenvalue E
(λ)

0 = ϵ.
After changing n tom, the adjoint of Eqs. (18) and (20) are respectively

⟨ψm|Hλ = E(λ)
m ⟨ψm|, m ≥ 0 (23)

and

⟨ψm|Hλ = E
(λ)

m ⟨ψm|, m ≥ 0. (24)

Wemay now calculate the action of ⟨ψm| on the right of (18), and the action of |ψn⟩ on the left of (24).
The subtraction of these results yields

(

E(λ)
n − E(λ)

m

)

⟨ψm|ψn⟩ = 0. (25)

The similar operation with (20) and (23) gives

(

E(λ)
m − E(λ)

n

)

⟨ψm|ψn⟩ = 0. (26)
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Fig. 2. Energy spectrum of the oscillator HamiltonianH (black, center), and the non-Hermitian Schrödinger operatorsHλ (blue,

right) and Hλ (red, left). The horizontal solid lines represent allowed energies in all the cases. The energy level appearing at the

bottomof each one of the three spectra represents the eigenvalue ϵ, which is forbidden for the oscillator (horizontal dashed line)

since the corresponding eigenvector is not normalizable, compare with Fig. 1. As indicated by the horizontal arrows, the pairs

of operators A, B, and A† , B† , produce the intertwining relationships (17) and (21) respectively. The vertical arrows represent

the action of ladder operators in the respective set of eigenvectors. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Let us concentrate in Eq. (25). If n ̸= m one has ⟨ψm|ψn⟩ = 0 by necessity. The solution for n = m is

calculated by using (22), (19) and (2); one arrives at the complex numbers

⟨ψn+1|ψn+1⟩ = θ
∗
n+1θn+1 (En − ϵ) , ⟨ψ0|ψ0⟩ = θ

∗
0 θ0 ⟨ψϵ |ψϵ⟩. (27)

Taking ϵ < E0, the real constants θn+1 = θn+1 = (En−ϵ)−1/2 are sufficient to normalize the expression

⟨ψm+1|ψn+1⟩. The case ⟨ψ0|ψ0⟩ requires some caution, for if we assume that ⟨ψϵ |ψϵ⟩ is a complex

number, then its modulus must be finite and different from zero. In such a case we use the polar form

θ
∗
0 = θ0 = |⟨ψϵ |ψϵ⟩|

−1/2
e−iχ/2. Then ⟨ψm|ψn⟩ = δn,m, and the normalized solutions of the eigenvalue

problem (18) are given by the set

|ψn+1⟩ = 1√
En − ϵ

B|n⟩, E
(λ)
n+1 = En n ≥ 0,

|ψ0⟩ = |⟨ψϵ |ψϵ⟩|
− 1

2 e−i
χ
2 |ψϵ⟩, E

(λ)
0 = ϵ.

(28)

Using a similar procedure, from (26) we obtain ⟨ψm|ψn⟩ = δm,n, so that the normalized solutions of

(20) are written as

|ψn+1⟩ = 1√
En − ϵ

A†|n⟩, E
(λ)

n+1 = En n ≥ 0,

|ψ0⟩ = |⟨ψϵ |ψϵ⟩|
− 1

2 e−i
χ
2 |ψϵ⟩, E

(λ)

0 = ϵ.

(29)

In the diagram of Fig. 2 we represent the form in which the spectra of H , Hλ and Hλ are interrelated.

Combining this information with that of Fig. 1 we have a versatile picture of the spectral properties

of the non-Hermitian Hamiltonians Hλ and Hλ.

2.2. Bi-orthogonal system

As indicated above, the generalized orthonormal relations

⟨ψm|ψn⟩ = ⟨ψm|ψn⟩ = δm,n, n,m ≥ 0, (30)
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involve the eigenvectors of Hλ as well as those of Hλ. The vector superpositions

|ξλ⟩ =
+∞
∑

n=0

cn|ψn⟩, |ηλ⟩ =
+∞
∑

n=0

b
∗
n |ψn⟩, (31)

are now permitted since (30) defines the Fourier coefficients cn = ⟨ψn|ξλ⟩ and b
∗
n = ⟨ψn|ηλ⟩. Besides,

the notion of ‘orthogonality’ between vectors arises by introducing the bi-product between |ηλ⟩ and
|ξλ⟩ as follows

⟨ηλ|ξλ⟩ =
+∞
∑

n=0

bncn = ⟨ξλ|ηλ⟩∗. (32)

Then, the vectors |ηλ⟩ and |ξλ⟩ are bi-orthogonal if ⟨ηλ|ξλ⟩ = 0. Now, let us assume that given |ξλ⟩
there exists a vector |ξλ⟩ such that ⟨ξλ|ξλ⟩ ≥ 0. From (31) we arrive at the complex series

⟨ξλ|ξλ⟩ =
+∞
∑

n=0

cn⟨ξλ|ψn⟩. (33)

The latter becomes a sum of non-negative numbers by taking ⟨ξλ|ψn⟩ = c∗
n . Then, the non-negative

quantity

||ξλ||2 = ⟨ξλ|ξλ⟩ =
+∞
∑

n=0

|cn|2 ≥ 0 (34)

is useful to introduce the bi-norm ||ξλ|| of the vector |ξλ⟩. Of course, (34) is also associated to the

bi-norm of |ξλ⟩ since ⟨ξλ|ξλ⟩ = ⟨ξλ|ξλ⟩. For convergent series, the normalization condition is written

as follows

||ξλ||2 =
+∞
∑

n=0

|cn|2 = 1. (35)

A pair of remarks are necessary:

(i) The product (34) implies that the concomitant |ξλ⟩ of |ξλ⟩ must be expressed as

|ξλ⟩ =
+∞
∑

n=0

cn|ψn⟩, cn = ⟨ψn|ξλ⟩. (36)

That is, |ξλ⟩ and |ξλ⟩ share the same coefficients cn = ⟨ψn|ξλ⟩ = ⟨ψn|ξλ⟩ when they are expanded in

their respective sets of eigenvectors.

(ii) As |ψn⟩ and |ψn⟩ are concomitant of bi-norm ||ψn|| = ||ψn|| = 1, and the set {|ψn⟩}n≥0 is bi-

orthogonal to {|ψm⟩}m≥0, we would take the entire set {|ψm⟩, |ψn⟩}m,n≥0 as the platform to construct

the representation spaces of the non-Hermitian Schrödinger operators Hλ and Hλ.

The missing point to solve is the unicity of the superpositions (31). With this aim, let us look for a

normalized eigenvector |Φλ⟩ of Hλ which is bi-orthogonal to all the set {|ψn⟩}n≥0. If by chance there

exist such a vector, then it must be added to the set {|ψm⟩}m≥0. A similar logic operates for a possible
missing state of Hλ. For n ̸= 0, a simple calculation shows that |Φλ⟩ must be a solution of B†|Φλ⟩ = 0.

However, the latter has been already considered; this is the ground-energy eigenvector |ψ0⟩, which

is bi-orthogonal to all the |ψn+1⟩. On the other hand, for n = 0, the orthonormal relation (30) shows

that any superposition of the vectors |ψm+1⟩ is bi-orthogonal to |ψ0⟩. However, these superpositions

are not eigenvectors of Hλ in general. Only taking the simplest case |Φλ⟩ = |ψm+1⟩ we obtain the

appropriate solution. Therefore, the set {|ψm⟩}m≥0 includes all the eigenvectors of Hλ that are bi-

orthogonal to any |ψn⟩, with n ̸= m. Equivalently, the set {|ψn⟩}n≥0 includes all the eigenvectors of Hλ
that are bi-orthogonal to any |ψm⟩. As a conclusion, the vector decompositions (31) are unique. This
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result is very important because it permits the introduction of the closure relations

Iλ =
+∞
∑

n=0

|ψn⟩⟨ψn|, Iλ =
+∞
∑

n=0

|ψn⟩⟨ψn|. (37)

The vector decompositions (31) are now obtained by the action of Iλ and Iλ on |ξλ⟩ and |ηλ⟩,
respectively. Now, in position-representation, the closure relations (37) imply

δ(x − x′) = ⟨x|x′⟩ =
+∞
∑

n=0

ψn(x)ψ
∗
n (x

′) =
+∞
∑

n=0

ψn(x)ψn(x
′), (38)

where we have used that |ψn⟩ and |ψn⟩ are concomitant, so that ψ
∗
n (x) = ψn(x). On the other hand,

from (30) we have

δm,n = ⟨ψm|ψn⟩ =
∫

R

dxψn(x)ψ
∗
m(x) =

∫

R

dxψn(x)ψm(x). (39)

As the bi-norms derived from (39) do not vanish, the resolution of identity (38) holds [42].

The above properties provide a mathematical structure for the simultaneous consideration of the

sets {|ψn⟩}n≥0 and {|ψm⟩}m≥0 that is not present if we consider them on their own. The entire set

{|ψm⟩, |ψn⟩}m,n≥0 defines the bi-orthogonal system [43,44] that we shall use to construct arbitrary

states of the non-Hermitian oscillators.

3. Transformation theory

Of special interest, the expressions (37) open the possibility of working with the operators Hλ and

Hλ as if they were two different faces of a Hermitian Hamiltonian. Let Hλ be the set of all the vectors

that canbe constructed as a bi-orthogonal superposition of the |ψn⟩. Then, Iλ is an automorphismofHλ

whichworks as the identity operator.Wewrite Iλ ∈ Aut (Hλ), withAut (Hλ) the set of automorphisms

ofHλ. As the vectors |ψn+1⟩ have been constructed by the action of B on the number eigenvectors |n⟩,
we say thatHλ is the representation space of Hλ induced by B. Thus, the operator B defines a mapping

H → Hλ that connects the Hilbert spaceH of the number eigenvectors with the space of states of Hλ.

The operator A reverses the action of B and maps the ground state |ψ0⟩ of Hλ into the null vector |∅⟩
of H, see Fig. 2. Therefore, the algebraic relationships (17) imply the mappings

B : H → Hλ and A : Hλ → H. (40)

For completeness, let us write explicitly the mappings (40) of the corresponding vector basis

B|n⟩ =
√

En − ϵ |ψn+1⟩, A|ψn+1⟩ =
√

En − ϵ |n⟩, A|ψ0⟩ = |∅⟩, n ≥ 0. (41)

In similar form, denoting byHλ the set of all the vectors that can be expressed as a superposition of the

|ψn⟩, one realizes that Iλ is the identity operator in Hλ. Besides, we say that Hλ is the representation

space of Hλ induced by A†. Then, from (21) one has a new pair of mappings

A† : H → Hλ and B† : Hλ → H, (42)

where B† reverses the action of A† and maps the ground state |ψ0⟩ of Hλ into the null vector |∅⟩ ofH,

see Fig. 2. The mappings (42) of the related vector basis are as follows

A†|n⟩ =
√

En − ϵ |ψn+1⟩, B†|ψn+1⟩ =
√

En − ϵ |n⟩, B†|ψ0⟩ = |∅⟩, n ≥ 0. (43)

As immediate example consider an arbitrary (normalized) vector in H,

|φ⟩ =
+∞
∑

n=0

an|n⟩,
+∞
∑

n=0

|an|2 = 1. (44)
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This last is transformed into either

|φ(λ)⟩ = cφB|φ⟩ = cφ

+∞
∑

n=0

an
√

En − ϵ |ψn+1⟩ (45)

or

|φ (λ)⟩ = cφA
†|φ⟩ = cφ

+∞
∑

n=0

an
√

En − ϵ |ψn+1⟩, (46)

with cφ =
(

⟨H⟩φ − ϵ
)−1/2

the normalization constant and ⟨H⟩φ ≡ ⟨φ|H|φ⟩ the expectation value

of H calculated for |φ⟩. Notice that |φ(λ)⟩ and |φ (λ)⟩ are concomitant. The usefulness of the above

transformation will be clear in the sequel.

3.1. Transformation of operators

The identity operators introduced in the previous section are not the simplest automorphisms

that can be constructed for the representation spaces Hλ and Hλ. Indeed, the ‘‘dyadic’’

operators

Xn,m = |ψn⟩⟨ψm|, X
k,j = |ψk⟩⟨ψj|,

(

Xn,m
)† = X

m,n
, n,m, k, j ≥ 0, (47)

are such that Xn,m|ψr⟩ = δm,r |ψn⟩ and X
k,j|ψℓ⟩ = δj,ℓ|ψk⟩. In general, for any |ξλ⟩ ∈ Hλ and |ηλ⟩ ∈ Hλ

we have

Xn,m|ξλ⟩ = cm|ψn⟩, X
k,j|ηλ⟩ = b

∗
j |ψk⟩, (48)

where cm and b
∗
j are given in (31). The dyads (47) are known as Hubbard operators [45] and obey the

multiplication rule Xn,mX r,s = δm,rX
n,s, X

k,j
X

i,ℓ = δj,iX
k,ℓ

. In its simplest form, Xn,m corresponds to an

square matrix of infinite order for which all the entries are zero except the one at the (n + 1)th row

and the (m + 1)th column, where it takes the value 1. A similar statement is true for X
k,j
. One of the

most useful properties of these operators is that their diagonal representatives serve as ‘basis’ for the

closure relations introduced in (37), namely

Iλ =
+∞
∑

n=0

Xn,n, Iλ =
+∞
∑

k=0

X
k,k
. (49)

Thus, Iλ and Iλ are diagonal matrices for which the non-zero entries are all equal to 1, as expected. An

immediate application of these results is obtained by calculating the matrix-representation of Hλ and

Hλ, it yields the same diagonal matrix

Hλ =
+∞
∑

n=0

E(λ)
n Xn,n, Hλ =

+∞
∑

k=0

E
(λ)
k X

k,k
. (50)

The last expressions show that there is only one Jordan cell Xn,n, equivalently X
n,n

, made of the

normalizable eigenvector |ψn⟩ and its concomitant |ψn⟩ for each eigenvalue En, as it is indicated in [41]

for the softly non-Hermitian Hamiltonians.

In general, the matrix-representation of any operators Oλ ∈ Aut (Hλ) and Oλ ∈ Aut
(

Hλ

)

is easily

achieved

Oλ =
+∞
∑

n,m=0

on,mX
n,m, Oλ =

+∞
∑

k,j=0

ok,jX
k,j
, (51)
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where on,m = ⟨ψn|Oλ|ψm⟩ and ok,j = ⟨ψk|Oλ|ψ j⟩. The bi-orthogonal expectation values are calculated

as ⟨Oλ⟩ := ⟨ξλ|Oλ|ξλ⟩ and ⟨Oλ⟩ := ⟨ξλ|Oλ|ξλ⟩. In particular, from (49) one has ⟨Iλ⟩ = ⟨Iλ⟩ = 1, as

expected. Besides, from (50), it is easy to verify that the non-Hermitian Schrödinger operators Hλ and

Hλ share the same expectation value ⟨Hλ⟩ = ⟨Hλ⟩.
Now, we can investigate the form in which the operator O ∈ Aut(H) is mapped into either Aut(Hλ)

or Aut(Hλ). Let us write O in Hubbard representation (to avoid confusion we do not introduce any

symbol for the dyads of the number eigenvectors),

O =
+∞
∑

m,n=0

Om,n|m⟩⟨n|. (52)

Using the mappings (41) and (43), the straightforward calculation shows that

O := BOA =
+∞
∑

m,n=0

√

(Em − ϵ)(En − ϵ)Om,nX
m+1,n+1, (53)

and

O := A†OB† =
+∞
∑

m,n=0

√

(Em − ϵ)(En − ϵ)Om,nX
m+1,n+1

. (54)

Thus, in any caseO is transformed into the same squarematrix. The latter is of infinite order and has its

first row and first column with all the entries equal to zero. The action ofO andO on their respective

representation spaces is easily derived by using the relationships (48). Notice also that O and O have

the same expectation value ⟨ξλ|O|ξλ⟩ = ⟨ξλ|O|ξλ⟩. In turn, the adjoint of O ∈ Aut(H) is transformed

into the operators O+ := BO†A and O
+ := A†O†B†. Therefore:

O
† = O

+
, O

† = O
+,

(

O
+)† = O,

(

O
+
)†

= O. (55)

That is, O and its adjoint O† are not elements of the same set since O ∈ Aut(Hλ) and O
† ∈ Aut(Hλ).

Similarly O ∈ Aut(Hλ) and O
† ∈ Aut(Hλ). These results are consistent with the bi-product (32), for if

we calculate the expectation value of O†, then we obtain ⟨O†⟩ = ⟨ξλ|O+|ξλ⟩ = ⟨ξλ|O|ξλ⟩∗ = ⟨O⟩∗.
In particular, if O is self-adjoint then O = O

+, and ⟨O⟩ = ⟨O⟩∗.

3.2. Basic operators

We would like to emphasize that the mappings (40) and (42) transform diagonal matrices into

diagonal matrices. Then, from the operators in Aut(H) that are represented by diagonal matrices we

obtain a first class of operators in Aut(Hλ) and Aut(Hλ). For instance, the identity operator I ∈ Aut(H)

gives rise to the same diagonal matrix

I ≡ Hλ − ϵ =
+∞
∑

n=0

(En − ϵ)Xn+1,n+1, I ≡ Hλ − ϵ =
+∞
∑

n=0

(En − ϵ)X
n+1,n+1

. (56)

A second example is given by theHamiltonianH ∈ Aut(H), which also leads to a same diagonalmatrix

in Aut(Hλ) and Aut(Hλ):

E := BHA ≡ Hλ(Hλ − ϵ) =
+∞
∑

n=0

En(En − ϵ)Xn+1,n+1,

E := A†HB† ≡ Hλ(Hλ − ϵ) =
+∞
∑

n=0

En(En − ϵ)X
n+1,n+1

.

(57)
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Another useful result is obtained from the transformation of the off-diagonal ladder operators â and
â†. Using am,n =

√
2nδm,n−1 and a

†
m,n =

√
2(n + 1)δm,n+1, we have

A := BâA =
+∞
∑

n=0

gA(n) Xn+1,n+2, A
+ := Bâ†A =

+∞
∑

n=0

gA(n) Xn+2,n+1,

A := A†âB† =
+∞
∑

n=0

gA(n) X
n+1,n+2

, A
+ := A†â†B† =

+∞
∑

n=0

gA(n) X
n+2,n+1

,

(58)

where

gA(n) =
√

2(n + 1)(En − ϵ)(En+1 − ϵ). (59)

The action of these operators on the basis elements of their respective representation spaces is as

follows

A|ψn+2⟩ = gA(n)|ψn+1⟩, A
+|ψn+1⟩ = gA(n)|ψn+2⟩,

A|ψn+2⟩ = gA(n)|ψn+1⟩, A
+|ψn+1⟩ = gA(n)|ψn+2⟩,

(60)

and

A|ψ1⟩ = A|ψ1⟩ = A|ψ0⟩ = A|ψ0⟩ = A
+|ψ0⟩ = A

+|ψ0⟩ = |∅⟩. (61)

According to the above equations, the space of statesHλ is naturally decomposed into the direct sum

of two invariant subspaces, the one spanned by {|ψn⟩}n≥1 and that spanned by |ψ0⟩. In the former case

A and A
+ work respectively as annihilation and creation operators, see Fig. 2. In turn, the subspace

spanned by |ψ0⟩ is in the intersection of the kernels of A and A
+ since such vector is annihilated by

both operators. A similar description can be done for Hλ with respect to the operators A and A
+
.

From (58), the transformation of the position and momentum operators is easily obtained

X := Bx̂A = 1
2

(

A
+ + A

)

, P := Bp̂A = i
2

(

A
+ − A

)

,

X := A†x̂B† = 1
2

(

A
+ + A

)

, P := A†p̂B† = i
2

(

A
+ − A

)

.
(62)

Their action on the corresponding representation spaces can be calculated from (60) and (61). The

quadratic forms of the above operators lead to

P2 + X2 = B[H(H − ϵ) + 2]A = [Hλ(Hλ − ϵ) + 2](Hλ − ϵ), (63)

and a similar expression for the operators in Aut(Hλ). Remark that P2 + X2 corresponds to the trans-

formation of the quadratic polynomial H(H − ϵ)+ 2. Therefore, although its matrix-representation is

diagonal, this operator does not correspond to the Hamiltonian Hλ but to the cubic polynomial of Hλ
appearing in Eq. (63).

4. Algebras of operators

The Hubbard operators (47) facilitate the calculation of the commutators in Aut(Hλ) and Aut(Hλ).

They are used in the next sections to identify the algebras that are obeyed by the ladder operators

associated with the non-Hermitian oscillators Hλ and Hλ.

4.1. Quadratic polynomial Heisenberg algebras

The commutator between A and A
+ yields the diagonal matrix

[A,A+] =
+∞
∑

n=0

2(3En − ϵ)(En − ϵ)Xn+1,n+1. (64)
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Comparing with (57) we realize that [A,A+] must correspond to the transformation of a function of
the Hamiltonian H . After some simple operations we find

[A,A+] ≡ B2(3H − ϵ)A = 2(3Hλ − ϵ)(Hλ − ϵ). (65)

That is, the commutator [A,A+] is equal to the transformation of the operator 2(3H − ϵ). The latter
is the reason for which (65) is a quadratic polynomial of Hλ. The following commutation rules can be
also verified

[Hλ,A] = −2A, [Hλ,A+] = 2A+. (66)

Therefore, A, A+ and Hλ are the generators of a quadratic polynomial algebra defined by the rules

(65)–(66). In similar form, A, A
+
and Hλ are the generators of the quadratic polynomial algebra

[A,A+] = 2(3Hλ − ϵ)(Hλ − ϵ), [Hλ,A] = −2A, [Hλ,A+] = 2A
+
. (67)

The polynomial algebras are quite natural in the higher order supersymmetric approaches
[46–49]. They are usually connected with nonlinearities that arise because the differential order of
the operators that intertwine the susy partner Hamiltonians is greater than one. In the present case,
the algebra is quadratic polynomial because A and A

† are the result of transforming the first-order
differential operators â and â† by the action of two additional first-order differential operators. Indeed,
the algebra (65)–(66) is also associated with the Hermitian oscillator-like Hamiltonians reported
in [25]. The latter means that the bi-orthogonal system formed by the eigenvectors of the non-
Hermitian oscillators presented here and the space of states introduced in [25] are two different
representation spaces of the same polynomial algebra.

Now, using (62) we also obtain the commutation rules for the transformed position and momen-
tum operators

[X, P] = i(3Hλ − ϵ)(Hλ − ϵ), [Hλ, X] = −2iP, [Hλ, P] = 2iX, (68)

with similar expressions for the operators in Aut(Hλ). The algebra (68) is quadratic in Hλ, as it
would be expected because it is associated with (65)–(66). In turn, the root-mean-square deviations

∆X =
√

⟨X2⟩ − ⟨X⟩2 and∆P =
√

⟨P2⟩ − ⟨P⟩2 satisfy the inequality

∆X∆P ≥ 1
2
|⟨(3Hλ − ϵ) (Hλ − ϵ)⟩|. (69)

Notice that the polynomial Heisenberg algebras introduced above depend on the ground energy of
the system. That is, systems with different ground energies ϵ will be regulated by different algebras.
The latter seems to be quite natural if one considers that it is the energy spectrumwhich characterizes
a one-dimensional system in general. For instance, the systems represented by the potentials shown
in Fig. 1(a) and 1(d) obey the same polynomial algebra, but this last is different from the algebra
associated with the potentials depicted in either Fig. 1(b) and 1(e), or Fig. 1(c) and 1(f). However, the
feature that defines the families of operators Hλ and Hλ is not the ground energy ϵ by itself, but the
fact that the corresponding eigenvectors, |ψ0⟩ and |ψ0⟩, are annihilated byA aswell as byA

+. In other
words, nomatter the value of ϵ, no eigenvector |ψn+1⟩ is connectedwith |ψ0⟩ via the ladder operators.
The same is true for |ψn+1⟩ and |ψ0⟩. As discussed above, this property is a natural consequence of
the form in which the mappings (40) and (42) have been designed. We wonder about the possibility
of finding a simpler algebra for such a striking profile. In the next section we discuss in detail about
the point.

4.2. Distorted Heisenberg algebras

Let us look for ladder operators satisfying simple algebras in Aut(Hλ) and Aut(Hλ). Consider the
f -boson operators [50]

âf = âf (N̂) = f (N̂ + 1)â, â
†

f = f (N̂)â† = a†f (N̂ + 1), (70)
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where f is a real (self-adjoint) function of the number operator N̂ . The above operators satisfy the

commutation relation [âf , â†

f ] = 2(N̂ + 1)f 2(N̂ + 1) − 2N̂f 2(N̂), and are transformed as follows

C = Bâf A, C
+ = Bâ

†

f A, (71)

with similar expressions for the operators in Aut(Hλ). The commutator between C and C
+ yields

[C, C+] = BF (H)A, where

F (H) = (H + 1)f 2(N̂ + 1)(H + 2 − ϵ) − (H − 1)f 2(N̂)(H − 2 − ϵ). (72)

In matrix-representation the above operator acquires the diagonal form

[C, C+] =
+∞
∑

n=0

F (En)(En − ϵ)Xn+1,n+1. (73)

With the exception of the first term in the sum, the coefficients of (73) have the structure

F (En+1)(En+1 − ϵ) = R(n + 1) − R(n), n ≥ 0, (74)

where

R(n) = 2(n + 1)f 2(n + 1)(2n + 3 − ϵ)(2n + 1 − ϵ), n ≥ 0. (75)

In turn, assuming that f (0) is finite, the coefficient of the first term in (73) is as follows

F (E0)(E0 − ϵ) = R(0). (76)

To determine f (N̂) let us impose the condition

F (En+1)(En+1 − ϵ) = κ = const ∀ n ≥ 0. (77)

From (74) we see that (77) is actually a difference equation. To simplify the expressions we use

R(n) = κS(n). Then

S(n + 1) − S(n) = 1, n ≥ 0. (78)

Proposing S(n) = wαn as a solution of the homogeneous equation S(n + 1) − S(n) = 0 we obtain

wαn(α − 1) = 0 for all non-negative integer n, so that (78) is a difference equation of first order and

α = 1. The latter means that the simplest solution of (78) is a sequence of consecutive non-negative

integers S(n) = n. Therefore, the general solution is of the form S(n) = w + n. To fix the initial

condition we take S(0) = w ≥ 0. Therefore,

R(n) = 2(n + 1)f 2(n + 1)(2n + 3 − ϵ)(2n + 1 − ϵ) = κ(w + n), w, n ≥ 0, (79)

leads to the w-parameterized function

fw(n + 1) =
[

κ(w + n)

2(n + 1)(2n + 3 − ϵ)(2n + 1 − ϵ)

]1/2

, w, n ≥ 0. (80)

For simplicity, hereafter we take κ = 2. Notice that fw(n + 1) is a real-valued function of the integer

n + 1, so that the lowest value of its argument is 1. That is, we do not know the explicit form of fw(0),

although we have assumed that it is finite. Coming back to the Eq. (76), now we can write

F (E0)(E0 − ϵ) = 2w. (81)

Using (77) and (81), the commutator (73) is expressed as

[Cw, C+
w ] = 2Iw, (82)
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where

Iw = wX1,1 +
+∞
∑

n=1

Xn+1,n+1. (83)

On the other hand, after substituting n by N̂ in (80) one arrives at the operator-function

fw(N̂ + 1) =
[

w + N̂

(N̂ + 1)(2N̂ + 3 − ϵ)(2N̂ + 1 − ϵ)

]1/2

. (84)

Then, we have the fw-boson operators

âfw = fw(N̂ + 1)â, â
†

fw
= a†fw(N̂ + 1), (85)

which act on the number eigenvectors |n⟩ as follows

â
†

fw
|n⟩ = ϑw(n, ϵ)|n + 1⟩, âfw |n + 1⟩ = ϑw(n, ϵ)|n⟩, âfw |0⟩ = |∅⟩, n ≥ 0, (86)

with

ϑw(n, ϵ) =
[

2(w + n)

(2n + 3 − ϵ)(2n + 1 − ϵ)

]1/2

. (87)

The fw-boson operators are transformed as

Cw = Bfw(N̂ + 1)âA, C
+
w = B â†fw(N̂ + 1)A. (88)

The action of the transformed operators on the eigenvectors of Hλ is very simple

Cw|ψn+2⟩ =
√

2(w + n) |ψn+1⟩, C
+
w |ψn+1⟩ =

√

2(w + n) |ψn+2⟩, (89)

with Cw|ψ1⟩ = Cw|ψ0⟩ = C
+
w |ψ0⟩ = |∅⟩. The straightforward calculation shows that

[Hλ, Cw] = −2Cw, [Hλ, C+
w ] = 2C+

w . (90)

From (82) and (90) we see that Cw , C
†
w and Iw are the generators of an algebra which imitates

the Heisenberg one. For if we concentrate on the subspace spanned by {|ψn⟩}n≥2 only, then the

commutators (82) and (90) are completely equivalent to the oscillator ones. The same occurs in the

subspace spanned by |ψ1⟩, up to the constantw ≥ 0. For this reason, the commutation rules (82) and

(90) will be referred to as distorted Heisenberg algebra, and w will be called the distortion parameter.

As before, the subspace spanned by |ψ0⟩ is in the intersection of the kernels of Cw and C
+
w .

It isworth noting that the distortedHeisenberg algebrawas introduced in [51,52] for theHermitian

oscillator-like Hamiltonians reported in [25] (further improvements can be found in [53]). That is,

we have two different representation spaces for such algebra, the one given by the bi-orthogonal

system presented here and that reported in [51,52]. On the other hand, using the ladder operators

(88) we obtain the distorted quadratures Xw = 1
2

(

C
+
w + Cw

)

and Pw = i
2

(

C
+
w − Cw

)

. They satisfy

the commutation relationship [Xw, Pw] = i
2
[Cw, C+

w ] = iIw , and the inequality ∆Xw∆Pw ≥
1
2
|⟨Iw⟩|. The construction of the distorted ladder operators Cw, C

+
w ∈ Aut(Hλ) and the distorted

identity Iw ∈ Aut(Hλ) is achieved in similar form, with the same conclusions as those obtained

above.

Let us remark that, contrary towhat happenswith the algebra of the previous section, the distorted

Heisenberg algebra does not depend on the ground energy of the system. In fact, the distorted algebra

is a common property of all the non-Hermitian oscillators Hλ and Hλ. For instance, the spectral

properties of all the potentials depicted in Fig. 1 can be described by using the same distorted algebra,

no matter the value of the ground energy ϵ.
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5. Generalized coherent states

In Section 3 we have shown that the mappings (40) and (42) define the transformation of an

arbitrary vector |φ⟩ ∈ H, see Eq. (44), into either |φ(λ)⟩ ∈ Hλ or |φ(λ)⟩ ∈ Hλ, Eqs. (45) and (46)
respectively. To show the relevance of such transformations let us make |φ⟩ equal to the coherent
state of the mathematical oscillator:

|α⟩ = e− |α|2
4

+∞
∑

n=0

(

α/
√
2
)n

√
n!

|n⟩.

That is, using |φ⟩ = |α⟩ in (45) we obtain

|α(λ)⟩ = e
−|α|2

4

√

|α|2 + 1 − ϵ

∞
∑

n=0

√

2n + 1 − ϵ

n!

(

α√
2

)n

|ψn+1⟩. (91)

The expression (46) for the concomitant |α(λ)⟩ is obtained from the above equation by changing |ψn+1⟩
to |ψn+1⟩. The structure of the transformed coherent state (91) resembles that of the one-photon
added coherent state for the oscillator [54,55]. Indeed, for ϵ = −1 one has

|α(λ)⟩
⏐

⏐

ϵ=−1
= e

−|α|2
4

√

|α|2 + 2

∞
∑

n=0

√

2(n + 1)

n!

(

α√
2

)n

|ψn+1⟩, (92)

which coincides with the ‘mathematical’ form of the states reported in [54,55] after changing |ψn⟩
to |n⟩. That is, for ϵ = −1 the coherent state |α⟩ ∈ H is mapped into Hλ as the ‘one-photon added
coherent state’ (92), see Section 7 for details.

In addition to the transformed coherent states (91), one can use the algebras introduced in the
previous section to construct different sets of well defined coherent states.

5.1. Natural coherent states

Consider the quadratic polynomial Heisenberg algebra derived in Section 4.1. We want to solve
the eigenvalue equation A|φ(N )⟩ = z|φ(N )⟩, with z a complex number. From (61) we know that the
eigenvalue z = 0 is twice degenerate since |ψ0⟩ and |ψ1⟩ are annihilated by A. For z ̸= 0, the vector
we are looking for may be written as a normalized bi-orthogonal superposition of the eigenvectors
|ψn⟩. Indeed, from (60) we obtain

|φ(N )(z)⟩ = c
(N )
0 (|z|)

+∞
∑

n=0

c
(N )
n+1(z)|ψn+1⟩, z ∈ C, (93)

with

c
(N )
n+1(z) =

[

Γ
(

1−ϵ
2

)

Γ
(

3−ϵ
2

)

n!Γ
(

n + 1−ϵ
2

)

Γ
(

n + 3−ϵ
2

)

]1/2
(

z√
8

)n

, z ∈ C, (94)

and

c
(N )
0 (|z|) =

[

0F2

(

1 − ϵ

2
,
3 − ϵ

2
; |z|2

8

)]−1/2

(95)

the normalization constant. Clearly, |φ(N )(z = 0)⟩ = |ψ1⟩. Then, the set {|ψ0⟩, |φ(N )(z)⟩} includes all
the normalized eigenvectors of A with complex eigenvalue z. In turn, it is straightforward to show

that {|ψ0⟩, |φ
(N )

(y)⟩} is the set of all the normalized eigenvectors of A with complex eigenvalue y.

Moreover, |φ(N )
(y)⟩ and |φ(N )(z)⟩ are concomitant if y = z. For if we calculate their product

KN (y∗, z) := ⟨φ(N )
(y)|φ(N )(z)⟩ = 0F2(

1−ϵ
2
, 3−ϵ

2
; zy∗/8)

√

0F2(
1−ϵ
2
, 3−ϵ

2
; |y|2/8) 0F2( 1−ϵ2 ,

3−ϵ
2

; |z|2/8)
, (96)
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then we see that y = z implies KN (z∗, z) = 1. On the other hand, using (30) one can verify that

⟨ψ0|φ(N )(z)⟩ = ⟨φ(N )
(z)|ψ0⟩ = 0. (97)

Therefore we may write the closure relation Iλ as

Iλ = |ψ0⟩⟨ψ0| +
∫

|φ(N )(z)⟩⟨φ(N )
(z)| dµ(N )(z), (98)

where the measure dµ(N )(z) is to be determined. Assuming dependence on |z| only, we can write

dµ(N )(z) =
0F2

(

1−ϵ
2
, 3−ϵ

2
; r2

8

)

Γ
(

1−ϵ
2

)

Γ
(

3−ϵ
2

) h(r2)rdrdφ, z = reiφ, (99)

with h(r2) a new function to be determined. After integrating over the angular variable, the introduc-
tion of (99) into (98) yields

Iλ = |ψ0⟩⟨ψ0| +
+∞
∑

n=0

Λn|ψn+1⟩⟨ψn+1|, (100)

where

Λn = 8π

n!Γ
(

n + 1−ϵ
2

)

Γ
(

n + 3−ϵ
2

)

∫ +∞

0

xnh(x)dx, n ≥ 0. (101)

To obtain h(x) let us impose the condition Λn = 1, which is sufficient to make (100) equal to (37).
Hence, after the change n → m − 1, we arrive at the integral equation

∫ +∞

0

xm−1[8πh(x)]dx = Γ (m)Γ
(

m − 1+ϵ
2

)

Γ
(

m + 1−ϵ
2

)

, m ≥ 1, (102)

which is theMellin transform of h(x) [56]. Thus, themeasure (99) is determined by theMellin–Barnes
integral representation [40] of the following Meijer G-function

8πh(x) = G
3,0
0,3

(

x
−

0,− 1+ϵ
2
, 1−ϵ

2

)

. (103)

Provided h(x), the identity (98) permits the decomposition of |φ(N )(z)⟩ as follows

|φ(N )(z)⟩ =
∫

KN (y∗, z)|φ(N )(y)⟩ dµ(N )(y), (104)

so that the function KN (y∗, z) introduced in (96) is the reproducing kernel

KN (η∗, z) =
∫

KN (y∗, z)KN (η∗, y) dµ(N )(y). (105)

Besides, given any |ξλ⟩ ∈ Hλ we have

|ξλ⟩ = c0|ψ0⟩ +
∫

ξλ(z, z
∗)|φ(N )(z)⟩ dµ(N )(z) (106)

where

ξλ(z, z
∗) := ⟨φ(N )

(z)|ξλ⟩ = c
∗(N )
0 (|z|)

+∞
∑

n=0

c
∗(N )
n+1 (z) cn+1 (107)

is a complex-valued function determined by the coefficients (94) and (95).
The expectation value of the Hamiltonian Hλ in terms of the vectors (93)–(95) is as follows

⟨Hλ⟩z = 1 + r2

(1 − ϵ)(3 − ϵ)

0F2

(

3−ϵ
2
, 5−ϵ

2
; r2

8

)

0F2

(

1−ϵ
2
, 3−ϵ

2
; r2

8

) , (108)
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Fig. 3. The variances ∆X2 = ∆P2 ≡ ∆X∆P defined in (109) for ϵ = 0.5 (solid, black), ϵ = −3 (dashed, blue), and ϵ = −5

(short dashed, red) in terms of r = |z|. In all cases, at r = 0 the uncertainty takes the value ∆X∆P = 1
2
(3 − 4ϵ + ϵ2). See

complementary information in Fig. 1. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

and the variances of X and P are given by

∆X2 = ∆P2 ≡ ∆X∆P = 1
2
⟨[X, P]⟩z = 1

2

[

3⟨H2
λ⟩z − 4ϵ⟨Hλ⟩z + ϵ2

]

(109)

with

⟨H2
λ⟩z = 4⟨Hλ⟩z − 3 + r4

(1 − ϵ)(3 − ϵ)2(5 − ϵ)

0F2

(

5−ϵ
2
, 7−ϵ

2
; r2

8

)

0F2

(

1−ϵ
2
, 3−ϵ

2
; r2

8

) . (110)

That is, the inequality (69) is minimized by the vectors |φ(N )(z)⟩. In Fig. 3 we show the behavior of the

variances (109) associated with the cases depicted in Fig. 1. Notice that the lowest value is reached

at z = 0 because |φ(N )(z = 0)⟩ = |ψ1⟩ in all the cases. In general, no matter the value of ϵ, the

variances increase their value as r → ∞ . On the other hand, the larger the value of |ϵ|, the greater

the uncertainty∆X∆P .

In summary, all the elements in the set {|ψ0⟩, |φ(N )(z)⟩} are generalized coherent states for the

non-Hermitian oscillator Hλ. We shall call them natural coherent states. Similar conclusions are valid

for the set {|ψ0⟩, |φ
(N )

(z)⟩} ⊂ Hλ.

5.2. Distorted coherent states

From the algebra introduced in Section 4.2 one finds that the solutions of the eigenvalue equation

Cw|φ(w)(z)⟩ = z|φ(w)(z)⟩ are the vectors |ψ0⟩ and |ψ1⟩, both of them with eigenvalue z = 0, and the

normalized vectors defined by the bi-orthogonal superposition

|φ(w)(z)⟩ = c
(w)
0 (|z|)

+∞
∑

n=0

c
(w)
n+1(z)|ψn+1⟩, (111)

with

c
(w)
n+1(z) =

[

Γ (w)

Γ (w + n)

]1/2(
z√
2

)n

, (112)

and

c
(w)
0 (|z|) =

[

1F1

(

1, w; |z|2
2

)]−1/2

(113)
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Fig. 4. The variances ∆X2
w = ∆P2 ≡ ∆Xw∆Pw defined in (117) for w = 0.1 (solid, red), w = 0.5 (dashed, blue), w = 1

(horizontal, dotted), w = 2 (short dashed, gray), and w = 3 (large dashed, black) in terms of r = |z|. In all cases, at r = 0 the

uncertainty takes the value ∆Xw∆Pw = w
2
. Compare with Fig. 3. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

the normalization constant. The straightforward calculation shows that the new set {|ψ0⟩, |φ(w)(z)⟩}
satisfies the closure relation

Iλ = |ψ0⟩⟨ψ0| +
∫

|φ(w)(z)⟩⟨φ (w)
(z)| dµ(w)(z), (114)

where z = reiθ and

dµ(w)(z) = r2(w−1)

πΓ (w)2w
e−r2/2

1F1(1, w; r2/2)rdrdθ (115)

is the measure, which has been derived by following the same procedure as in the previous case. The
reproducing kernel is in this case

Kw(y
∗, z) := ⟨φ(w)

(y)|φ(w)(z)⟩ = 1F1(1, w; y∗z/2)
√

1F1(1, w; |y|2/2)1F1(1, w; |z|2/2)
(116)

and the variances of Xw and Pw are of the form

∆X2
w = ∆P2

w ≡ ∆Xw∆Pw = 1
2
⟨Iw⟩z

= 1

2

[

w − r2

2
+ r2

2w

1F1(2, w + 1; r2/2)
1F1(1, w; r2/2)

]

.
(117)

Therefore, the vectors (111) represent minimum uncertainty states. However, in contrast with the
results of the previous case (see Fig. 3), the behavior of the distorted variances (117) does not depend
on the ground energy ϵ of the system. In fact, given any ϵ < E0 = 1, the uncertainty∆Xw∆Pw can be
manipulated by tuning the distortion parameter w ≥ 0, as it is shown in Fig. 4.

In summary, all the elements in the set {|ψ0⟩, |φ(w)(z)⟩} are generalized coherent states for the
non-Hermitian oscillator Hλ. We shall call them distorted coherent states. Similar conclusions are valid

for the set {|ψ0⟩, |φ
(w)

(z)⟩} ⊂ Hλ.

6. Continuous representation

Let us introduce a unified notation for the families of generalized coherent states derived in the
previous section

|φ(s)(z)⟩ = c
(s)
0 (|z|)|φ(s)(z)⟩U , s = N , w, (118)

where

|φ(s)(z)⟩U =
∞

∑

n=0

c
(s)
n+1(z)|ψn+1⟩ (119)
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is the unnormalized version of (118) and the super-index ‘‘s’’ stands for either natural (N ) or distorted
(w). The identity operator Iλ ⊂ Aut(Hλ) acquires the generic form

Iλ = |ψ0⟩⟨ψ0| +
∫

|φ(s)(z)⟩⟨φ(s)
(z)| dµ(s)(z), (120)

so that any vector |fλ⟩ ∈ Hλ can be written as

|fλ⟩ = f0|ψ0⟩ +
∫

f
(s)
λ (z, z∗)|φ(s)(z)⟩ dµ(s)(z) (121)

where f0 ≡ ⟨ψ0|fλ⟩ is a constant and

f
(s)
λ (z, z∗) ≡ ⟨φ(s)

(z)|fλ⟩ = c
∗(s)
0 (|z|) fs(z∗), (122)

with

fs(z
∗) := U ⟨φ(s)

(z)|fλ⟩ =
∞

∑

n=0

fn+1 c
∗(s)
n+1(z) (123)

a complex-valued function, and fn+1 ≡ ⟨ψn+1|fλ⟩ ∈ C.

6.1. The Fock–Bargmann spaces

The realization F of a Hilbert space H in terms of entire analytic functions [57] is named after
Fock [36] and Bargmann [37]. For the harmonic oscillator the space F is formed by entire analytic
functions of growth ( 1

2
, 2). Besides, the representation of the ladder operators in F is given by

â = 2 ∂
∂α∗ and â† = α∗. Although this was originally realized for the space of states of the harmonic

oscillator, the Fock–Bargmann representation may be related to any coherent state system [29]. Next
we obtain this for the generalized coherent states of the non-Hermitian oscillators.

Using (120), the bi-product of |gλ⟩ ∈ Hλ with |fλ⟩ ∈ Hλ is

⟨gλ|fλ⟩ = g∗
0f0 +

∫

g∗
s (z)fs(z

∗)dσs(z), s = N , w, (124)

with measure

dσs(z) = |c(s)0 (|z|)|2 dµ(s)(z). (125)

In particular, from (34) we know that the bi-norm of |fλ⟩ is non-negative

|| |fλ⟩||2 = |f0|2 +
∫

|fs(z∗)|2dσs(z) ≥ 0. (126)

Therefore, the set of functions (123) can be equipped with the inner product

(g, f )s =
∫

C

g∗
s (z)fs(z

∗)dσs(z). (127)

Besides, as |f0|2 ≥ 0, from (126) we have the non-negative quantity

||fs(z∗)||2 = (f , f )s =
∫

C

|fs(z∗)|2dσs(z) ≥ 0, (128)

which is useful to introduce the norm of fs(z
∗) as ||fs(z∗)|| =

√
(f , f )s.

The set of functions fs(z
∗) defined in (123) integrate a vector spaceFs overCwith the conventional

notions of addition of functions andmultiplication by scalars. As indicated above,Fs is a normed space
with norm || · || induced by the inner product (127). We assume that Fs is complete (the proof is out
of the scope of this work), so that it is a Hilbert space which we shall call the Fock–Bargmann space
associated to the coherent states (118). Consistently, we say that the Fock–Bargmann representation
of the vector |fλ⟩ ∈ Hλ is given by the complex-valued function fs(z

∗) ∈ Fs.
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To identify some of the fundamental properties of the functions in Fs notice that |⟨φ(s)
(z)|fλ⟩| ≤

|| |fλ⟩||, since the vector |φ(s)
(z)⟩ in (122) is normalized. Then

|fs(z∗)| ≤ 1

c
∗(s)
0 (|z|)

|| |fλ⟩||. (129)

In other words, provided || |fλ⟩|| < ∞, the asymptotic behavior of |fs(z∗)| is bounded from above by

the reciprocal of the normalization constant c
∗(s)
0 (|z|). This last is expressed in terms of the generalized

hypergeometric function pFq(aj, bj; z), which in turn satisfies [52]
⏐

⏐

⏐

⏐

√

pFq(aj, bj; zℓ)
⏐

⏐

⏐

⏐

=
√

|pFq(aj, bj; zℓ)| ≤ exp
(

1
2
σℓr

ρℓ
)

, z = reiφ . (130)

That is, the reciprocal of c
∗(s)
0 (|z|) is an entire (exponential) analytic function of order ρℓ and type 1

2
σℓ,

with σℓ = ℓ/ρℓ = 1 + q − p. In conclusion, Fs is the space formed by the entire analytic functions

fs(z
∗) of growth ( 1

2
σℓ, ρℓ) that satisfy (127) and (128). In particular, from (95) and (113) we realize

that fN (z∗) and fw(z
∗) are entire analytic functions of growth ( 3

2
, 2

3
) and ( 1

2
, 2), respectively. Quite

interestingly, the Fock–Bargmann space Fw coincides with F .

6.1.1. Canonical operators in FN

Considering that |φ(N )
(z)⟩U is eigenvector of A with complex eigenvalue z, and using A

† = A
+,

we have

U ⟨φ(N )|A†|fλ⟩ := A
+
opfN (z∗) = z∗fN (z∗). (131)

That is, themultiplication by z∗ inFN is achieved by the action ofA+
op on fN (z∗). On the other hand, the

straightforward calculation shows thatA is represented inFN by the third-order differential operator

AopfN (z∗) = 1√
2

[

4z∗2 ∂
3

∂z∗3 + 4(3 − ϵ)z∗ ∂2

∂z∗2 + (1 − ϵ)(3 − ϵ)
∂

∂z∗

]

fN (z∗), (132)

where

∂

∂z∗ fN (z∗) =
∞

∑

n=0

fn+2

[

Γ
(

1−ϵ
2

)

Γ
(

3−ϵ
2

)

n!Γ
(

n + 3−ϵ
2

)

Γ
(

n + 5−ϵ
2

)

]1/2√

n + 1

8

(

z∗
√
8

)n

. (133)

Therefore, Aop ̸= ∂
∂z∗ for any ϵ < E0 = 1. In other words, Aop is not the canonical conjugate of A+

op

in FN . The latter is a consequence of the quadratic algebra (65)–(66), which is satisfied byA andA
+,

and the transformations (57). Looking for the simplest operator A∂ ∈ Aut(Hλ) that is represented by

the z∗-derivative in FN , one can show that it is such that its conjugate A
+
∂ operates as follows

A
+
∂ |ψn+1⟩ =

[

2(n + 1)

(2n + 1 − ϵ)(2n + 3 − ϵ)

]1/2

|ψn+2⟩, n ≥ 0. (134)

Thus,A∂,op = 2 ∂
∂z∗ . We see that it isA

†
op andA∂,op, and notA

†
op togetherwithAop, the pair of operators

in FN that behave as â† and â in F .

6.1.2. Canonical operators in Fw

Following the steps of the previous section one can verify that

C
+
w,opfw(z

∗) := e⟨φ
(w)|C†

w|fλ⟩ = z∗fw(z
∗), (135)

and

Cw,opfw(z
∗) = 2

∂

∂z∗ fw(z
∗) + 2

(w − 1)

z∗
(

fw(z
∗) − f1

)

, (136)
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with

∂

∂z∗ fw(z
∗) = 1√

2

∞
∑

n=0

fn+2

[

Γ (w)

Γ (w + n + 1)

]1/2

(n + 1)

(

z∗
√
2

)n

. (137)

Thus, C+
w,op and Cw,op behave in Fw just as â† and â in F for w = 1. In contrast with A

†
op and Aop, the

closest behavior of C+
w,op and Cw,op with the canonical operators of the harmonic oscillator is due to

the fact that the distorted Heisenberg algebra (82), (90), is linear.

6.2. The p-representation

The P-representation was introduced by Glauber [38] and Sudarshan [39] for the states ρ̂ of the

harmonic oscillator. This is defined such that ρ̂ can be written in the basis of the coherent states of

the harmonic oscillator as the continuous ‘diagonal’ matrix

ρ̂ = 1

2π

∫

C

d2α P(α) |α⟩⟨α|. (138)

If the P-function in (138) behaves as a probability, then ρ̂ can be interpreted as an statistical ensemble

(i.e., a mixed state) of the pure states |α⟩⟨α|. Otherwise, the system represented by ρ̂ ‘‘will have no

classical analog’’ [26]. In order to include the P-representation of any coherent state of the harmonic

oscillator ρ̂z = |z⟩⟨z|, the function P(α) is permitted to be as singular as the delta function δ(2)(z−α) =
δ(Re(z−α))δ(Im(z−α)). In this context, the number eigenstates |n⟩ are nonclassical for n > 1 because

their P-functions are determined by the derivatives of the delta function. In turn, the vacuum |0⟩ is
classical because it is a coherent state with complex eigenvalue equal to zero.

In the present case, given any state represented by the density operator ρ ∈ Aut(Hλ), we want to

use the identity operator (120) to find the P-representation

ρ = P0|ψ0⟩⟨ψ0| +
∫

dµ(s)(z) P (s)(z, z∗) |φ(s)(z)⟩⟨φ(s)
(z)|, s = N , w. (139)

As |ψ0⟩ is bi-orthogonal to all the |φ(s)(z)⟩, we immediately have

P0 = ⟨ψ0|ρ|ψ0⟩. (140)

To determine P (s)(z, z∗) let us consider an arbitrary state |β⟩ ̸= |ψ0⟩ written as

|β⟩ =
∞

∑

n=0

βn|ψn+1⟩, βn ∈ C. (141)

Then, the function we are looking for is such that the following expression is true

⟨−β|ρ|β⟩ =
∫

dσ (s)(z)P (s)(z, z∗)⟨−β|φ(s)(z)⟩UU ⟨φ(s)
(z)|β⟩, (142)

where we have used (118) and (125). As the vector |β⟩ is arbitrary, to proceed we have two options:

(i) To take |β⟩ such that

U ⟨φ(s)
(z)|β⟩ = exp(βz∗). (143)

In this case the integral (142) acquires the form

⟨−β|ρ|β⟩ =
∫

dσ (s)(z)P (s)(z, z∗)eβz
∗−β∗z . (144)

Therefore, P (s)(z, z∗) is obtained from the two-dimensional inverse Fourier transform of this last

expression. (ii) To make |β⟩ = |φ(s)(y)⟩ and, after using the reproducing kernel Ks(y
∗, z), to solve

(142) for P (s)(z, z∗). Both of the above options lead to the same result, as it can be easily verified.
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6.2.1. The basis of natural coherent states
For the natural coherent states introduced in Section 5.1, the vector |β⟩ that satisfies (143) is

properly constructed by taking

βn =
[

Γ (n + 1−ϵ
2

)Γ (n + 3−ϵ
2

)

n!Γ ( 1−ϵ
2

)Γ ( 3−ϵ
2

)

]1/2

(
√
8β)n, β ∈ C, n ≥ 0, (145)

as the coefficients of the superposition (141). Then, using (95), (99) and (125), the inverse transform
of (144) gives

P (N )(z, z∗) =
Γ ( 1−ϵ

2
)Γ ( 3−ϵ

2
)

π2h(N )(r2)

∫

d2β⟨−β|ρ|β⟩ eβ∗z−βz∗ . (146)

As an immediate application consider the energy eigenstate ρn+1 = |ψn+1⟩⟨ψn+1|, then

P
(N )
n+1(z, z

∗) = 8n
Γ (n + 1−ϵ

2
)Γ (n + 3−ϵ

2
)

n! h(N )(r2)

∂2n

∂zn∂z∗n δ
(2)(z), n ≥ 0. (147)

That is, the P-function of the first excited energy eigenstate |ψ1⟩ is as singular as the delta function
δ(2)(z). Now, from (140) we see that the state |ψ0⟩ is such that P0 = 1. In turn, the P-function of
the higher excited states |ψn≥2⟩ corresponds to the derivatives of δ(2)(z). On the other hand, for any

natural coherent state ρ(α) = |φ(N )(α)⟩⟨φ(N )
(α)| we have

P (N )
α (z, z∗) =

Γ ( 1−ϵ
2

)Γ ( 3−ϵ
2

)

h(N )(r2)0F2(
1−ϵ
2
, 3−ϵ

2
; |α|2

8
)
δ(2)(z − α), (148)

as expected. Besides, comparing (148) with (147) we realize that |φ(N )(α)⟩ is a displaced version of
the fiducial state |ψ1⟩.

6.2.2. The basis of distorted coherent states
For the distorted coherent states introduced in Section 5.2 one can verify that

P
(w)
n+1(z, z

∗) = π2nΓ (w + n)

(n!)2r2(w−1)h(w)(r2)

∂2n

∂zn∂z∗n δ
(2)(z), n ≥ 0, (149)

is the P-function associated to the energy eigenstates |ψn+1⟩. That is, as in the previous case, the energy
states |ψ0⟩ and |ψ1⟩ are P-represented by P0 = 1 and P1(z, z

∗) = δ(2)(z) respectively. In turn, for the
distorted coherent state |φ(w)(α)⟩ we have

P (w)
α (z, z∗) = πΓ (w)

1F1(1, w; |α|2
2

) r2(w−1)h(w)(r2)
δ(2)(z − α). (150)

Clearly, for α = 0 the equation (150) reproduces (149) with n = 0. That is, |φ(w)(α)⟩ is a displaced
version of the fiducial state |ψ1⟩.

7. Concrete models and nonlinearity

7.1. Equidistant spectrum

For ϵ = −1 in (8)–(9), the complex-valued potential (13) acquires the form

Vλ(x)|ϵ=−1 = x2 − 2 − 2
d

dx

(

2aErf(x) + b − i
√
πλ√

πα2(x)

)

. (151)

The energy spectrum is now equidistant and shifted in two units with respect to the harmonic

oscillator energies E
(λ)
n = 2n− 1, n = 0, 1, 2, . . . That is, besides the harmonic oscillator Hamiltonian

H = − d2

dx2
+ x2, either of the non-Hermitian Hamiltonians Hλ|ϵ=−1 + 2 or Hλ

⏐

⏐

ϵ=−1
+ 2 can be used

to represent the observable associated with a measurement of energy which gives any of the real



O. Rosas-Ortiz, K. Zelaya / Annals of Physics 388 (2018) 26–53 49

(a) ϵ = −1. (b) ϵ = −1.

Fig. 5. The real (solid-blue) and imaginary (dashed-red) parts of the complex-valued potential (151) for a = π
4
, c = 1, with

(a) b = 0, λ =
√
π

2
, and (b) b =

√
π

2
, λ =

√
3π
4

. The oscillator potential (dotted-gray) is included as a reference. The horizontal

dotted lines correspond to the first allowed energies. In (a) the potential isPT -symmetric. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

numbers En = 2n + 1 as result. The predictive character of such a model is sustained by the bi-

orthogonal structure discussed in the previous sections.

In Fig. 5 we show the behavior of the non-Hermitian oscillators (151) for two different sets of

parameters such that the condition of zero total area (15) is fulfilled. The potential depicted in

Fig. 5(a) is PT -symmetric.

7.2. Hermitian oscillator-like Hamiltonians

For λ = 0 the operator Hλ=0 = Hλ=0 = − d2

dx2
+ Vλ=0(x) is self-adjoint but it is different from

the harmonic oscillator Hamiltonian. Some examples of Vλ=0(x) are depicted as solid-blue curves in

Figs. 1 and 5; the difference with the harmonic oscillator potential (dotted-gray curves in the figures)

is notable. Besides, with λ = 0 the eigenvectors |ψn⟩ and their concomitants |ψn⟩ collapse to the same
complete set of orthonormal vectors |ψn⟩λ=0 = |ψn⟩λ=0. Thus, while the quadratic polynomial and

distorted Heisenberg algebras are preserved, the representation space defined by the bi-orthogonal

system {|ψn⟩, |ψm⟩}n,m≥0 converges to the complete orthonormal set of vectors {|ψn⟩λ=0}n≥0.

We would like to emphasize that all the results derived in the previous sections are maintained

without changes in the Hermitian picture defined by λ = 0. The only difference lies on the fact that

the intertwining relationships, (17) and (21), are now referred to a pair and not to a triad of systems

(cf. Fig. 2). Such systems are represented by Hλ=0 and H , and have a complete set of eigenvectors by

their own.

7.2.1. Abraham–Moses–Mielnik (AMM) oscillators

The combination of the parameters used in the two previous sections gives rise to the self-adjoint

Hamiltonian Hγ = Hλ=0,ϵ=−1 ≡ − d2

dx2
+ V (x; γ ), with

V (x; γ ) = x2 − 2 − 2
d

dx
Mγ (x), Mγ (x) = e−x2

γ +
∫ x

e−y2dy
, γ =

√

πc

4a
∈ R (152)

a real-valued potential which was found independently by Abraham and Moses through the system-

atic use of the Gelfand–Levitan equation [24], and by Mielnik as an application of his generalized

factorizationmethod [25]. The AMMoscillatorsHγ are intertwinedwith the harmonic oscillatorH via

(17) and (21) with

A|λ=0,ϵ=−1 = d

dx
+ x + Mγ (x), B|λ=0,ϵ=−1 = − d

dx
+ x + Mγ (x), (153)

where a global phase has been dropped out.
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The natural coherent states (93)–(95) acquire the form

|φ(N )(z)⟩λ=0,ϵ=−1 = 1
√

0F2(1, 2, |z|2/8)

+∞
∑

n=0

1

n!
√
Γ (n + 2)

(

z√
8

)n

|ψn+1⟩λ=0. (154)

The vectors (154) coincide (up to a factor in the complex number z) with the generalized coherent
states reported in [58] for the AMM oscillators. Moreover, the P-representations (147) and (148) are
unchanged. On the other hand, as the distorted coherent states (111)–(113) do not depend on the
ground energy ϵ < E0 = 1, they preserve their form

|φ(w)(z)⟩λ=0 =
√

Γ (w)

1F1
(

1, w; |z|2/2
)

+∞
∑

n=0

(z/
√
2)n√

Γ (w + n)
|ψn+1⟩λ=0. (155)

Up to a factor in z, these last vectors coincide with the generalized coherent states introduced
in [51,52] for the AMM oscillators. The P-representations (149) and (150) are also preserved.

7.3. Quantum oscillator limit

We can go a step further by canceling the term withMγ (x) in (152). That is,

lim
γ→+∞

V (x; γ ) = x2 − 2. (156)

In other words, the HamiltonianHγ +2 converges toH at γ → +∞. Consistently, thewave-functions
ψn(x) := ⟨x|ψn⟩ go to the number eigenfunctions ϕn(x) := ⟨x|n⟩ under the rule

lim
γ→∞

ψn(x)|λ=0,ϵ=−1 = ϕn(x), n ≥ 0. (157)

In turn, the intertwining operators (153) become the boson ladder operators

lim
γ→∞

A|λ=0,ϵ=−1 = â, lim
γ→∞

B|λ=0,ϵ=−1 = â†. (158)

The latter result justifies the structure of the vectors (92) since they were obtained from the action
of B on the coherent state |α⟩ ∈ H for ϵ = −1. If now we make λ = 0, it is clear that the vectors
|α(λ=0)⟩

⏐

⏐

ϵ=−1
in (92) coincide with the conventional one-photon added coherent states [54,55].

Notice however that the generators of the quadratic polynomial Heisenberg algebra converge to
the f -boson operators

Aosc = (2N̂)â ≡ âN , A
†
osc = â†(2N̂) ≡ â

†

N , (159)

while the distorted ladder operators become

Cw,osc = â
†

fw
â2, C

†
w,osc =

(

â†
)2
âfw . (160)

The above operators represent nonlinear interactions for the harmonic oscillator. The action of the
pair defined in (159) produces transitions between the number eigenvectors |n⟩ that are mediated by
the number operator. Considering a single-mode photon field described by the harmonic oscillator,
the operators (159) represent intensity dependent interactions with a two-level atom in the well-
known Jaynes–Cummings model [59] (see details in [60]). In the same picture, the pair of operators
(160) involve three photons in the process. Namely, C

†
w,osc implies the annihilation of one fw-photon

at the time that two new photons are created. The Hermitian-conjugate Cw,osc operates in reverse
order and is useful to get self-adjoint expressions which could represent the involved photon-fields.
The process resembles the spontaneous parametric down conversion that occurs, for example, when a
nonlinear crystal is illuminated by the appropriate light (see, e.g. [61] and references quoted therein);
this multi-photon phenomenon is currently observed in the laboratory [62,63]. As we can see, the
operators (159)–(160) would be useful for modeling nonlinear phenomena in quantum optics (see
e.g. [64–67]).
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7.4. Nonlinear coherent states of the harmonic oscillator

In this sectionwe discuss some of the properties of the generalized coherent states associatedwith
the nonlinear operators (159)–(160) discussed above.

The nonlinear coherent states |φ(N )
osc (z)⟩ associated with the quadratic polynomial operators

(159) have the same structure as the vectors (154), with |ψn+1⟩λ=0 substituted by |n + 1⟩. The P-
representation for the energy eigenvectors of the oscillator is obtained from (147) and gives

P
(N )
n+1(z, z

∗)
⏐

⏐

⏐

osc
= 8nΓ (n + 2)

h(N )(r2)

∂2n

∂zn∂z∗n δ
(2)(z), n ≥ 0, (161)

with P0 = 1 for the ground state |0⟩. That is, in the basis of the nonlinear natural coherent states, the
first excited energy eigenstate |1⟩ of the harmonic oscillator is P-represented by the delta distribution.
Such a striking result is a consequence of the nonlinearity of the operators (159), which is inherited
from the quadratic polynomial structure discussed in the previous sections.

Now, from (148)we see that the nonlinear natural coherent states |φ(N )
osc (z)⟩ are also P-represented

by the delta distribution

P (N )
α (z, z∗)

⏐

⏐

osc
=

[

h(N )(r2)0F2(1, 2, |z|2/8)
]−1
δ(2)(z − α), (162)

and that they are displaced versions of the fiducial state |1⟩.
On the other hand, the nonlinear distorted coherent states |φ(w)

osc (z)⟩ are obtained from (155), with
|ψn+1⟩λ=0 changed for |n+ 1⟩. The P-representation for the number states |n⟩ has been already given

in (149). Notably, also in the basis |φ(w)
osc (z)⟩ we find that |0⟩ and |1⟩ are P-represented by P0 = 1 and

P1(z, z
∗) = δ(2)(z). Of course, the nonlinear distorted coherent states (155) are displaced versions of

the fiducial state |1⟩ since their P-representation (150) is also proportional to the δ-function.

8. Conclusions

We have constructed a bi-orthogonal system for a series of Hamiltonians Hλ that are not self-
adjoint but have the spectrum of the harmonic oscillator plus an additional eigenvalue located below
the ground energy of the latter. The operators Hλ are Darboux transformations of the conventional
oscillator HamiltonianH such that their potentials are complex-valued. The bi-orthogonality between
the states of Hλ and those of its Hermitian-conjugate H

†

λ provides a mathematical structure that
ensures the fulfilling of the superposition principle. In this form, the challenge of constructing
generalized coherent states for the non-Hermitian oscillators represented by Hλ and H

†

λ is faced in
much the same form as in the Hermitian approaches. Two different algebras have been found for
these non-Hermitian oscillators. One of them is defined by the ground energy of the system and is a
quadratic polynomial variation of the Heisenberg algebra. The other one is lineal and depends on a
non-negative parameter in such a way that the Heisenberg algebra is fulfilled in definite subspaces
of the space of states. This is called distorted Heisenberg algebra and is attainable by all the non-
Hermitian oscillators studied here, nomatter the position of the ground state energy. The generalized
coherent states constructed from these algebras were used to obtain the P-representation of the
eigenvectors of the non-Hermitian oscillators. It is found that the first excited energy eigenstate |ψ1⟩
is P-represented by a delta distribution. Such a striking behavior is not shared with the harmonic
oscillator since all the excited states of the latter are P-represented by the derivatives of the δ-function.
Besides, it is |ψ1⟩which serves as fiducial state for the generalized coherent states. This is because the
annihilation operators in both of the algebras annihilate the ground state |ψ0⟩ as well as |ψ1⟩. Thus,
the complex eigenvalue z = 0 is twice degenerate for all the generalized coherent states of Hλ and
H

†

λ that are constructed as eigenvectors of the annihilation operators. Moreover, in P-representation
such states are displaced versions of |ψ1⟩.

We can take full advantage of the above property to construct additional sets of coherent states.
Consider for example the distorted Heisenberg algebra developed in Section 4.2. As Cw|ψ1⟩ =
Cw|ψ0⟩ = C

+
w |ψ0⟩ = |∅⟩, we have

Dw(z)|ψ0⟩ = |ψ0⟩, Dw(z)|ψ1⟩ = ezC
+
w |ψ1⟩ ∝ |φ(wd)(z, w)⟩, (163)
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with

Dw(z) = ezC
+
w e−z∗Cw (164)

an operator that leaves invariant the ground energy eigenstate |ψ0⟩ but ‘displaces’ |ψ1⟩ to the
(normalized) state

|φ(wd)(z, w)⟩ = 1
√

1F1(w, 1, 2|z|2)

∞
∑

n=0

[

Γ (w + n)

Γ (w)

]1/2
(
√
2z)n

n! |ψn+1⟩. (165)

This last is also a generalized coherent state associated with the non-Hermitian oscillators studied in
the presentwork, with properties that are quite similar to those of the other coherent states discussed
here. However, the operator Dw(z) deserves attention since the commutator between Cw and C

+
w is

nontrivial and it is not easy to guess a disentangling formula for (164). Work in this direction is in
progress.

To concludewewould like to emphasize that besides the harmonic oscillator HamiltonianH , either
of the non-Hermitian Hamiltonians Hλ and H

†

λ (for the appropriate parameters see Section 7.1) can
be used to represent the observable associated with a measurement of energy which gives any of
the real numbers En = 2n + 1 as result. The predictive character of such a model is sustained by
the bi-orthogonal structure discussed along this paper. Is it then permissible to assign uniquely the
self-adjoint operator H to the observable of energy in such a class of measurement?We hope that the
present work shed new light on the subject.
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