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Summary. This paper reports a numerical study of the effect of random motion on
the unstable bar-forming modes of one type of stellar disc mass model. From
measurements of the growth rates of the few most unstable bi-symmetric modes
we evaluate the stabilizing influence of both random motion and halo mass. We
find that the growth rate of bars is a simple function of these two variables. Our
results suggest that the large degree of random motion recently observed near the
centres of galactic discs substantially reduces the halo mass needed to understand
their stability.

1 Introduction

The bar instability of stellar discs has proved a major obstacle to our understanding of disc-galaxy
dynamics; before we can comprehend spiral structure, we must construct plausible stable (or
nearly stable) equilibrium models. This first step has proved much more difficult than expected,
since all studies of self-gravitating discs of stars supported mainly by rotation find rapidly growing
global instabilities (see e.g. Toomre 1977 and Athanassoula 1984 for reviews). We begin with a
discussion of current ideas which attempt to account for the apparent absence of such gross
instabilities in the majority of disc galaxies and we then justify a fresh approach.

1.1 MASSIVE HALOES

The most popular idea has been that massive haloes suppress the instability. Most of the mass of
dark extended haloes currently thought to surround galaxies is irrelevant, since to be any use at all
the spherically distributed matter must lie interior to the unstable region of the disc. Ostriker &
Peebles (1973) suggested that the spheroid and inner halo should contain between 1 and 2.5 the
total mass of the disc to prevent bar formation, and went on to argue for much more massive and
extended haloes exterior to this. Many numerical simulations (e.g. Hohl 1971; Hockney &
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Brownrigg 1974; James & Sellwood 1978; Sellwood 1980; Efstathiou, Lake & Negroponte 1982)
have confirmed that large fractions of spherically distributed mass can prevent bar formation.
The physical explanation for this was given by Toomre (1981) who showed that decreasing the
disc’s contribution to the rotation curve reduces the length-scales of disc instabilities to the point
where they cease to be global.

Observational tests of this hypothesis are inconclusive since firm values of inner halo to disc
mass ratios are very hard to obtain. The mass distribution within the Milky Way is probably the
most tightly constrained of any galaxy but there is still wide disagreement over the relative
quantities of disc and spherical matter in the various proposed mass models (see Schmidt 198S for
areview). Efstathiou et al. (1982) deduced the halo masses required, according to their criterion,
to account for the absence of bars in a number of galaxies. They found that the necessary halo
mass implied rather uncomfortably low mass-to-light ratios for the discs of their sample of
galaxies.

In our view, a more powerful argument against stabilization by massive inner haloes comes
from the observed preference for two-armed spiral patterns in galaxies. The theory of ‘swing
amplification’ (Toomre 1981) seems to imply that haloes massive enough to prevent bars would
simultaneously inhibit the development of ail bi-symmetric features. Multi-armed patterns, such
as developed in the simulations of Sellwood & Carlberg (1984), would be favoured. Thus we
remain unconvinced that sufficient spheroidal matter is present near the centres of galaxies to
alone guarantee stability.

1.2 IMPASSABLE CENTRES

Toomre (1981) proposes an alternative solution to the bar instability problem: breaking the
feedback cycle which, he argues, is the origin of the instability. This can be achieved either
through a high circular velocity near the centre (which forces inwardly propagating density waves
to encounter an inner Lindblad resonance), or by a depression in the surface density of the disc at
the centre. Sellwood (1985) has recently shown that the inner Lindblad resonance mechanism
contributes to the bar stability of our Galaxy. (Ironically the halo was irrelevant to the bar
stability of the disc but was required to prevent even more destructive one-armed instabilities!)
Although it is likely that other galaxies having sharply rising rotation curves near the centre may
avoid bar instabilities in this way, it is of no help in galaxies having gently rising rotation curves.

1.3 HOT DISCS

In this paper we examine a third possible solution —~ that large degrees of random motion among
the disc stars can suppress the bar instability. This alternative has not hitherto been thought
particularly attractive (e.g. Ostriker & Peebles 1973), since the only good determination of the
extent of random motion amongst disc stars, namely for the solar neighbourhood, indicates that
the dispersion of the radial velocity components is roughly one fifth of the mean orbital velocity.
However, this measurement is at a point far from the axis of rotation, and dynamical
considerations (local stability arguments and the observed constant scale height of external
edge-on galaxies) require that the ratio of rotational to pressure support should increase
markedly towards the centre.

Such an increase has recently been observed in our galaxy by Freeman (private
communication) and can also be deduced from Habing et al.’s (1983) observations of OH/IR stars
near the Galactic Centre, if they are disc population objects. These appear to have a radial
velocity dispersion of some 150kms™'. Moreover, observations (e.g. Kormendy 1981, 1984;
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Bosma & Freeman (unpublished); Illingworth & Schechter 1982, van der Kruit & Freeman 1985;
Kormendy & Itlingworth 1985, in preparation) of the velocity dispersions in nearby galaxies have
reported values almost as large as the mean orbital motion in the inner part of the disc.

This degree of random motion must have a considerable stabilizing influence, but just how
substantial is not known. Full global stability analyses of stellar discs with velocity dispersion are
difficult (Kalnajs 1977) and have so far been accomplished in only a few special cases. All three
existing studies — Kalnajs (1972, 1978) and Zang (1976, see also Toomre 1977) — have found, not
surprisingly, that the growth rate of unstable modes decreases with increasing random motion
amongst the disc stars. However, the only two known stable stellar discs, which were constructed
by Kalnajs (1972), rotate uniformly. All the self-gravitating, differentially rotating discs studied
by Kalnajs (1978) and Zang (1976) exhibit some, perhaps slowly growing, global instabilities.

Global modes in gaseous discs are somewhat easier to calculate and several such studies have
been reported. In particular, Bardeen (1975) and Aoki, Noguchi & Iye (1979) showed that
bi-symmetric modes could probably be stabilized by increasing pressure support before the net
rotation rate became insignificant. However, the similarities between the behaviour of stellar
discs and gaseous polytropes decrease as pressure support rises.

Large N-body codes have also been used to study instabilities in stellar discs, but surprisingly
few experiments having high degrees of pressure support have been reported. A notable
exception was described by Hohl (1971), who constructed an apparently stable axisymmetric
model from the final barred state of a previous simulation. He achieved this by reshuffling all stars
in the model by random shifts in azimuth in such a way that the bar was removed. Although the
model was probably not in perfect equilibrium after this procedure, Hohl noted that little change
occurred during the subsequent evolution, which he followed for six rotation periods.

In this paper we describe a quantitative determination of the stabilizing effect of random
motion for only one mass distribution. Our results, therefore, do not permit us to draw general
conclusions for arbitrary mass distributions but we hope that thorough studies of several specific
cases will ultimately achieve this end.

Our main results are described in Sections S and 6 and are summarized in Fig. 2. In Section 2 we
introduce the mass model and distribution functions chosen for this study. Section 3 gives a few
technical details of our numerical parameters, and we justify our neglect of thickness corrections
in Section 4. We interpret our results in the light of current theoretical work on the unstable
modes of stellar discs in Section 7 and consider the implications of the recent observations in
Section 8. Our numerical techniques have been described previously (Sellwood & Athanassoula
1986, hereafter Paper I).

2 Initial conditions
2.1 MASS DISTRIBUTION

All the models described in this paper have the surface density distribution, X, of a flat Kuz’'min
disc (model 1 of the sequence proposed by Toomre 1963)

2(r) Mg (1 r2)_3/2 1
r)= +— ,
( 27b? b? W

where g is the fraction of the total mass, M, represented by the disc stars and b is a length scale.
The gravitational potential in the plane of this disc has the same form as that of a Plummer sphere,
so when g<1, the remaining mass can be thought of as residing in a spherically symmetric halo
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component having that volume density distribution, namely

3M(1-q) ( r2>*W2
=1+ :

, o
o(r) 4xb? b?

with the same length scale as the disc.

As the fraction of the radial force in the plane due to the disc is also equal to g, all equilibrium
distribution functions for the pure disc need only to be rescaled by g to be used as equilibrium
functions for arbitrary q. The circular velocity curve in our models (dashed curve in Fig. 1) has a
maximum at a radius of rm=\/27;,

We limit the radial extent of the infinite disc (equation 1) in two ways: first we discard all stars
having sufficient energy to reach radii greater than 6b, then, in order to avoid too abrupt a
discontinuity, we taper the edge in angular momentum from r=5b to r=6b.

2.2 AXISYMMETRIC STABILITY

Toomre (1964) showed that the local axisymmetric stability of a stellar disc is governed by the
parameter Q:

o1
3.36G%

where o, is the dispersion of the radial velocity components of the disc stars (assumed small and
Gaussian) and » is the usual epicyclic frequency. When Q exceeds one, local axisymmetric
stability is ensured.

Since the surface density enters in the denominator, the Q in a model with g <1 is simply higher
everywhere, by the factor g ™!, than in the full-mass disc having the same form of distribution
function.

0- @

2.3 DISTRIBUTION FUNCTIONS

Our principal reason for selecting the Kuz’min/Toomre disc was that it is relatively easy to devise
distribution functions for its simple potential well. Two families were already available in the
literature, and were able to devise another when neither offered the Q profiles we sought.

2.3.1 Miyamoto functions

Miyamoto (1971) proposed a set of distribution functions for this disc in which the mean orbital
velocity of the stars is a fixed fraction of the circular velocity. They are characterized by a free
parameter, my,, which determines this fraction, and therefore the degree of pressure support. In
Fig. 1(a)~(c) we plot the radial run of (v}, 0,, and Q for the my;=5 function for g=1, taking into
account our form for truncation of the disc at r=6b. Although o, decreases with radius, Q
increases outwards.

A small proportion of retrograde stars, having orbital speeds almost equally large as the direct
stars, are required to keep the distribution function positive everywhere. We used the minimum
fraction of retrograde stars to construct the initial velocities for our simulation.

2.3.2 Kalnajs functions

Kalnajs (1976) proposed an alternative family for the same disc, again characterized by a free
parameter, my, which determines the degree of non-circular motion. When mg=3, the
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Figure 1. Radial variations of (v). ¢,, and Q for all distribution functions of the Kuz’'min/Toomre disc used in this
paper. The dashed curve shows the circular velocity for this potential. All other curves are computed from the actual
distribution functions used, taking into account our adopted taper of the disc at the outer edge, and the fractions of
retrograde stars used. (a)-(c) A Miyamoto (1971) type function with my=5. (d)-(f) Kalnajs (1976) type functions
withmyg=4,5,6,7,8,12, 15, 20 and 30. (g)-(i) Composite Kalnajs functions made up of m =20 and an my¢=3 or 4
function. (j)—(1) Generalized Kalnajs (see Appendix A) functions with (m, , 8)=(5,2), (6, 3).(8,4) and (3.5, —4). In
all cases, the lowest value for m gives the highest Q at large radii. Q values for models with ¢ <1 should be rescaled by

the factor ¢!
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distribution function is independent of angular momentum, and the disc is completely pressure
supported. As my rises, rotational support increases and as mg— %, the orbits of all stars become
circular. The radial velocities of the stars have a distribution close to Gaussian, as do the
tangential components away from the centre.

Fig. 1(d)-(f), show the mean tangential speed, velocity dispersion and Q profiles for those
members of this family used here, again for g=1 and taking into account our tapering towards the
edge (which causes the steep rise in Q at the outer edge). While the cooler models have a nearly
constant value over most of the disc, Q also rises outwards in the hotter models of this family.

Since these functions depend upon only even powers of the angular momentum, J, any
arbitrary fraction of stars can have retrograde orbits. In our simulations, we introduce retrograde
stars near the centre only, according to the prescription given in Paper I, in order to make the
distribution of tangential velocities smooth across zero, as shown in Fig. 1(d).

2.3.3 Composite functions

More distribution functions can be constructed by superposition of two or more equilibrium
functions, thereby generating multiple ‘populations’ within the disc. We have experimented with
just two such models. In each, 50 per cent of the mass was in a cool (my=20) population and the

other 50 per cent in a hot (mg=3 or 4) population.
The total distributions of stellar radial velocities in our two composite models, therefore, have

both broad and narrow components. In Fig. 1(g)—(i) we show the same properties as before,
defined by calculating the first or second moments of this combined distribution function. Each
population had a separate fraction of retrograde stars according to the value of /. which we adopt
for that function in the single population models. For the mg =3 component, we set J.=, causing
equal numbers of stars to orbit in each direction and the population to have no net rotation.

Clearly it is possible to construct models having an infinity of populations by combining suitably
weighted fractions of an entire set of functions, but we have not done so.

2.3.4 Generalized Kalnajs functions

Neither of the published families of distribution functions offers models with declining Q profiles,
or even hot discs with constant Q. We wished to experiment with hot models having flat or
declining Q profiles, since this seemed to us to be the likely situation in real galaxies.

It proved surprisingly difficult to achieve such an apparently simple objective. A shallow
potential well is unable to confine stars with large energies of non-circular motion to the central
part of the disc. For declining Q profiles, o, must decrease more rapidly than Z/x, but, in our
chosen mass distribution, this combination decreases faster than the square root of the potential!

However, we were able to devise a distribution function giving a Q profile peaked towards the
middie, which we describe more fully in Appendix A. These functions have two free parameters,
my and S. When g is zero they reduce to a Kainajs function with m; =myg, whereas when it is
positive or negative the centre is respectively hotter or cooler than the equivalent Kalnajs
function. We plot the same properties for the members of this family used in our simulations in
Fig. 1(j)-(1).

An unpleasant feature of these functions when >0 is that f does not decrease monotonically
with energy at fixed angular momentum. As a result, the radial velocity profiles are double
peaked, which is why the second moment can be higher without introducing unbound stars.
Again we have naively taken the second moment of the radial velocity distribution to define Q in
equation (2) even where the distribution is non-Gaussian. Contours of this function are given for
one model in Fig. 7.
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3 Computational implementation

We represent the disc component by 40000 particles chosen from these distribution functions
according to the procedure described in Paper I. They are grouped in 10s but otherwise smoothly
distributed in energy and angular momentum.

The particles are constrained to move in a plane and their mutual gravitational forces are
derived from the usual softened potential, with the softening length being 0.2b. The polar grid
used for the force determination has 70X 96 points and forces are further smoothed by discarding
all azimuthal Fourier harmonics higher than nine. By spacing 10 stars almost evenly around a
ring, we contrive that tangential forces are very small at the start.

Both disc truncation and gravity softening alter the central attraction of the active disc. We
compensate for these effects by adding a correcting force throughout the simulation that is the
difference between the theoretical and computed central attraction at the start.

Our time-step was 0.08(b*>/GM)'/? and the grid length unit was set equal to 0.1b. However, we
use units such that G=M=>b=1 for all quantities specified in this paper.

Further details of the numerical method are given in Paper I and references therein.

4 Validity of the plane approximation

In common with most theoretical work on stellar discs, both analytic and numerical, we neglect
motions normal to the plane. This simplifying approximation is likely to be valid only where the
thickness of the disc is small, and we therefore require that the disc remains reasonably thin even
when hot.

It seems reasonable to assume that the velocity dispersion normal to the plane, o,,, might be
half that of the radial component in the plane. This is ample to avoid ‘fire hose’ instabilities
(Toomre 1983) and in accordance with the observed state in the solar neighbourhood. Using this
condition, and the standard formula for the local z scale of an isothermal sheet (zo=07%,/7GZ)
we find that z, rarely exceeds 0.2b, or less than S per cent of the disc outer radius, for even our
hottest models.

The gravitational softening which we introduce in our models can be interpreted physically in
two equivalent ways: either the gravitational field of the particles is that in a plane offset a
distance, d, from the galactic plane, or each of our particles has a finite extent - they are in fact
Plummer spheres with a scale size of our softening length. Either interpretation implies that much
of the thickness correction which could be required for our hot disc models is quite naturally made
by the use of a softening length comparable to the likely thickness.

Four groups (Hockney & Brownrigg 1974; James & Sellwood 1978; Hohl 1978; Combes &
Sanders 1981) have described fully three-dimensional numerical simulations of disc galaxies
but were forced, through limitations of resources (both memory and cpu time), to work with
worryingly coarse grids; in particular, the thickness of their discs scarcely exceeded one grid cell.
Only when the discs were made quite unreasonably thick did the evolution change at all, and then
only marginally (James & Sellwood 1978). We prefer to retain the spatial resolution afforded by a
two-dimensional grid and to let softening approximate the necessary correction for finite
thickness.

5 Results
5.1 DESCRIPTION OF MODELS

We have run simulations of 32 models, summarized in Table 1. In columns 1, 2 and 3 we give the
type of distribution function used and the values of the free parameter(s). Columns 4 and 5 give
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the values of g and J, (which determines the fraction of retrograde stars; see Paper I) and in
column 6 we indicate the duration of the run. A rotation period at the ‘turnover radius’ (ry,) is
14.32 in these units (G=M=b=1).

The evolution of two of these models is illustrated in Paper I and in many respects they are
typical. In the rapidly evolving cool discs with large g, the ‘S’ shaped feature which first appeared
quickly developed into a narrow bar and a transient ring. The more random motion in the disc,
the longer it took for feature to appear and the bars that formed were fatter with weaker
associated spiral structure and rings. In some very hot models, no visible structure developed at
all. As g decreased, the pace of the evolution was also slowed, but faint spiral features, apparently
unrelated to a bar, frequently surfaced in these cool discs before the formation of the bar.

In this paper we will focus on the growth of bi-symmetric (rn=2) disturbances in these models
and we will discuss features having different symmetries in a future publication. The m=2
disturbances nearly always dominate; features with higher rotational symmetries are noticeable
only in models with g=0.6, but even in these the final appearance is bar-like.

5.2 GLOBAL MODE RESULTS

We have attempted to fit a few discrete, exponentially growing modes to the Fourier spectra of all
these models, during the early part of their evolution (i.e. before the appearance of visible
structure in the particle distribution). The procedure we use is described in Paper I. We obtained
a satisfactory fit for most runs and give our estimates of the eigenfrequencies in columns 7-12 of
Table 1. The two modes with their frequencies given in parentheses may not be real, since not all
our conditions for an acceptable mode were fulfilled in these two cases. Column 13 gives the
quantity S, defined in Paper I, which indicates the relative magnitude of the residuals. The real
part of the eigenfrequency is twice the pattern speed (for an m =2 disturbance) and the imaginary
part is the growth rate.

The modes are arranged in Table 1 in order of decreasing pattern speed. In some cases the
second or third mode grew the fastest, but in all cases in which visible features appeared, we found
that it was the most rapidly rotating (not the most rapidly growing) mode which reached the
highest amplitude in the end, and which led to a bar. We therefore designate this the ‘bar mode’ in
the remaining discussion.

Fourier analysis of the few models with >0 reveals a rapidly evolving bi-symmetric instability
near the centre whose growth ceases abruptly before its amplitude is sufficient to cause any visible
distortion of the particle distribution. These instabilities scarcely rotate at all (the
eigenfrequencies during the growing phase are given in columns 11 and 12 in Table 1) and are
confined to the region where the distribution of radial velocities is double peaked. We believe
that they are caused by the unnatural properties of the distribution function and are unrelated to
rotational instabilities. We shall discount them in the discussion sections of this paper. A fuller
description of their properties is given in Appendix B.

5.3 ESTIMATED ERRORS

The reliability of these fits is reflected in the magnitude of § and in the quoted uncertainties,
which indicate the total range of acceptable frequencies found during the tests described in Paper
I. The number of unstable modes we were able to find was usually clear from the power spectra
(see Paper I), but many more could be present in the models having cool discs and small g than we
were able to identify with confidence. We give frequencies, with large uncertainties, for one or
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Table 1.

Type m B ¢ Jeo time  Re(wy) Im(wy) Re(w,) Im(wy) Re(w3) Im(w3) S
1 2 3 4 5 6 7 8 9 10 11 12 13
K 4 0 1.0 0.40 520 .336+,001 .020+.001 .07
K 5 0 1.0 0.30 200 .419%.002 .046%,003 .06
K 6 0 1.0 0.25 200 ,465+.002 .066%.003 .330+,004 .058%,005 .05
K 6 0 0.9 0.25 240 .427+,002 .046%.003 .02
K 6 0 0.8 0.25 340 .392+,003 .036+.002 .29 £,02 .035+.01 .23
K 6 0 0.7 0.25 480 .359+.001 .026%.002 .18
K 7 0 0.8 0.20 320 .419+,003 .041%£.003 .293%£,008 .055%.01 17
X 7 0 0.7 0.20 400 .386%,005 .020+.00S .307£,005 .018+.005 .249+,003 .016%.005 .27
K 7 0 0.6 0.20 520 .355+.001 .016%.002 .278%£,003 ,016+.002 .25
X 8 0 1.0 0.15 160 .538+,005 .100+.002 .07
X 8 0 0.9 0.15 160 .486+.,003 .067+.002 .328+,005 .055+.005 .03
X 8 0 0.8 0.15 240 .453%,001 .056%.001 .03
K 8 0 0.7 0.15 360 ,425+£,010 .028%,005 .365+,010 .025+.010 .269+,004 .032+£.008 .22
K 8 0 0.6 0.15 400 .364%.010 ,016%,010 .304%,005 .020+.010 .55
X 12 0 1.0 0.10 156 .602+,006 .112+,005 461,004 .098%.005 .06
X 2 0-0.9 0.10 188 .551%x,010 .085%.010 .327+.010 .074%.010 .17
K 12 0 0.8 0.10 200 .510%£.005 .060+.004 .420+£,005 ,063+.005 (.313x.004 .045%,010) .09
K 12 0 0.7 0.10 320 .471+,002 .047£.003 .410£.010 .042%.005 .290+.,010 .04 *,01 .13
K 12 0 0.6 0.10 400 .427+,003 .027+.003 .320+.010 .035+.010 .195+¢,010 .035+.01 .19
K 12 0 0.5 0.10 520 .38 +.01 .02 £,01 .37
K 15 0 0.6 0.10 380 .45 £,01 04 £,01 .32 £,03 .07 £,01 .34
K 20 0 0.5 0.04 532 .407+,005 .026%.010 .375%.01 .027+,015 .12
K 30 0 0.4 0.04 560 .395%+.,010 .017+.010 .60
C 20+3 0 1.0 320 .442%,004 .035+,001 .20
C 20+4 0 1.0 240 ,.500+,003 .096+,003 .05
M 5 0 1.0 128 .527+.002 .096%.001 .02
L 3.5-4 1.0 0,20 160 .528%,005 .100+,005 .07
L 5 2 1.0 0,70 564 (.27 £.01 .005£.005) .045+,01 .06 £.01 .20
L 6 3 1.0 0.60 608 .290+.,003 ,014%.010 .073+,005 .073+.005 .15
L 8 4 1.0 0.90 228 .345+x.010 ,035%.010 .02 .01 .075+,010 .10
L 8 4 0.9 0.90 360 .332+,003 ,.033+,005 .025%+,001 .041%,010 .15
L 8 4 0.8 0.90 392 .323+.010 .020t.01 .023+£,005 .045%,010 .28
L 8 4 0.7 0.90 220 -.003+.003 .053%+,005 .30

Notes to Table 1

Col. 1. The letters indicate the type of distribution function used: K - Kalnajs, C - composite Kalnajs, M ~ Miyamoto and L -
generalized Kalnajs.

Col. 2. The value of mg, my or m, as appropriate for the type of distribution function.

Cols 11 and 12. The values for the generalized Kalnajs models are for the different type of mode discussed in Appendix B.

two modes in these models, but these fits leave very large residuals. However, we are confident
that no m=2 disturbance grows more rapidly in these models than the highest listed growth rate.

No analytical results for this mass distribution are available for comparison with our data.
Gravity softening causes our method to systematically underestimate the growth rates that should
occur in completely flat discs, but we would argue, as in Section 4, that our growth rates are
probably more relevant to galaxies where hot discs would have a thickness comparable to our
softening length.

6 Stability requirements

6.1 RANDOM MOTION VERSUS HALO MASS

Table 1 shows quantitatively how both halo mass and random motion slow the growth of bars,
either separately, or in concert. This is illustrated in Fig. 2(a), where we plot growth rate of the
bar mode as a function of these two parameters. As a measure of the extent of random motion we
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Figure 2. The growth rate of the bar mode as the fraction of active mass and random motion content of the disc are
varied. The sizes of the circles in (a) are proportional to the growth rate in each of the models. (b) Shows the distance
of each point from the best-fit plane, the error bars indicating the total range of our (internally) estimated
uncertainty. The symbols denote the type of distribution function: circles — Kalnajs functions, diamond ~ Miyamoto
function, crosses — composite Kalnajs functions, triangles — generalized Kalnajs functions +ve 8 and the square -
generalized function with —ve 8. The dashed line in (a) shows the intersection of the best fit plane with the growth
rate=0 plane.

use the ratio 0,/(v), evaluated at r,,. This dimensionless ratio is a directly observable quantity.
(Unfortunately it is subject to considerable observational uncertainty, since it may vary quite
strongly with radius. We were unable to find an alternative easily observable estimator of
pressure support that did not suffer from some such defect.)

Fig. 2(a) clearly suggests that the points lie on a simple surface in this three-dimensional
volume, and we have found that a plane gives a satisfactory fit. The equation of the best fit plane is

Oy
growth rate=0.169 g —0.092

—0.048.
v

This fit is obtained when equal weight is given to all points, but the values of the three free
parameters change very little if the points are weighted by the inverse of our estimated
uncertainty. The quality of the fit to this plane can be seen in Fig. 2(b), which shows how far the
points deviate from the plane. The sizes of the error bars indicate the total ranges within which we
expect the growth rate to lie. There is perhaps some evidence that the surface is curved rather
than planar, but we do not feel that the data justify a fit with more free parameters.

6.2 BAR-STABLE MODELS

If we accept the planar fit, we find that zero growth rates should occur along the dashed line drawn
in Fig. 2(a). There are theoretical reasons to expect growth rates never to go precisely to zero (see
Section 7), but several of our models close to this line failed to form any visible structure
whatsoever for as long as we ran the experiments. We therefore consider this line to represent, for
practical purposes, the boundary of the bar-unstable region in this mass distribution.

Thus the growth rate of the bar mode can be effectively reduced to zero by increasing the
degree of random motion without the need for any halo mass at all. We can barely detect a
growing disturbance in our simulation in the model with the hottest disc (my =5 and f=2). It
appears to grow no faster than about one twentieth the rate of the bar in the mg =12 model, even
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though both are pure disc models with no halo component. The instability is therefore of no
practical significance since we evolved the model for 40 rotation periods, a time comparable to the
believed ages of galaxies, during which no visible feature appeared.

Our results are also consistent with previous studies of the stabilizing effects of halo mass. We
find that g=0.25 is the point of marginal bar stability in a disc with very little random motion.
However, models in this region of the plane were not featureless, but exhibited multi-arm
transient spiral instabilities before forming a bar. Previous experience suggests that even
bar-stable models would exhibit three- (or multi-) armed spiral patterns.

6.3 HOT CENTRES ARE ALL THAT IS REQUIRED

Toomre’s axisymmetric stability parameter Q (equation 2) combines random motion and the
disc-halo ratio. Being a locally defined quantity, its value varies with radius in our models as
shown in Fig. 1(c), (f), (i) and (1). In Fig. 3(a) we plot the mass weighted average value of Q over
the radius range r=0-r,, against growth rate of the most rapidly growing bi-symmetric mode
measured in these models. Only the two points drawn with dashed symbols lie off a very tight
correlation; these two models have small values of g (namely 0.5 and 0.4) and are the only two to
possess more rapidly growing m=3 modes than the most unstable m=2 mode. If all
non-axisymmetric modes were considered these two points should be moved upwards: the growth
rates of the most rapidly growing disturbances were about 0.3, for the cooler of these two, and
0.25-0.3 for the other.

However, the growth rates of the most unstable bi-symmetric modes correlate very weakly, if
at all, with the value of Q far out in the disc. To illustrate this we plot growth rates against Q values
at r=\/§3 in Fig. 3(b). This arbitrarily chosen radius encompasses two thirds of the disc mass;
however, any other large radius gives a similar plot. From this we infer that the growth rates of
unstable modes are insensitive to the degree of random motion far out in the disc.

6.4 A NON-AXISYMMETRIC STABILITY CRITERION?

The correlation in Fig. 3(a) suggests that Q=2.2 is all that is required to prevent
non-axisymmetric instabilities in this mass distribution, irrespective of the fraction of halo.

.
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Figure 3. The growth rate of the fastest growing bi-symmetric mode in each of the models as functions of (a) the mean
O between the centre and r,, and (b) the value of Q far out in the disc (»=1/8b). The symbols have the same meaning
asin Fig. 2. The two points drawn with dashed error bars are from models having more rapidly growing m =3 modes.
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Although we omit discussion of them in this paper, we note here that there were no detectable
multi-armed instabilities at these high QO values either.

A similar conclusion can be inferred from two other published N-body experiments where
reliable Q values are given. Hohl (1971) experimented with cooling his high-Q model and
reported that instabilities quickly intervened to reheat the disc whenever he tried to cool it below
Q=2. Sellwood & Carlberg (1984) found an asymptotic approach to a limiting value of Q in the
range 2-2.5 in an uncooled model, independent of softening. In their case, the spiral
perturbations responsible for the heating seemed unable to develop at this limiting Q. Both these
calculations study mass distributions different from that used here, but indicate very similar
limiting Os. Most other published experiments either do not quote a QO value or are unreliable
(e.g. because they use too coarse a spatial grid).

Thus evidence from N-body models seems to indicate that Q=2-2.5 might be a general
non-axisymmetric stability criterion. Unfortunately, counter examples are aiready known from
the analytical results of Kalnajs (1972) for uniformly rotating discs and in Zang’s (1976) results
from self-similar discs. We would, however, like to point out that both these special potentials
probably admit a more restricted range of instabilities than those available to a disc with a more
general rotation curve.

6.5 COMPOSITE MODELS

Our two experiments with particles chosen in equal proportions from two very different
distribution functions do not stand out from the general trends described so far. Their instabilities
are simply characterized by the total extent of random motion in the composite steilar
distribution.

Both of these models have 50 per cent of their mass in an m¢ =20 function and the remainder in
a much hotter function. It is interesting to compare these to another of our models having the
same fraction of mass in the same cool component but with the remaining mass frozen. From
Table 1 we see that the growth rate of the bar mode is reduced by almost a factor of 3 as a strongly
rotating mg =4 hot component is replaced by a non-rotating mg=3, and that the growth rate is
lowered by a further 33 per cent when the non-rotating but active component is replaced by a
frozen halo.

Thus the bar mode is able to elicit a strong supporting response from a hot but still rotating
population, but a considerably weaker one from the non-rotating population, even when
confined to the plane. Were the hot population to have a spheroidal distribution, very few stars
would have orbits which remain close to the disc plane and the supporting response would be very
small. The resulting growth rate would probably be close to that we observe in the frozen halo
model.

7 Mechanism for the modes

Toomre (1981) proposes a mechanism for bar forming modes involving feedback to the swing
amplifier via waves passing through the centre. We interpret our results within the framework of
this theory.

7.1 NO INNER LINDBLAD RESONANCES

In Fig. 4(b) we plot the growth rates of the bar modes against their pattern speeds. The dashed
horizontal line in this plot indicates the maximum of Q-x/2 in our adopted potential — the
principal frequencies for nearly circular orbits are shown in Fig. 4(a). The fact that all pattern
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speeds of the bar modes are higher than this implies that none has an inner Lindblad resonance.
Thus the main condition for the existence of Toomre’s feedback cycle is fulfilled.

7.2 CORRELATION

Fig. 4(b) shows also that higher pattern speeds are associated with higher growth rates. The
values given by Kalnajs (1978), Aoki et al. (1979) and Toomre (1981) present a similar
correlation.

The apparent scatter in the trend is not simply due to noise. Sets of points from models having
similar distribution functions but different fractions of active disc lie on similar but systematically
displaced curves in this plane, as shown in Fig. 4(c). The symbols joined by lines in this figure
come from models employing the same distribution function, but different values of g. The
displacement is in the sense that hotter functions have slightly lower pattern speeds for the same
growth rate.

7.3 SWING AMPLIFICATION

In Toomre’s picture, there are two factors which determine the growth rate: the gain of the
amplifier as the wave swings from leading to trailing, and the time required for it to travel to the
centre and back to the same point in the cycle. We can use local theory to estimate the
amplification factors and travel times (now that we know the pattern speed for each model) and
can therefore obtain a local estimate of the growth rate for comparison.

We adopt the simplest local theory to estimate the amplification factor, that designated
GLB+LSK in Toomre’s (1981) article. We use the shear rate and Q at some appropriate radius
for the mode and allow for softened gravity in a straightforward way (see Sellwood & Carlberg
1984). Toomre demonstrates that this crude approximation gives results surprisingly close to
those from more careful treatments. The maximum growth factor (MGF) obtainable requires an
optimal initial phase for the leading wave. Since all other phases produce less amplification, and
could even lead to a reduced amplitude, Toomre (private communication) now favours
»[MGF+1/(MGF)] as a more representative estimate of the actual amplification to be
expected. This we denote as net growth factor (NGF).

@
.

growth rate
©
©

_e_..
&
Sk

.00
In (NGF)

Figure 5. Growth rate of the bar mode as a function of swing amplification factors [In (NGF)] computed from local
theory. The symbols have the same meaning as in Fig. 2(b).
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To calculate this quantity, we must choose a radius to determine the relevant shear rate, Q and
wavelength. It is clear from Toomre’s (1981) fig. 8 that the outgoing wave turns back before
reaching co-rotation, and that its amplitude and pitch angle change continuously with radius. No
single radius can be identified as the point on the cycle where all the amplification occurs.

Thus any radius we choose has to be a compromise where the NGF is reasonably representative
of the amplification round the cycle. After experimenting with several choices, we found that the
radius where m(Q2—Q,)=~Y2x seemed appropriate.

We plot In (NGF) against the growth rates of the bar mode at this radius in Fig. 5. The Kalnajs
functions (circles) lie in the broad band which defines a correlation between these two quantities,
which in itself is good evidence that the growth rate is related to swing amplification. All three
points above the trend — namely: the Miyamoto model (diamond), one composite model (cross)
and our generalized function with a cooler centre (square) — have rising Q profiles, whereas the
points which lie below — our new functions with hotter centres (triangles) — have declining Q
profiles. Thus we could reasonably attribute these departures from the correlation to our choice
of radius, which for these models may be somewhat unrepresentative of the amplification actually
occurring around the cycle.

7.4 LOCAL ESTIMATES OF GROWTH RATES

We can estimate the group velocity of the waves over at least part of the cycle from WKBJ theory
(Toomre 1969). This involves finding the radius range where solutions to the Lin—Shu-Kalnajs
dispersion relation exist in our models at the pattern speed which we measured. No steady WKBJ
solutions existed for nine of our models (with gravity softening corrections included), but for the
remainder we were able to calculate the WKBJ group velocity and hence make a very rough
estimate of the travel time.

Thus, for the majority of our models we can derive a purely local estimate of the growth rate
from the ratio In (NGF)/(travel time), under the additional assumption that our travel times are
the complete cycle times. In Fig. 6 we compare these local estimates to our measured values for
those models where WKBJ solutions exist. Considering the rough nature of the local treatment,
the correlation is surprisingly good, and is strong evidence in favour of Toomre’s theory.
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Figure 6. Estimates of growth rates derived from rough local theory compared with our measured values. Local
estimates can be made for only 23/32 of our models, but for these they are able to account for about half our observed
growth rates. The dashed line has unit slope.
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The local estimates are typically about half the actual growth rates; however, a few are closer
than this while others are much further away. It is not too surprising that local theory consistently
underestimates growth rates, since the amplification factors from global calculations (Toomre
1981, fig. 7) are larger, and since we have also made no allowance for density gradient
corrections, which would further increase the amplification.

8 Comparison with observations

Our results can be used to give some indication of the minimum fraction of halo mass required for
disc stability when allowance is made for random motion.

Since all our models have the same rotation curve, the marginal stability line of Fig. 2(a) applies
only to this one mass distribution. However, we consider that stability requirements would not be
very different in other potentials where the rotation curve rose gently over a wide range of radii.
We would expect our results to apply to low-luminosity galaxies, if any, since Rubin (1983) and
her co-workers find that these generally have gently rising rotation curves.

Unfortunately, few measurements of velocity dispersions in disc galaxies are available and
hardly any where the rotation curve rises gently. The best case is NGC 7184 reported by van der
Kruit & Freeman (1985). Their table 3 and fig. 6 suggest a value for 0,/(v) of 165/238=0.69 at the
‘turnover radius’ i.e. where the rotation curve becomes flat. Reading from our Fig. 2(a), we find
that the spheroidal material in this galaxy need provide merely 30 per cent of the central attraction
at this radius for the entire system to be stable. This is a considerably smaller fraction than would
be required in the absence of the observed pressure support.

Values of 0,/(v) at the turnover radius in other galaxies are: 0.6 for NGC 1553 (Kormendy
1984), 2.2 for NGC 1068, 0.6—0.7 for NGC 488 (Kormendy & Illingworth 1985, in preparation)
and 0.4-0.6 for NGC 3115 (Illingworth & Schechter 1982) but the rotation curves of these
galaxies probably rise too steeply for our stability condition to be applicable.

9 Conclusions

In this paper we have presented a thorough investigation of the role of random motion in
controlling bi-symmetric instabilities in one simple mass distribution. Our main results are
summarized in Fig. 2(a) which shows that it is possible to reduce the growth rate of the bar
instability to a completely insignificant level merely by increasing the random motion amongst the
disc stars. It also shows that there is a simple trade-off between the random motion required for
stability and the fraction of the radial force arising from a spheroidal bulge/halo material.

Our results are probably relevant to only those galaxies having gently rising rotation curve, and
for these we give a simple criterion for the fraction of halo mass required for bar stability in terms
of the directly observable ratio 0,/(v). The velocity dispersion measurements in the current
literature provide only one galaxy for which we can deduce the bulge/halo mass required. In this
case taking random motion into account reduces the central attraction required from the
bulge/halo from about 70 to 30 per cent of the total force. Thus the observed degree of random
motion makes a substantial contribution to stability.

We find that the growth rates of the bar modes correlate strongly with the central value of Q,
but scarcely at all with the Q value further out in the disc. Thus we deduce that only hot disc
centres are required, and that the outer discs can be cool without making an appreciable
difference to the overall bar stability.

Comparison with resuits from other reported N-body experiments leads us to suggest
tentatively Q=2-2.5 at all radii as a sufficient criterion for non-axisymmetric stability in all disc
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mass distributions. Where Q is lower than this, bar or spiral instabilities should be present which
will ultimately heat the disc until it is stable.

We find good evidence in support of Toomre’s (1981) mechanism for bar modes — local theory
estimates based on his suggested feedback loop agree with our measurements to the accuracy we
could reasonably expect.

Our measurements are confined to one particular family of mass models. Whereas similar
results are available for uniformly rotating discs (Kalnajs 1972) and for self-similar discs (Zang
1976), our results are for one instance of more general discs. But it would be dangerous to apply
our quantitative results to other mass distributions until it has been demonstrated that a wide
variety of models behave in a similar manner.
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Appendix A

The distribution functions given by Kalnajs (1976) are of the form ™~ g,,(x) where e and x are
dimensionless quantities related to the specific energy, E, and specific angular momentum, J,
through

E
=—— and x=—(-2E)/*——.
#(0) r«#(0)
Kalnajs also defines the following auxiliary variables
¢ 64

= and y
#(0) r+9(0)

where ¢ is the gravitational potential and

r.=1lim rg/¢(0).

r—>o

Equilibrium distribution functions can be derived by writing the surface density, X, as a
function of both w and y. Kalnajs favours the factorization

Z(w,y)=w"2(y),  m>0

which gives the distribution function noted above. We experimented with a number of alternative
factorizations and selected

Z(w, y)=w"exp (—pw?)r'(y)

with £ an additional free parameter. Following the procedure set out by Kalnajs we find the
distribution function to be

k
feu)= p(ﬂ) - 12( Py,
k=0

Xi [i_ﬁi (3/2—@/2>] (_l>l Tk+21+m+1) "

i=o Li=o J! I—j 4/ TI+0.5TQRk+m+I1)

This double power series in e and x is the most convenient form we have found for computational
purposes.

The additional free parameter, 3, allows us to generate a wider class of distribution functions
than those given by Kalnajs. The range of #is restricted by the requirement that the phase-space
density be positive everywhere.

The m; =S5, f=2 distribution function is illustrated in Fig. A1. The contours in this figure are
drawn at levels exp (—n?/8)Xthe peak; the plus sign shows the circular velocity and the outer
circle is drawn at the escape velocity. The density of retrograde stars results from our choice of
J.=0.7. 1t is clear from this figure that the velocity distribution is double peaked and, in
particular, the position of rest at the centre of the disc is a local minimum.

These rather unnatural properties may be inevitable if only distribution functions separable in e
and x are considered. More general functions may prove more satisfactory, but we have not
explored this possibility.
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Figure Al. Contours of the m,; =35, =2 function at four radii. The centre at r=0 is a local minimum and the
surrounding ridge is marked by a dashed circle. Elsewhere, the function maxima are marked with crosses and the plus
sign indicates the circular velocity. The outer circle in each case denotes the escape velocity. The retrograde part is
determined according to the rule given in Paper I, with J.=0.7.

Appendix B

Here we describe the behaviour of the additional instability which afflicts only those models
started with distribution functions having £>0.

In addition to the usual rotational instabilities, these models possessed a single, scarcely
rotating mode with a very high growth rate. Our estimated eigenfrequency is given in columns 11
and 12 of Table 1 for each of these models. The mode was bi-symmetric, but entirely localized to
the region where the distribution function was double peaked, i.e. within about 2b of the centre.

Fig. A2 illustrates the typical behaviour of one of these models — that which used the m; =8,
B =4 distribution function. Here we plot contours of over-density at a number of moments during
the run. Contour levels are drawn at (20n—10) per cent of the peak value in each plot, recorded in
the lower right-hand corner. The two circles are drawn at radii of 0.5b and 5b; data outside this
region are excluded since the comparatively low density of particles in those regions gives rise to
too much noise.

The rapid growth of this mode ceases very abruptly at about time 100 when its peak relative
amplitude is about 20 per cent. This limiting amplitude is so small that the distortion of the
particle distribution produced in this or any of the other cases is scarcely visible — it is revealed
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Figure A2. Contours of over-density at four moments in the full-mass disc model which used the m; =8, =4
distribution function. The slowly rotating mode reaches its peak amplitude around time 100, after which an orthodox
rapidly rotating bar forming mode can be seen. The latter grows more slowly but ultimately dominates the density
distribution.

only in such contour plots or through Fourier analysis. The amplitude of this weak bar feature
remains nearly constant after time 100, but a more orthodox bi-symmetric mode can be seen,
apparently growing linearly, further out in the disc. The second mode has a clear spiral form at
times 140 and 180 in Fig. A2, but when it reaches an over-density of order unity, the spirals
quickly fade, leaving a strong bar. In all models where we followed the evolution through to
completion, the non-linear development of the rapidly rotating second mode is very similar to
that of the bar mode in the models with other distribution functions.

Fig. A2 also illustrates how slowly the weak mode rotates and how it is completely decoupled
from the bar mode. By the last frame it is visible only in the bottom contour.

It seems evident that this instability arises from the unnatural form of the distribution function,
since the velocity distribution is double peaked. One might naively expect it to be related to the
well-known two-stream instability of plasmas. It is curious that it should be bi-symmetric.
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