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Abstract. The problem of obtaining 10ng sequences with finite alphabet and 
peaky aperiodic auto-correlation is important in the context of radar, sonar and 
system identification and is called the coded waveform design problem, or sim- 
ply the signal design problem in this limited context. It is good to remember 
that there are other signal design problems in coding theory and digital com- 
munication. It is viewed as a problem of optimization. An algorithm based on 
two operational ideas is developed. From the earlier experience of using the 
eugenic algorithm for the problem of waveform design, it was realised that 
rather than random but multiple mutations, all the first-order mutations should 
be examined to pick up the best one. This is called Hamming scan, which has 
the advantage of being locally complete, rather than random. The conventional 
genetic algorithm for non-local optimization leaves out the anabolic role of 
chemistry of allowing quick growth of complexity. Here, the Hamming scan is 
made to operate on the Kronecker or Chinese product of two sequences with 
best-known discrimination values, so that one can go to large lengths and yet 
get good results in affordable time. The details of the ternary pulse compres- 
sion sequences obtained are given. They suggest the superiority of the ternary 
sequences. 

Keywords. Coded waveform design; global optimization; bi-parental prod- 
ucts; Hamming scan. 

I. Introduction 

The term signal design has different meanings in coding theory, spread-spectrum com- 
munication, and radar. Here it is short for a coded waveform design problem in radar. 
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This involves obtaining sequences of finite lengths with small discrete alphabet, which are 
good approximations to white noise (Golay 1977). In particular, the alphabet ( -1 ,  0, 1) is 
considered. The sequences using them are called ternary sequences. Much of the earlier 
work deals with binary sequences with ( -  1, 1) as the alphabet. The goodness of the degree 
of approximation is measured here in terms of the discrimination. An alternative measure 
is the merit factor (Golay 1977). 

To set the notation and to concretize the ideas, let 

S = [SO, S 1 . . . . .  Sn-2, Sn-l] ( 1 )  

be the sequence of length n, where the elements si are from any of the two alphabets 
referred to above. Then 

n - l - k  

p(k)  = ~ sisi+k, k = 0, 1 . . . . .  n - 1, (2) 
i = 0  

is called the aperiodic auto-correlation of the sequence s. The quantity, 

D = p(O)/ Fmax lP(k)l] k¢O (3) 

is called the discrimination. 
The problem of obtaining sequences with high discrimination is a very difficult one. 

It is so because whereas for the binary sequences with good periodic auto-correlation, 
analytical design procedures or constructions (Baumert 1971; Golay 1983; Hoholdt et al 

1985; Reddy & Rao 1986; Jensen et al 1991) based on powerful number-theoretical results 
are available, for sequences with good aperiodic autocorrelations it has still to be basically 
a search. Further, the search cannot be exhaustive, because the number of sequences to 
be searched for grows combinatorially, as the length increases. Here, the emphasis is 
on obtaining as good sequences as possible with certain reasonably efficient procedures 
without claiming that even higher discrimination values are not possible. Golay's notion 
of sieves (Golay 1977) which restricts the search to a subset of sequences which can either 
be designed or searched efficiently and has properties which are desirable for enhancing 
the peakiness is a similar one. The sieves promise some good sequences without claiming 
that all good or even the best sequences are necessarily retained. 

There is extensive work on binary sequences (Barker 1953; Turyn 1963, 1968; B oehmer 
1967; Baumert 1971; Golay 1972, 1977, 1982, 1983; Moharir 1975; Beenker et al 1985; 
Hoholdt et aI 1985; Kerdock et al 1986; Reddy & Rao 1986; Bernasconi 1987, 1988; 
Hoholdt & Justesen 1988; Golay & Harris 1990; Newmann & Byrnes 1990; Jensen et al 

1991; De Groot et al 1992), which however we do not attempt to review here. Beyond 
the Barker sequences (Barker 1953) of length 11 and 13, having the discrimination values 
of 11 and 13, the four best binary sequences having discrimination values of 14, 15, 16 
and 17 (Kerdock et al 1986) have been obtained at the smallest lengths of 28, 51, 69 and 
88. Complete enumeration is possible only up to small lengths (Kerdock et al 1986) and 
would not be regarded as too satisfactory, the ultimate aim being construction rather than 
search. Partial searches using the notion of sieves (Golay 1977) were extended to higher 
lengths. Starting with binary sequences with ideal periodic autocorrelation and searching 
for sequences with the best discrimination among their cyclic shifts, many good sequences 
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have been obtained. To cite some examples (Reddy & Rao 1986), discriminations of 22.82, 
26.85, 36.86, 41.45, 41.77 and 42.46 have been obtained at the lengths of 251,349, 811, 
829, 919 and 1019, respectively. 

Optimization techniques have been used for the signal design problem (Bernasconi 
1987, 1988; De Groot et al 1992), but the design criterion has been different, viz., merit 
factor. 

Ternary aperiodic sequences have been proposed and listed earlier with merit factor as 
the criterion of goodness (Moharir 1974, 1976; Moharir et al 1985). They were obtained 
using sieves such as terminal admissibility (Moharir 1976), skew-symmetry (Golay 1977), 
terminal admissibility for skew-symmetric sequences (Moharir et al 1985) etc. This earlier 
work establishing the superiority of ternary pulse compression sequences over binary 
sequences, if merit factor is accepted as a valid desideratum, is extended further in this 
paper with discrimination as a chosen criterion. 

2. The algorithm and associated concepts 

2.1 Hamming scan 

An improved version of the genetic algorithm (Holland 1992; M ichalewicz 1992) called 
eugenic algorithm was used (Singh et al 1996) to see whether better and longer ternary 
sequences could be obtained. Success was met with along both these directions. Yet it was 
not possible to go to very large lengths, as the search time requirement increased very fast. 
It was regarded that one should devise an optimization algorithm which is more efficient, 
even though possibly more suboptimal. The Hamming scan is one such algorithm. Genetic 
algorithms use random but possibly multiple mutations. Mutation is a term metaphorically 
used for a change in an element in the sequence. Thus, a single mutation is at a Hamming 
distance of one from the original sequence. The Hamming scan looks at all the Hamming 
- 1 neighbours and picks up the one with the largest discrimination. If it is better than 
the original sequence with the chosen definition of goodness, the algorithm is recursively 
continued therefrom, as long as improvement is possible. Thus, an entirely probabilistic 
mechanism of mutation is replaced by a locally complete search. The Hamming scan is 
expedited, and hence, made applicable at large lengths, by not calculating the aperiodic 
autocorrelation of a Hamming neighbour ab initio, recognizing the fact that as only one 
element is different, only its different contributions need to be taken into account. Let the 
element sj be changed to Cj. As a result, let p(k ) change to p'(k ). Then it can be shown that 

p'(0) = p(0) + ({17 - sT)" (4) 

and 

p ' ( k )=p(k )+(~ : i - s j ) s~ i+k+s j_k (~ i i - s j ) ,  k = l , 2  . . . . .  n - l ;  

j = 0 , 1  . . . . .  n - ] .  (5) 

In (5), there are two correction terms. They have to be implemented with care. One 
way is to assume that sp is equal to zero if p is outside (0, 1 . . . . .  n - 1 ). Alternatively, 
the correction term si_k(c j - sj) is included only for k = 1, 2 . . . . .  n j 1 and the 
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correction term sj-k(cj  -- sj) is included only for k = j + 1, j + 2 . . . . .  n - 1. This idea 
is certainly trivial, but it has led to significantly increased efficiency, and hence, to search 
at longer lengths than would otherwise have been possible. 

For the ternary sequences the actual implementation can be somewhat different. The 
elements in the sequence are - 1, 0 and 1. Each one of them can mutate in two possible 
ways. The mutations - 1  --+ 0, 0 --+ - 1  and 1 ~ - 1  are considered to give the lower 
strand of Hamming neighbours and the other mutations - 1 --+ 1, 0 ~ 1 and 1 ---> 0 are 
regarded as giving the upper strand of Hamming neighbours. The best neighbours along 
these two strands were found separately. The idea is that if one strand gives improvement, 
the other strand may not even be considered in order to save time. As the results are certainly 
path-dependent and optimality is not guaranteed, efficiency is a valid determinant. 

The Hamming scan yielded some better ternary sequences in reasonable time than 
were obtainable with the eugenic algorithm. However, the Hamming scan also became 
unaffordable at larger lengths. 

2.2 Simon's principle through Kronecker and Chinese products 

That is when Simon's principle (Koestler 1969; Simon 1981) suggested newer possibilities. 
It states that bigger systems evolve faster, when developed through the metastable inter- 
mediate subsystems, than if they are constructed ab initio from the smallest components. 
In the present context, it took the form of using two sequences of the best discrimination 
values available and obtaining a sequence of much larger length from them, such that it 
already had better discrimination than would result from random choice. The actual mech- 
anism is provided by bi-parental products (Moharir 1992) of two or more sequences. In 
particular, two products, viz., Kronecker product (Brewere 1978; Moharir 1992) and the 
Chinese product (Moharir 1977, 1992) are chosen. These products are said to be bi-parental 
because each element in the product depends exactly on one element each from the two 
component sequences. 

The Kronecker product of two sequences 

Sl = [SO1, S l l  . . . . .  S ( p - 1 ) l ] ,  S 2 = [SO2, S12 . . . . .  S (q_ l )2 ] ,  (6) 

of lengths p and q respectively, is a sequence s of length pq, defined as 

Sk : (S01S2, S1 IS2 . . . . .  S ( p - l ) l S 2 ) -  (7) 

The Kronecker product is not commutative. 
The Chinese product of the two sequences of (6) is defined only when p and q are 

relatively prime, that is, when they do not have any common prime factor. The Chinese 
product is defined as 

where 

SCk =SliS2j, (8)  

I i mod p 
k =  [ j m o d q  (9) 

and has the length pq. It is called the Chinese product because the solution of the con- 
gruence relation (9) is what the Chinese remainder theorem deals with. It is commutative. 
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Computationally, the Chinese product of the two sequences can be obtained easily by re- 
peating the sequences si and s2 of relatively prime lengths p and q respectively, q and p 
times and then taking an element-wise (Schur) product (Moharir 1992). 

The autocorrelation of Sk can be expressed in terms of the autocorrelations of sl and s2 
as follows (Turyn 1968). 

Theorem 1. 

psk (qkl + k2) : Psi (kl)Ps2(k2) + Psi (kl + l )ps2(q - k2), 

kl = 0 , 1  . . . . .  p - l ;  k 2 = 0 , 1  . . . . .  q - 1 .  (10) 

The theorem shows that if the individual autocorrelations are good, so is the resultant 
autocorrelation, except at some lag values. It can further be shown that the discrimination 
of the Kronecker product of two sequences depends only on the discriminations of the 
component sequences. The attenuated minimum guarantee theorem below is important. 

Theorem 2. I f  the discriminations of the two sequences s 1 and s2 are Dl, and D2 respec- 
tively, with min(Dl, D2) : Drain and max(Dl. D2) : Dmax, then the discrimination DK 
of  both their Kronecker products sl × s2 and s2 x sl is bounded as 

Dmin _> DK > o!Dmin, 0/ : (Dmax/(1 H- Dmax)), (11) 

where o~ may be called the attenuator. 

The following has been shown by Moharir (1977). 

Theorem 3. The periodic autocorrelation of the Chinese product of two sequences is a 
Chinese product of their periodic autocorrelations. 

A sequence obtained by a bi-parental product (Moharir 1992) of two or more sequences 
can later be further improved by a Hamming scan. The time requirement comes down 
considerably because the algorithm begins with a good starting point. The importance of 
nonlocal optimizers such as the genetic algorithm is that the end result depends on the 
starting point only weakly, and ideally, not at all. But this statement is concerned with 
only the ultimate reachability of the algorithm, and the utility of a good starting point in 
determining the time requirements should not be underestimated. This is particularly so 
when good starting points can be designed or devised. Second, global optimization also is a 
goal and not a reality. In any case, the Hamming scan is not a global optimization algorithm. 
Therefore, if a large starting discrimination can be obtained by a simple procedure, in 
addition to the time saved, many lower local optima of which the Hamming scan possibly 
could not come out would also be avoided. 

The anabolic bi-parental product scheme really works well as can be seen from table 1. 
It analyses the role of the Kronecker and the Chinese products in the proposed algorithm. 
Some ternary sequences with very good discrimination were chosen. They were obtained 
from the ternary sequences with the best merit factors listed by Golay (1977) by recursive 
Hamming scan to improve the discriminations. Then their Kronecker and Chinese products 
were obtained. The initial discriminations D1 and D2 and the discriminations DK and Dc 
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Table 1. Analysis of the efficacy of the bi-parental products, viz. Kronecker and Chinese, in designing 
ternary sequences with large discrimination. The lengths of the component sequences are nl and n2. Their 
discriminations are Dl and D2. The discrimination of the product sequence is D. The bi-parental product 
efficiency is ~ and the exponent is F. Whether the bi-parental product P is Kronecker or Chinese is 
indicated by K and C respectively. 

nl n2 n Dl D2 P D r/ y 

31 31 961 13.0000 13.0000 K 12.7547 0.9811 0.4963 
9 33 297 7.0000 12.5000 K 7.0000 0.7483 0.4352 

33 33 1 0 8 9  12.5000 12.5000 K 12.5000 1.0000 0.5000 
24 111 2664 20.0000 20.0000 K 19.7531 0.9877 0.4979 
24 147 3528 20.0000 20.0000 K 19.6721 0.9836 0.4972 
24 159 3816 20.0000 21.8333 K 20.0000 0.9571 0.4928 

11 13 143 11.0000 13.0000 K 11.0000 0.9199 0.4832 
C 8.9375 0.7474 0.4413 

13 15 195 13.0000 13.0000 K 13.0000 1.0000 0.5000 
C 12.0714 0.9286 0.4856 

11 17 187 11.0000 11.0000 K 11.0000 1.0000 0.5000 
C 6.7222 0.6111 0.3973 

11 23 253 11.0000 19.0000 K 11.0000 0.7609 0.4488 
C 7.7407 0.5354 0.3831 

19 31 589 13.0000 13.0000 K 13.0000 1.0000 0.5000 
C 12.0714 0.9286 0.4856 

13 33 429 13.0000 12.5000 K 12.5000 0.9806 0.4961 
C 10.1563 0.7967 0.4554 

29 33 957 8.6667 12.5000 K 8.6667 0.8327 0.4609 
C 8.5526 1.2141 0.5381 

24 145 3480 20.0000 23.2000 K 20.0000 0.9285 0.4879 
C 11.2621 0.5228 0.3944 

24 155 3720 20.0000 22.1667 K 20.0000 0.9499 0.4916 
C 19.4161 0.9221 0.4867 

15 17 255 13.0000 11.0000 K 11.0000 0.9199 0.4832 
C 11.0000 0.9199 0.4832 

11 25 275 11.0000 10.5000 K 10.5000 0.9770 0.4951 
C 10.5000 0.9770 0.4951 

13 31 403 13.0000 13.0000 K 13.0000 1.0000 0.5000 
C 13.0000 1.0000 0.5000 

9 11 99 7.0000 11.0000 K 7.0000 0.7977 0.4480 
C 8.5556 0.9750 0.4942 

9 23 207 7.0000 19.0000 K 7.0000 0.6070 0.3979 
C 8.3125 0.7208 0.4330 

(Continued on facing page) 

of these two products are listed. It can be seen that impressive starting points for the 
Hamming scan are available. The purpose of table 1 is, however, different. It compares the 
two products as the bases of the bi-parental product signal design. In table 1, six situations 
can be identified. In view of theorem 2, there is not much uncertainty about what the 
Kronecker product can achieve. For some entries in table 1, the component lengths are 
such that only the Kronecker product is defined and the Chinese product is not defined 
as the two lengths have a common factor. For these sets of component lengths, only the 
Kronecker product can be used. For the next set of entries, Dc is less than DK. For the next 
four sets of entries, Dc equals DK, lies between DK and Dmax, equals Dmax, and exceeds 
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Table 1. (Continued) 

n I n 2 n D I D 2  P D r/ ~, 

9 29 261 7.0000 8.6667 K 7.0000 0.8987 0.4740 
C 8.2727 1.0621 0.5147 

13 29 377 13.0000 8.6667 K 8.6667 0.8165 0.4571 
C 11.2667 1.0614 0.5126 

15 29 435 13.0000 8.6667 K 8,6667 0.8165 0.4571 
C 11.6552 1.0980 0.5198 

25 29 725 10.5000 8,6667 K 8.6667 0,9085 0,4787 
C 9.1000 0.9539 0.4895 

17 25 425 11.00~) 10.5000 K 10.5000 0.9770 0.4951 
C I1.0000 1.0235 0.5049 

21 25 525 8.5000 10.5000 K 8.5000 0.8997 0.4765 
C 10.5000 1.1114 0.5235 

21 31 651 8.5000 13.0000 K 8.5000 0.8086 0.4548 
C 13.0000 1.2367 0.5452 

17 21 357 11.0000 8.5(1(/0 K 8,5000 0.8790 0.4716 
C 13.3571 1.3814 0,5712 

19 21 399 13.0000 8.5000 K 8.5000 0.8086 0.4548 
C 13.8125 1.3140 0.5580 

17 27 459 11.0000 8.3333 K 8.3333 0.8704 0.4693 
C 11.4583 1.1968 0.5398 

17 29 493 11.0000 8.6667 K 8.6667 0.8876 0.4738 
C 13.0000 1.3314 0,5628 

19 29 551 13.0000 8.6667 K 8.6667 0.8165 0.4571 
C 14.0833 1.3268 0.5599 

21 29 609 8.5000 8.6667 K 8.5000 0.9903 0.4977 
C 9.2083 1.0729 0.5164 

27 29 783 8.3333 8.6667 K 8.3333 0.9806 0.4954 
C 9.4203 1.1085 0.5241 

15 31 465 13.0000 13.0000 K 13.0000 1.0000 0.5000 
C 13.5200 1.0400 0.5076 

25 33 825 10.5000 12.5000 K 10.5000 0.9165 0.4821 
C 13.1250 1.1456 0.5279 

31 33 1023 12.5000 12.5000 K 12.5000 0.9806 0.4961 
C 15.4762 1.2141 0.5381 

Dmax. Thus,  the Ch inese  p roduc t  has the poss ib i l i t i e s  o f  p rov id ing  bet ter  s tar t ing points  

than those  p rov ided  by the Kronecke r  product ,  for  the b i -paren ta l  p roduc t  a lgor i thm for 

s ignal  des ign,  

I t  is useful  to define some  quant i ta t ive  measures  for the b i -paren ta l  p roduc ts  in the 

contex t  o f  the objec t ive  funct ion chosen.  The  Kronecke r  eff ic iency OK (for d i sc r imina t ion)  

is def ined  as 

OK = DK/(DID2) 1/2 (12) 

The  K r o n e c k e r  exponen t  ~ is def ined  by 

DK = ( D I D 2 )  yk or  )"K = logDK/log(DiD2), (13) 

Table 1 shows values  o f  r/K and ~ .  It can be seen that they lie in na r rower  ranges  than is 

sugges ted  by  theo rem 2. A star t ing sequence  o f  a par t icu la r  large length  can be ob ta ined  by  
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factoring the length differently. In such cases two thumb rules could be used for guidance. 
the Chinese efficiency r/c and the Chinese exponent Vc can be defined by replacing DK by 
Dc in (10) and (I 1), where Dc is the discrimination obtained by using a Chinese product. 
Table 1 also shows r/K and VK. The ranges of these are larger than those of ~K and )'K. The 
extension of the ranges on the higher sides must be viewed as advantageous. 

2.3 Hamming scan and Simon's principle 

Our interest was in obtaining ternary sequences with good discrimination values. The 
Kronecker product is not commutative. But the discriminations of sl × s2 and s2 × s~ 
are the same. The Chinese product may have a superior, equal or inferior discrimination. 
Subsequently, however, they may evolve differently under a Hamming scan, so that the 
initial advantage of a superior discrimination may not last. When starting sequences of a 
particular length can be obtained by bi-parental products using different factors, further 
progress under a Hamming scan is also different. These are indicators that a Hamming scan 
does not give the global optimum. Let the ratio of the discrimination eventually obtained by 
recursively using a Hamming scan to the discrimination of the starting sequence obtained by 
a bi-parental product be called the Hamming gain for that product. It is not as constant as the 
bi-parental product efficiency or the exponent. Let both the components in the Kronecker 
product be Barker sequence of length 11. Then the discrimination of the resultant sequence 
of length 121 cannot be improved by the Hamming scan, meaning that the Hamming gain 
is just unity. But such situations are rather rare. Variability of the Hamming gain makes it 
difficult to use a good starting point as a very dependable criterion and offers no good thumb 
rules. One may make a choice on the basis of the average size of the improvement in the 
first few Hamming scans. But that is more a way of trying to minimize the computational 
effort than trying to estimate beforehand what discriminations may be achievable, as the 
improvement is not uniform over successive Hamming scans and the number of successful 
scans is also not known beforehand. It has been observed that the Hamming gain for 
the Chinese product is frequently less than that for the Kronecker product. It may also 
be noted that a sequence obtained by Hamming scan operating on a bi-parental product 
of two sequences, can later be used as a component in the same or different bi-parental 
product. All these possibilities have not been exhausted. 

However, one more idea has been found to be very useful. After taking a bi-parental 
product of two good sequences, if the merit factor is improved by the recursive Hamming 
scan for some time and then the discrimination is taken to be the objective function to be 

Table 2. The number oflengthsNr at which ternary sequences exceeding the discfiminationthreshold 
of DT have been obt~ned. 

DT NT DT NT DT NT 

48 2 44 7 40 27 
36 47 34 75 32 ll9 
30 170 28 242 26 304 
24 344 22 367 20 389 
18 414 16 434 14 464 
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Table 3. A list of ternary sequences, with discrimination values greater than 36, in the descending order 
of the discrimination. 
Length Discrimi- Length Discrimi- Length Discrimi- Length Discrimi- 

nation nation nation nation 

15 64  48.9048 924 42.4667 1 5 8 4  40,2414 1001 37.6087 
1131 48.2222 649 42.4615 590 40.0000 592 37.5455 
1073  47.3125 975 41.7059 582 40.0000 555 37.4000 
591 44.6667 1080  41.3889 584 39.8000 596 37.2727 
599 44.4444 819 41.1538 1650  39.7667 593 36.9091 

1632  44.2400 1188  40.9474 1 6 8 0  39.6000 851 36.8125 
1221 44.0588 1305  40.8889 1 0 8 8  38.5714 1121 36.5789 
1610  43.5385 726 40.8571 925 38.5625 1608  36.5556 
1700  43.3214 623 40.7000 625 38.1818 1617  36.1389 
11 47  43.1579 858 41).6471 1071 37.9524 1053  36.1200 
15 18  43.0000 1750  40.6333 1173  37.7500 767 36.0000 
999 42.5294 792 40.3846 1 4 6 4  37.6429 

increased by the same procedure, superior discrimination values frequently result, than if 

the discrimination was increased from the start. 

3. Results 

Only the sequence having the largest discrimination obtained at any length has been re- 

tained. The numbers of lengths at which various discrimination thresholds have been 

exceeded are shown in table 2. Thus the discrimination thresholds of  32, 26 and 18 have 
been exceeded at more than 100, 300 and 400 lengths respectively. The details about the 
sequences having the discrimination values of greater than 36 are shown in table 3. 

It is seen that as the length increases it is easier to reach higher discrimination values. 
This is a simple consequence of  theorem 2. To see this point, assume that the work of 
obtaining ternary sequences with good discrimination values is conducted up to the length 
of  160. Then, the best sequences are of lengths 24, 111, 145, 147, 155 and 159, and have 
discriminations of 20, 20, 23, 20, 22.1667 and 21.8333 respectively. That is, they all have 
discriminations exceeding 20. Then, theorem 2 implies that a Kronecker product of any two 

of  them must have a discrimination exceeding 19.05. In general, the actual discrimination 

achieved is frequently much better than o~Dmi n, as can be seen from table 1. Hamming 
scan can then raise the discrimination even further, It is very rare that the Hamming gain 

is just 1. Thus, the highest discrimination obtained up to any length can almost always be 

exceeded at some higher lengths. 

4. Conclusion 

The bi-parental product algorithm has given ternary sequences with very good discrimi- 
nations. The success of  the algorithm indicates that the locally complete search may be 

preferable to the Monte Carlo search which depends rather excessively on the efficacy of  
chance in the matter of optimization. Whereas chance is a useful ally while dealing with 

combinatorially complex optimization problems, where feasible, it should be helped by 
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design procedures (Singh et al 1996) which can minimise the search effort. The anabolic 
role of bi-parental products which permitted going to large lengths quickly is particularly 
noteworthy in this regard. The algorithm has taken the problem of aperiodic signal design 
one step closer to that of the periodic signal design. The latter has two features. One of 
them is the availability of the regular construction procedures. That goal is still far away 
for the former problem. The second feature is that the discovery of a new good sequence 
means automatic construction of good sequences at many larger lengths. The bi-parental 
product procedure in the algorithm gives that feature to the aperiodic signal design problem 
also, though in a weaker sense, as the Hamming scan, which includes choice, is still to be 
performed. 

To the best of our knowledge, the ternary sequences obtained here are the best. Yet, 
the bi-parental product algorithm is not a global optimisation algorithm. Therefore, there 
could be procedures which can improve upon the sequences obtained here. 

The authors are grateful to Dr H K Gupta for encouragement. We are also thankful to 
Sri K Subba Rao and Dr K Sain for expert help in electronic processing of the manuscript. 
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