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Abstract

Late-onset ataxia is common, often idiopathic, and can result from cerebellar, proprioceptive, or 

vestibular impairment; when in combination, it is also termed cerebellar ataxia, neuropathy, 

vestibular areflexia syndrome (CANVAS). We used non-parametric linkage analysis and genome 

sequencing to identify a biallelic intronic AAGGG repeat expansion in the replication facsstor C 

subunit 1 (RFC1) gene as the cause of familial CANVAS and a frequent cause of late-onset ataxia, 

particularly if sensory neuronopathy and bilateral vestibular areflexia coexist. The expansion, 

which occurs in the poly(A) tail of an AluSx3 element and differs in both size and nucleotide 

sequence from the reference (AAAAG)11 allele, does not affect RFC1 expression in patient 

peripheral and brain tissue, suggesting no overt loss of function. These data, along with an 

expansion carrier frequency of 0.7% in Europeans, implies that biallelic AAGGG expansion in 

RFC1 is a frequent cause of late-onset ataxia.

Late-onset ataxia, postural imbalance, and falls are a frequent reason for neurological 

consultation. Physiologically, motor coordination is achieved under visual control thanks to 

the cerebellar integration of proprioceptive information conveyed by large-fiber sensory 

neurons and vestibular inputs. Failure of any or a combination of these systems can result in 

ataxia1–6. Both acquired and genetic causes are known, but a large proportion remains 

idiopathic.

Previous studies suggested that there is a spectrum of clinical signs, from pure idiopathic 

late-onset cerebellar degeneration (ILOCA) through to the combined degeneration of the 

cerebellum and its vestibular and sensory afferents, which has been named CANVAS (Fig. 

1a)7. CANVAS is an adult-onset, slowly progressive neurological disorder characterized by 

imbalance, sensory neuropathy (neuronopathy), bilateral vestibulopathy8, chronic cough, 

and occasionally autonomic dysfunction9. Typically, sensory action potentials and 

somatosensory potentials are absent throughout, brain magnetic resonance imaging (MRI) 

shows cerebellar atrophy, and vestibular testing is consistent with impaired vestibular 

function bilaterally9–17. Late-onset ataxia and CANVAS are usually sporadic, but 

occasionally occur in siblings, raising the possibility of recessive transmission. However, 

initial attempts to identify the underlying genetic defect by whole-exome sequencing were 

unsuccessful.

Using non-parametric linkage analysis and whole-genome sequencing (WGS), we identified 

a recessive intronic AAGGG repeat expansion in the RFC1 gene as a cause of familial 

CANVAS. The expansion occurs in the poly(A) tail of an AluSx3 element and differs in 

both size and nucleotide sequence from the reference (AAAAG)11 allele. Screening of 

additional sporadic cases with late- onset ataxia confirmed the presence of the mutated 

AAGGG repeat expansion in 22% of them, and in higher percentages if sensory 

neuronopathy and/or bilateral vestibular areflexia coexisted, suggesting that it represents a 

frequent and underrecognized cause of late-onset ataxia.
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Results

Genetic study.

We genotyped 29 individuals (23 affected and 6 unaffected) from 11 families (Fig. 1b). The 

majority of the families consisted of affected sibships, except for two first-degree cousins 

from non-consanguineous families (Fam 5b-2 and Fam 6b-1). None of the families had 

convincing evidence of vertical disease transmission.

Assuming a recessive mode of inheritance, non-parametric linkage analysis identified a 

single peak at position 4p14 with a cumulative maximum heterogeneity logarithm of the 

odds (HLOD) score of 5.8 (Fig. 2a). Haplotype analysis defined a 1.7-Mb region between 

markers rs6814637 and rs10008483 (chr4:38977921–40712231) where, within single 

families, affected siblings shared the same maternal and paternal alleles as opposed to 

unaffected brothers and sisters, who had at most one of them (Fig. 2b). The region contains 

21 known HUGO Gene Nomenclature Committee genes (Supplementary Table 1). 

Homozygosity mapping in consanguineous family Fam 7 showed that the previously 

identified 1.7-Mb region is encompassed in a larger run of homozygosity of 12 Mb shared 

by the affected siblings (Supplementary Fig. 1). Of interest, inside the 1.7-Mb region, four 

single-nucleotide polymorphisms (SNPs; rs2066790, rs11096992, rs17584703, and 

rs6844176, bold highlighted) mapping inside a region encompassing all exons of RFC1 and 

the last exon of the WD repeat domain 19 (WDR19) gene were shared by all affected 

individuals from different families except for individual Fam 5b-2, raising the possibility of 

a founder haplotype (Fig. 2c,d).

Whole-exome sequencing was previously performed in seven individuals (Fam 1–1, Fam 1–

2, Fam 1–3, Fam 3–1, Fam 3–2, Fam 4–2, and Fam 4–3) from three unrelated families 

(Fam1, Fam3, Fam4), but did not identify recurrent non-synonymous variants within the 

coding regions of the genes encompassed in the 1.7-Mb region (data not shown). We next 

performed WGS in an additional six affected individuals (Fam 2–2, Fam 5a-2, Fam 6a-1, 

Fam 7–1, Fam 8–2, and Fam 8–3), one unaffected individual (Fam 8–1) from four unrelated 

families, and one sporadic case (s9). The analysis of non-synonymous and copy number 

variants did not reveal changes recurring in the affected families. By visually inspecting the 

aligned paired reads inside the 1.7-Mb region, we noted in all CANVAS patients a reduced 

read depth in a region encompassing a simple tandem (AAAAG)11 repeat at position 

chr4:39350045–39350103 (hg19, Fig. 3a). Inside the microsatellite region, the reference 

(AAAAG)11 repeat was replaced in patients by a variable number of AAGGG repeated 

units, which were detected on the reads mapped to either side of the short tandem repeat 

(STR). However, none of the reads spanned across the microsatellite region from one side to 

the other, suggesting the presence of a biallelic expansion of the AAGGG repeat unit (Fig. 

3b). WGS from an unaffected sibling (Fam 8–1) showed an equal distribution of interrupted 

reads containing the mutated AAGGG repeated unit change as well as reads containing the 

AAAAG repeat.

We then performed repeat-primed PCR (RP-PCR) with primers targeting the mutant 

AAGGG pentanucleotide unit and confirmed the presence of an AAGGG repeat expansion 

in all affected members from 11 families, as well as in unaffected carriers (Fig. 3c). Flanking 

Cortese et al. Page 3

Nat Genet. Author manuscript; available in PMC 2019 August 26.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



PCR using standard conditions failed to amplify the region in all patients, suggesting the 

presence of a large expansion on both alleles, as opposed to their unaffected siblings for 

whom at least one allele could be amplified by PCR (data not shown).

We next screened a cohort of 150 patients diagnosed with sporadic late-onset ataxia and 

identified an additional 33 (22%) sporadic cases carrying the recessive AAGGG repeat 

expansion, as defined by a positive RP-PCR for AAGGG repeat unit and the absence of 

PCR-amplifiable products by standard flanking PCR. The percentage of positive cases 

increased to 63% (32 out of 51) if cases with late-onset cerebellar ataxia and sensory 

neuronopathy were considered and to 92% (11 out of 12) in cases will full CANVAS 

syndrome. Taking advantage of two informative SNPs (rs11096992 and rs2066790), using 

PCR and direct sequencing, we observed that all additional sporadic cases except for 

individual s23 shared the same haplotype as familial CANVAS cases.

Using long-range PCR, we amplified and confirmed by Sanger sequencing the presence of 

the AAGGG expansion in all patients (Fig. 3d). However, long-range PCR did not allow 

sizing of the repeat expansion, since PCR is error-prone and contraction of repeated regions 

during PCR cycling has been demonstrated previously18. Therefore, Southern blots were 

conducted in 34 cases; they confirmed the presence of biallelic large expansions in all 34 

cases. Biallelic expansions could be visualized as two distinct bands in individuals carrying 

expansions of different sizes, or one thick band if the expanded alleles had a similar size 

(Supplementary Fig. 2). Four unaffected siblings from four families were also included, and 

they all carried one expanded and one normal allele. Although the expansion size varied 

across different families, ranging from around 400 to 2,000 repeats, in the majority of cases 

approximately 1,000 repeats were observed. Repeat size was relatively stable in siblings 

within single families. There was no association between age at onset and the number of 

AAGGG repeat units on either the smaller or larger allele (n = 34; r = +0.007, P = 0.97 and r 

= −0.04, P = 0.81, respectively).

Polymorphic conformations and allelic distribution of the STR locus in the normal 

population.

Recessive AAGGG expansion, as defined by the combination of positive RP-PCR targeting 

the AAGGG repeat and the absence of a PCR-amplifiable product on flanking PCR, were 

not observed in 304 healthy controls screened. RP-PCR analysis targeting the AAGGG 

repeat showed that 0.7% (4 out of 608 chromosomes tested) carried an AAGGG expansion 

in the heterozygous state. Southern blot analysis was performed and confirmed the presence 

of an expanded allele in all of them. The chr4:39350045–39350103 locus, where the 

expansion resides, was shown to be highly polymorphic in the normal population and, 

besides the rare AAGGG expansion allele (AAGGG)exp, three other conformations were 

observed: (AAAAG)11; (AAAAG)exp; and (AAAGG)exp (Fig. 4a). The (AAAGG)exp often 

showed interruptions and nucleotide changes of the expanded sequence. By a combinatory 

approach of flanking PCR, RP-PCR targeting one of the three possible nucleotide sequences, 

as well as Southern blot and Sanger sequencing in selected cases, we observed an allelic 

distribution of 75.5% (n = 459) for the (AAAAG)11 allele, 13.0% (n = 79) for the 

(AAAAG)exp allele, 7.9% (n = 48) for the (AAAGG)exp allele, and 0.7% (n = 4) for the 
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(AAGGG)exp allele (Fig. 4b). The average size of (AAAAG)exp ranged from 15 to 200 

repeats (mean ± s.d. 72 ± s.d. 43), and (AAAGG)exp ranged from 40 to 1,000 (mean ± s.d. 

173 ± s.d. 232) (Fig. 4c).

Eight healthy individuals had biallelic repeat expansions of a distinct repeated unit: 

(AAAAG)exp/(AAGGG)exp in one case; (AAAGG)exp/(AAGGG)exp in one case; and 

(AAAAG)exp / (AAAGG)exp in six cases. Twenty-two cases probably had two expansions of 

the repeated AAAAG unit and nine of the repeated AAAGG unit, as defined by a positive 

RP-PCR for the target repeat and two distinct bands on the Southern blot, although we 

cannot exclude that one of the two alleles may be characterized by a distinct nucleotide 

sequence, which was not considered in the present study. Indeed, nine additional individuals 

had no PCR-amplifiable product on flanking PCR and were negative for RP-PCR targeting 

the AAAAG, AAAGG, or AAGGG repeated units, suggesting the potential existence of 

other possible allelic conformations in 3% (n = 18) of tested chromosomes. Southern blot 

analysis could not be performed because of insufficient amounts of DNA in these cases.

The haplotype associated in most patients with the AAGGG repeat expansion has an allelic 

carrier frequency in the 1000 Genomes Project control population of 18%. Based on 

rs11096992 and rs2066790 genotyping, the disease-associated haplotype rs2066790 (AA), 

rs11096992 (AA) was absent in the recessive state from healthy individuals who carried two 

(AAAAG)11 alleles, two (AAAAG)exp alleles, or a compound (AAAAG)11/ (AAAAG)exp 

genotype, but was observed in three out of nine carriers of two (AAAGG)exp alleles and one 

healthy individual with the (AAGGG)exp/(AAAGG)exp alleles, suggesting its possible 

stronger association with both (AAGGG)exp and (AAAGG)exp configurations of the repeated 

unit.

Clinical features of patients carrying the recessive AAGGG repeat expansion.

The clinical features of 56 cases carrying the recessive intronic AAGGG repeat expansion, 

including 23 familial and 33 sporadic cases, are summarized in Table 1 and detailed in 

Supplementary Table 2. All cases were of European ancestry. Apart from a higher frequency 

of vestibular areflexia in familial CANVAS, clinical features were otherwise similar in 

familial and sporadic cases; hence, data are presented together. Mean age of onset was 54 

± 9 (35–73) years, and mean disease duration at examination was 11 ± 7 (1–30) years. The 

most common complaint at disease onset was unsteadiness, which was reported by 84% of 

patients, and frequently described as being worse in the dark; 37% of patients complained of 

chronic cough, which in some cases could precede by decades the onset of the walking 

difficulties. Neurological examination invariably showed signs in keeping with a large-fiber 

sensory neuropathy; 80% of patients had signs of cerebellar involvement and overall 54% 

had evidence of bilateral vestibular areflexia. Twenty-three percent of patients had 

concurrent autonomic nervous system involvement, particularly affecting micturition and 

defecation. Nerve conduction studies confirmed the presence of a non-length- dependent 

sensory neuropathy in all cases tested, as opposed to an entirely normal motor conduction 

study in most patients. Cerebellar atrophy was identified in 35 (83%) of 42 cases who 

underwent an MRI or CT scan.
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Neuropathological examination.

The neuropathological examination was conducted in a patient with CANVAS who carried 

the biallelic AAGGG repeat expansion, compared with a patient with genetically confirmed 

Friedreich’s ataxia (FRDA), a patient with spinocerebellar ataxia type 17 (SCA17), and one 

case with C9orf72-related frontotemporal dementia (FTD), as well as control brains (Fig. 5). 

The patient with CANVAS showed severe, widespread depletion of Purkinje cells with 

associated prominent Bergmann gliosis, while cell density in the granule cell layer was well 

preserved. Loss of Purkinje cells was also observed in FRDA, SCA17 and, to a much lesser 

extent, in C9orf72-related FTD, but not in control brains. Similarly to FRDA and control 

brains, and as opposed to SCA17 and a C9orf72-related FTD, which were tested as positive 

controls, p62 immunostaining showed no pathological cytoplasmic or intranuclear inclusions 

in the cerebellar cortex of the patient with CANVAS. Examination of the brain, in addition 

to prominent cerebellar atrophy, revealed age-related changes in the form of neurofibrillary 

tangle tau pathology and amyloid-β pathology (Supplementary Fig. 3).

Eight nerve biopsies and ten muscle biopsies were also available for assessment from 

patients carrying the biallelic AAGGG repeat expansion. In all nerve biopsies, there was 

prominent widespread depletion of myelinated fibers; the muscle biopsies confirmed chronic 

denervation with reinnervation (Supplementary Fig. 4).

Fluorescence in situ hybridization using sense (AAGGG)5 and antisense (TTCCC)5 repeat-

specific oligonucleotides was performed on vermis postmortem tissue from one CANVAS 

patient and disease and healthy controls. As opposed to SH-SY5Y cells transfected with 

pcDNA3.1/CT-green fluorescent protein-TOPO vector containing either (TTCCC)94 or 

(AAGGG)54, where intranuclear and cytoplasmic inclusion were clearly detectable, we did 

not observe the presence of endogenous RNA foci in any of the samples examined 

(Supplementary Fig. 5).

RNA sequencing (RNA-seq).

We performed whole transcriptome analysis to assess the presence of changes in RFC1 

expression, as well as the cis and trans effects at more distant genomic regions. RNA-seq 

data showed that RFC1 messenger RNA (mRNA) was unchanged in CANVAS (n = 3) and 

control (n = 4) fibroblasts (P=0.42) and in CANVAS (n = 2) and control (n = 3) 

lymphoblasts (P=0.45; data not shown). We also performed RNA-seq from the frontal cortex 

and cerebellar vermis of autopsied brains from one CANVAS patient, FRDA cases (n = 2), 

and controls without evidence of neurological disease (n = 3). In the single CANVAS 

patient, RFC1 appeared to be unchanged in both cortex and cerebellum, as compared to the 

other samples (Fig. 6a). However, the frataxin (FXN) gene was clearly downregulated in the 

frontal cortex and cerebellum of the FRDA cases compared to the controls (cerebellum P = 

0.007; log2 fold change = −1.2; frontal cortex P = 0.0003; log2 fold change = −1.3) (Fig. 6a). 

The single CANVAS sample resembled the controls for FXN expression.

There were no differentially expressed genes between patient and control fibroblasts, 

whereas 132 differentially expressed genes were identified between patient and control 

lymphoblasts. Gene Ontology analysis showed enrichment for immune terms, whose 
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relevance to the disease warrants further work. Notably, only eight differentially expressed 

genes were located on chromosome 4 and were all separated by at least 25 Mb from the 

locus of the repeat expansion. Analysis of differentially expressed genes in the frontal cortex 

and vermis was not possible because of the limited number of CANVAS samples (n = 1).

Splicing analysis was performed in lymphoblasts. We identified 145 exons in 108 genes that 

had evidence of differential exon usage in CANVAS patients compared to healthy controls. 

Motif analysis of the alternatively spliced exons showed enrichment of motifs targeted by 

serine/arginine-rich splicing factor proteins, in particular serine/arginine-rich splicing factor 

3. RFC1 did not show aberrant splicing of its coding exons in mature mRNA. Also, no reads 

containing the AAGGG or TTCCC repeated unit mapping to intron 2 of the RFC1 pre-

mRNA transcript were detected; no antisense or non-coding transcript was observed at the 

RFC1 locus in any of the tissues examined. Gene Ontology analysis of alternatively spliced 

genes indicated enrichment for focal adhesion and non-specific cellular response terms. Lists 

of differentially expressed genes and exons in lymphoblasts, their normalized count values 

in brain samples, and motif analysis for the alternatively spliced exons are provided in the 

Supplementary Data.

RFC1 expression in patient tissues.

Quantitative reverse transcriptionPCR (qRT-PCR) was performed using two sets of 

primers(Fig. 6b); concordantly with RNA-seq data, it did not show any significant decrease 

of RFC1 mRNA (RefSeq NM_002913) level in patient fibroblasts (n = 5), lymphoblasts (n = 

2), muscle (n = 7), frontal cortex, and cerebellar vermis (n = 1), as compared to healthy 

controls or FRDA cases (Fig. 6c). Exons 2 and 3 were correctly spliced in the mature RFC1 

mRNA as shown by RNA-seq, qRT-PCR, and sequencing. However, assessment of pre-

mRNA expression by qRT-PCR showed a consistent increase of intron 2 retention in patient 

lymphoblasts (n = 2), muscle (n = 7) (P = 0.0077), cerebellum, and frontal cortex (n = 1), as 

compared to healthy controls (Supplementary Fig. 6). The low level of RFC1 expression in 

fibroblasts prevented the assessment of pre-mRNA processing.

The western blot analysis showed that RFC1 protein (isoform 1, UniProt identifier P35251–

1) was not decreased in patient fibroblasts (n = 5), lymphoblasts (n = 4), or brain (n = 1), as 

compared to healthy controls or FRDA cases (Fig. 6d and Supplementary Fig. 7). 

Assessment of RFC1 protein expression in muscle could not be performed because of 

limited tissue availability.

Since RFC1 plays a key role in DNA damage recognition and recruitment of DNA-repair 

enzymes, we assessed whether patient- derived fibroblasts have an impaired response to 

DNA damage. Patient-fibroblasts did not show an increased susceptibility to DNA damage; 

their treatment with double-stranded DNA-break-inducing agents, ultraviolet light, and 

methyl methanesulfonate triggered a grossly normal response to DNA damage 

(Supplementary Fig. 8).
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Discussion

We identified a recessive repeat expansion in intron 2 of RFC1 as a cause of CANVAS and 

late-onset ataxia. Twenty-three cases from 11 families and 33 sporadic cases carried the 

biallelic AAGGG repeat expansion. Notably, out of 150 cases from a single center diagnosed 

with late-onset ataxia, 22% tested positive for the biallelic AAGGG repeat expansion; the 

percentage was higher if only patients with sensory neuronopathy and cerebellar 

involvement (62%), CANVAS disease (92%), and familial CANVAS disease (100%) were 

considered, highlighting that a higher diagnostic can be achieved in cases with well-defined 

clinical features and a positive family history. Not since the discovery two decades ago of 

the most common genes causing ataxia19–22 and Charcot-Marie-Tooth disease23–26 has a 

novel gene explained percentages above 10% of genetically undetermined cases27,28.

We determined that the allelic carrier frequency of the AAGGG repeat expansion in healthy 

controls was 0.7%, which is similar to the allelic carrier frequency of the GAA expansion in 

FXN, which ranges from 0.9 to 1.6% and, in the biallelic state, which causes the most 

common recessive ataxia, FRDA. Together, these data suggest that the recessive AAGGG 

expansion in RFC1 may represent a frequent cause of late-onset ataxia in the general 

population, with an estimated prevalence at birth of the recessive trait of approximately 1 in 

20,000.

The expansion resides at the 3′ end of a deep intronic AluSx3 element, and it increases the 

size of the poly(A) tail from 11 to over 400 repeated units, but also alters its sequence. Of 

interest, expansions in terminal and mid A-stretches of Alu elements have been previously 

identified to cause FRDA19, spinocerebellar ataxia type 37 (SCA37; see Seixas et al.29), 

more recently benign adult familial myoclonic epilepsy (BAFME)30, and now CANVAS and 

late-onset ataxia. Together, these observations suggest that variations and expansion of these 

highly polymorphic regions of Alu elements represent a common mechanism underlying 

different inherited neurological disorders. Notably, both SCA37 and BAFME are 

characterized by expansion of a mutated repeated unit, ATTTC and TTTCA, 

respectively29,30. In this study, as well as in BAFME and SCA37, the presence in the normal 

population of large expansions of the reference repeated unit suggests that nucleotide change 

rather than expansion size may be the driving pathogenic mechanism.

Alu elements are repetitive elements about 300 base pairs (bp) long and are highly 

conserved within primate genomes. The 3′ end of an Alu element has a longer A-rich region 

that plays a critical role in its amplification mechanism31. Active elements degrade rapidly 

on an evolutionary timescale by poly(A) tail shortening or heterogeneous base interruptions 

accumulating in the poly(A) tail, such as G insertions. We hypothesize that the mutation of 

the AAGGG repeated unit occurred as part of the inactivation process by G interruption of 

the poly(A) tail of the retrotransposon AluSx3. Repetitive DNA motifs, particularly G-rich 

regions, can form secondary or tertiary nucleotide structures such as hairpins, parallel and 

antiparallel G-quadruplexes, and, if transcribed, DNA-RNA hybrids also known as R loops. 

These structures have been shown to increase the exposure of single-stranded DNA to 

damaging environmental agents; they can initiate repeat expansion and perpetrate genomic 

instability across meiotic and mitotic divisions or after DNA damage32.
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Since the same ancestral haplotype is shared by the majority of familial and positive cases, 

as well as some healthy carriers of two (AAAGG)exp alleles, we speculate that the 

nucleotide change from AAAAG to AAAGG or AAGGG may represent an ancestral 

founder event, which was followed by the pathological expansion of the repeated unit, 

whose size seems to correlate positively with its guanine-cytosine content. However, the 

identification of two patients (Fam 5b-2 and s23) with a recessive AAGGG repeat expansion 

who share only one allele of the common haplotype implies that repeat expansions of the 

mutated AAGGG unit can also occur on a different genetic background. Interestingly, Fam 

5b-2 was also found to carry the largest repeat expansion (10 kb or 2,000 repeats) in the 

cohort of patients tested.

In the majority of patients, the expansion encompassed 1,000 repeats; however, as few as 

400 AAGGG repeats were shown to be sufficient to cause disease. The size of the expanded 

alleles was relatively stable in siblings within single families, but no parent of the affected 

patients was available to assess whether this also applied across generations. We did not 

observe a correlation between age at onset of the neuropathy and the size of the repeat 

expansion, although the disease course was very slowly progressive, and initial symptoms 

might have been neglected in some patients but reported by others.

So far, approximately 40 neurological or neuromuscular genetic disorders have been 

associated with nucleotide repeat expansions. Two of them are known to be inherited in a 

recessive mode, namely FRDA and myoclonic epilepsy type 1; both are associated with loss 

of function of the repeat-hosting gene33–35.

A remarkable aspect of the recessive expansion described in this study is that our data do not 

suggest a direct mechanism of loss of function for RFC1. We did not observe a reduced level 

of RFC1 expression at either the transcript or the protein level in CANVAS patients, 

although as a known loss-of-function control, we detected a significant reduction of FXN 

transcript in postmortem brain from patients with FRDA. Also, RNA-seq data did not show 

a clear effect on the expression of neighboring or distant genes. We cannot exclude that the 

repeat expansion may cause more subtle tissue-specific alterations of RFC1 transcript and 

protein or alter the structural organization of chromatin.

RFC1 encodes the large subunit of replication factor C, a five subunit DNA polymerase 

accessory protein. It loads proliferating cell nuclear antigen onto DNA and activates DNA 

polymerases 8 and e to promote the coordinated synthesis of both strands during replication 

or after DNA damage36–38. It is interesting to note that mutations in many of the genes 

involved in DNA repair have been already associated with degenerative neurological 

disorders39, including ataxia-telangiectasia, xeroderma pigmentosum, Cockayne syndrome, 

and ataxia with oculomotor apraxia types 1 and 2. Interestingly, ataxia and neuropathy are 

common clinical features to all of them, suggesting a particular susceptibility of the 

cerebellum and peripheral nerves to DNA damage. However, our preliminary study did not 

show an impaired response to DNA damage in patient-derived fibroblasts.

In fact, late-onset Mendelian disorders represent a unique interpretative challenge, since risk 

variants may exert subtle effects, rather than a clear loss of function of the mutated gene, that 
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are compatible with normal development until adult or old age40. In this regard, although 

unusual in the context of a recessive mode of inheritance, other mechanisms, including the 

production of toxic RNA containing the expanded repeat, or the translation of a repeat-

encoded polypeptide, should be considered41. We did not observe in patient brains the 

presence of RNA foci of either the sense or antisense repeated unit. However, we detected a 

consistent increase across different tissues of the retention of intron 2 in RFC1 pre-mRNA. 

Retention of the repeat-hosting intron was recently identified as a common event associated 

with other disease-causing guanine-cytosine-rich intronic expansions, such as in myotonic 

dystrophy type 2 and C9orf72-amyotrophic lateral sclerosis/FTD but not AT-rich repeat 

expansions such as in FRDA42. Intron retention and abnormal pre-mRNA processing bear 

potential effects on nuclear retention and nucleocytoplasmic transport of the pre-mRNA, 

which, if efficiently exported to the cytoplasm, would be accessible to the translationary 

machinery.

Notwithstanding the enormous progress in Mendelian gene identification during the last 

decade, up to 40% of patients with ataxia and inherited neuropathy remain genetically 

undiagnosed, and the percentage can rise up to 80–90% in particular subtypes, such as late-

onset ataxia2,5,43 and hereditary sensory neuropathies27,28. Our study, together with other 

studies from recent years30,44–46, provides evidence that the combined use of WGS and 

classical genetic investigations, such as linkage analysis, can provide a powerful tool to 

unravel a part of the missing heritability hidden in non-coding regions of the human genome.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

statements of code and data availability and associated accession codes are available at 

https://doi.org/10.1038/s41588–019-0372–4.

Methods

Patients.

For the initial linkage study, we enrolled 29 individuals (23 affected and 6 unaffected) from 

11 families with a clinical diagnosis of CANVAS across four centers: the National Hospital 

for Neurology and Neurosurgery (London, UK); C. Mondino National Neurological Institute 

(Pavia, Italy); C. Besta Neurological Institute (Milan, Italy); and the Department of 

Neurology, School of Medicine at Ribeirão Preto (Brazil).

An additional 150 patients with sporadic CANVAS or late-onset ataxia (onset after 35 years 

of age) were identified from the neurogenetic database of the National Hospital for 

Neurology and Neurosurgery. For the experimental procedures, patient samples are 

generally referred to as CANVAS samples; no distinction between samples from patients 

with full-blown CANVAS or other more limited variants of late-onset ataxia is made. A skin 

biopsy was performed in five (Fam 1–3, Fam 2–2, Fam 5a-2, Fam 5b-2, and Fam 6b-1) 

genetically confirmed individuals and six age- and sex-matched controls. Fibroblast cultures 

were maintained according to standard procedures47. EBV-transformed lymphoblast cultures 

from four patients (Fam 6–1, Fam 8–2, Fam 8–3, and Fam 11–2) were generated and 
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maintained. EBV-transformed lymphoblast cultures from three age- and sex-matched 

healthy controls were provided by the European Collection of Authenticated Cell Cultures.

Paraffin-embedded and snap-frozen cerebellum (vermis) and frontal cortex from postmortem 

brain from one sporadic CANVAS patient carrying the biallelic AAGGG repeat expansion 

(s16), three patients with genetically confirmed FRDA, one patient with genetically 

confirmed SCA17, one patient with genetically confirmed C9orf72--related FTD, and three 

neurologically healthy controls were obtained from the Queen Square Brain Bank for 

Neurological Disorders.

Eight nerve biopsies and ten muscle biopsies were obtained from patients carrying the 

homozygous AAGGG repeat expansion and healthy controls for pathological examination. 

Muscle biopsy tissue from seven patients and five controls was also used for qRT-PCR.

The study was approved by the UCL Institute of Neurology institutional review board, and 

all participants gave written informed consent to participate. The study complied with all 

relevant ethical regulations.

SNP genotyping and linkage analysis.

Genotype calls were generated by the UCL Genomics genotyping facility using Infinium 

Core Exome arrays (Illumina). Raw data were processed and quality-checked using the 

GenomeStudio software (Illumina). All individuals passed the 99% call rate threshold and 

were included in the subsequent analysis using the PLINK 1.9 software48. Uninformative 

markers or markers with missing genotypes > 10% were removed, and the resulting dataset 

was further pruned to remove markers in high linkage equilibrium. Finally, the dataset was 

thinned to include 1-cM-spaced markers covering all autosomes. In total, 3,476 markers 

were included. For fine-mapping analyses, all available informative markers were included.

Parametric linkage analysis was performed using Merlin49 assuming a highly penetrant 

recessive model of inheritance and disease allele frequency < 1:10,000 The Merlin software 

was also used to obtain the most likely haplotypes in the candidate region. All genotyped 

individuals were included for haplotype analysis.

The rs11096992 and rs2066790 SNPs were genotyped in sporadic CANVAS patients and 

unaffected individuals using PCR followed by Sanger sequencing. Primers sequences, 

concentrations, and PCR thermocycling conditions are provided in Supplementary Table 3.

WGS.

WGS was performed by deCODE genetics. Paired-end sequencing reads (100 bp) were 

generated using a HiSeq 4000 system (Illumina) and aligned to GRCh37 using the Burrows-

Wheeler Aligner50. The mean coverage per sample was 35×. Variants were called according 

to the Genome Analysis Toolkit UnifiedGenotyper51 workflow and annotated with 

ANNOVAR52. Variants were prioritized based on segregation, minor allele frequency 

(<0.001 in the 1000 Genomes Project53, National Heart, Lung, and Blood Institute (NHLBI) 

GO Exome Sequencing Project (ESP) (Exome Variant Server, NHLBI GO ESP, (http://

evs.gs.washington.edu/EVS/), or the Genome Aggregation Database54), evolutionary 
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conservation, and in silico prediction of pathogenicity for coding variants. Copy number 

analysis was performed with LUMPY55 using its default parameters. The candidate region 

on chromosome 4 was also visually inspected for any copy number or structural variants 

using the Integrative Genomics Viewer (IGV)56.

RP-PCR.

RP-PCR was performed to provide qualitative assessment of the presence of an expanded 

AAGGG repeat as well as expansions of the reference AAAAG allele or AAAGG variant. 

The RP-PCR was designed so that the reverse primers bind at different points within the 

repeat expansion to produce multiple amplicons of incremental size; 25–27 nucleotides 

flanking the repeat were added to increase binding affinity of the reverse primer to the 

polymorphic (A/AA/-) 3′ end of the microsatellite and flanking region and give preferential 

amplification of the larger PCR product, thus allowing sizing of the expansion in some 

cases. Primer sequences, concentrations, and PCR thermocycling conditions are provided in 

Supplementary Table 3.

Reverse primers were used in equimolar concentrations. Fragment length analysis was 

performed on an ABI 3730xl Genetic Analyzer (Applied Biosystems), and data were 

analyzed with the GeneMapper software (v. 4.0, Applied Biosystems). Expansions with a 

characteristic ‘sawtooth’ pattern were identified and put forward for Southern blotting where 

sufficient DNA allowed this.

Southern blot.

Five micrograms of genomic DNA (gDNA) was digested for 3 h with EcoRI (10 U) before 

electrophoresis. DNA was transferred to a positively charged nylon membrane (Roche 

Applied Science) by capillary blotting and was cross-linked by exposure to ultraviolet light. 

Digoxygenin (DIG)-labeled probes were prepared by PCR amplification of a genomic 

fragment cloned into a pGEM-T Easy Vector (Promega) by using the PCR DIG Probe 

Synthesis Kit (Roche Applied Science). Primer pairs used for the cloning of the gDNA 

fragment, PCR amplification of the DIG-labeled probe, and the PCR conditions are shown 

in Supplementary Table 3. Filter hybridization was undertaken as recommended in the DIG 

Application Manual (Roche Diagnostics) except for the supplementation of DIG Easy Hyb 

buffer with 100 mg ml−1 denatured fragmented salmon sperm DNA. After pre-hybridization 

at 46 °C for 3 h, hybridization was allowed to proceed at 46 °C overnight. A total of 600 μl 

of PCR products containing the labeled oligonucleotide probe was used in 30 ml of 

hybridization solution. Membranes were washed initially in 23 standard sodium citrate 

(SSC) and 0.1% sodium dodecyl sulfate (SDS), while the oven was being ramped from 48 to 

65 °C and then washed three times in fresh solution at 65 °C for 15 min. Detection of the 

hybridized probe DNA was carried out as recommended in the DIG Application Manual 

with CSPD ready-to-use (Roche Applied Science) as a chemiluminescent substrate. Signals 

were visualized on Fluorescent Detection Film (Roche Diagnostics) after 1 h. All samples 

were electrophoresed against the DIG-labeled DNA molecular weight markers II and III 

(Roche Diagnostics). The pentanucleotide repeat number was estimated after subtraction of 

the wild-type allele fragment size (5,037 bp). The sizes of the detected bands were recorded 

for each individual and the number of expanded repeated units was estimated using the 
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following formula: repeated pentanucleotide unit = (size of the expanded band in bp — 

5,000 bp)/5.

Neuropathological examination.

The formalin-fixed cerebellar tissue was embedded in paraffin wax; 5-μm-thick sections 

were cut for routine hematoxylin and eosin staining and immunohistochemistry. The 

sections were immunostained with anti-SQSTM1/p62 antibody (1:500; catalog no. ab56416, 

Abcam), anti-TDP-43/TARDBP antibody (1:500; catalog no. 2E2-D3, Novus Biologicals), 

anti-α-synuclein antibody (1:1,000; catalog no. 4D6, Abcam), anti-phospho-Tau (Ser202, 

Thr205) antibody (1:100; catalog no. AT-8, Innogenetics), and anti-βA4 (1:50; 6F/3D clone, 

Dako). Immunostaining, together with appropriate controls, was performed on a Ventana 

Discovery automated staining platform (Ventana Medical Systems) following the 

manufacturer’s guidelines, using biotinylated secondary antibodies and streptavidin-

conjugated horseradish peroxidase (HRP) and 3,3’-diaminobenzidine as the chromogen. 

Assessment of neuronal density in the cerebellar cortex was performed semiquantitatively. 

Nerve and muscle biopsy specimens were obtained and analyzed according to standard 

procedures57,58. In brief, all nerve biopsies were examined after processing for paraffin 

histology (immunostaining for neurofilaments was performed with the SMI 31 antibody 

(1:5,000; Sternberger) and in resin blocks (semi-thin resin sections were stained with 

methylene blue azure-basic fuchsin). The muscle biopsies were examined with routine 

histochemical stains after freezing in isopentane cooled in liquid nitrogen.

qRT-PCR.

Total RNA was extracted from fibroblasts, lymphoblasts, and brain regions using 1 ml 

Qiazol (Qiagen) and 200 μl chloroform. The aqueous phase was loaded and purified on 

columns using the RNeasy Lipid Tissue Mini Kit (Qiagen) and treated with RNAse-free 

DNase I (Qiagen). Complementary DNA (cDNA) was synthesized using 500 ng total RNA 

for all samples, with a SuperScript III First Strand cDNA Synthesis Kit (Invitrogen) and an 

equimolar mixture of oligo (dT)18 and random hexamer primers. Real-time qRT-PCR was 

carried out using the Power SYBR Green Master Mix (Applied Biosystems) and measured 

with a QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as the housekeeping gene 

to normalize across different samples. Amplified transcripts were quantified using the 

comparative CT method and presented as normalized fold expression change (2ΔΔCT). 

Oligonucleotide sequences and thermocycling conditions are provided in Supplementary 

Table 3.

Western blot.

Cells and tissues were lysed in radioimmunoprecipitation assay (RIPA) buffer supplemented 

with a complete EDTA-free protease inhibitor cocktail (Roche Diagnostics). Brain lysates 

were homogenized on ice using a tissue ruptor with disposable probes (Qiagen). Protein 

lysate concentrations were measured with a DC protein assay (Bio-Rad). After adding 5 μl 

of sample buffer (Bio-Rad) and 2 μl of NuPAGE reducing agent (Invitrogen) and boiling at 

95 °C for 5 min, 15–30 μg of protein for each sample were separated on 4–12% SDS-

polyacrylamide gel (Bio-Rad) in 2-(N-morpholino)ethanesulfonic acid buffer and transferred 
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onto nitrocellulose membranes (GE Healthcare) using a Turbo Transfer Pack (Bio-Rad). 

After blocking in 5% milk, immunoblotting was performed by incubating overnight at 4 °C 

with the following primary antibodies: anti-RFC1 (1:1,000; catalog no. GTX129291, 

GeneTex); anti-β-actin (1:2,000; catalog no. A2228, Sigma-Aldrich). Secondary antibodies 

were as follows: IRDye 800CW goat anti-rabbit IgG (LI-COR catalog no. 926–32211); 

IRDye 680RD donkey anti-mouse IgG (LI-COR catalog no. 926–68072); and IgG (LI-

COR). Signals of RFC1 bands were normalized to those of the corresponding β-actin bands 

as internal controls. Signals were digitally acquired with an Odyssey Fc infrared scanner 

(LI-COR) and quantified with the Image Studio v. 5.2 software (LI-COR Bioscience).

RNA-seq.

Reads were aligned to the hg38 human genome build using STAR (version 2.4.2a)59. BAM 

files were sorted and duplicate reads flagged using NovoSort (version 1.03.09; Novocraft). 

The aligned reads overlapping the human exons (Ensembl 82) were counted with HTSeq 

(version 0.1)60. For each gene and each sample, the fragments per kilobase of exon per 

million mapped reads (FPKM) was calculated. Any gene with a mean FPKM across all 

samples in a dataset < 1 was discarded from further analysis. Differential gene expression 

was assessed with DESeq2 (version 1.8.2)61 and differential splicing was assessed with 

DEXSeq62 running on R (version 3.3.2). The significance thresholds for differential 

expression and splicing were set at a Benjamini-Hochberg false discovery rate of 10%. 

Quality control reports were collated with MultiQC63. Gene ontology enrichment testing 

was done using g:Profiler64 with both the Gene Ontology and Kyoto Encyclopedia of Genes 

and Genomes ontologies, with a minimum term size of five genes and all P values 

Bonferroni-corrected for multiple testing. Motif analysis was conducted on 49 alternatively 

spliced exons in lymphoblasts identified by unambiguous sequences with known strands 

using RBPmap65. The prediction of non-coding RNA sequences in intron 2 of RFC1 was 

tested with Rfam66.

Statistical analyses.

Clinical variables were compared between familial and sporadic cases with a two-tailed 

Student’s t-test (continuous variables) and chi-squared test2 (categorical variables). The 

correlation between repeat expansion size and age at onset of neuropathy was calculated 

using the Pearson’s correlation coefficient. The FPKM of FXN and RFC1 was compared 

using a two-tailed Student’s t-test. The relative expression of the RFC1 transcript 1 versus 

GAPDH as measured by qRT-PCR was compared with a two-tailed Student’s t-test. The 

statistical analysis of the results of the western blot was performed with a two-tailed 

Student’s t-test after confirmation of equality of variances. P < 0.05 was considered 

significant.

Cloning of the RFC1 repeat expansion locus.

The RFC1 locus containing the AAGGG repeat expansion was amplified with long-range 

PCR from the gDNA of a CANVAS patient carrying the biallelic AAGGG repeat expansion 

and a healthy control carrying two (AAAAG)11 alleles. PCR products were cloned into the 

pcDNA3.1/TOPO vector (Invitrogen), according to the manufacturer’s instructions. Primers 

and thermocycling conditions are provided in Supplementary Table 3. The size of the insert 
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was determined by digestion with BstXI (New England Biolabs). The integrity of repeats 

and their orientation were confirmed by DNA sequencing (Eurofins Genomics), which 

revealed uninterrupted 94 × (CCCTT) and 54 × (AAGGG) repeats in mutant clones, as well 

as 11 × (CTTTT) and 11 × (AAAAG) repeat sequences in the wild-type clone. Once 

confirmed, the four clones used for the experimental procedures were amplified using a 

Maxi-prep plasmid purification system (Qiagen).

RNA in situ hybridization.

Paraffin-embedded, formalin-fixed postmortem vermis sections from a CANVAS case, two 

healthy, and two cerebellar degeneration age-matched controls were deparaffinized in xylene 

twice for 10 min, then rehydrated in 100, 90, and 70% ethanol, then in PBS. Approximately 

105 SH-SY5Y cells were seeded on coverslips in 24-well plates and transfected using 

Lipofectamine 3000 (Thermo Fisher Scientific) with plasmids expressing wild-type sense 

(TTTTC)11, wild-type antisense (AAAAG)11, mutant sense (TTCCQ94, or mutant antisense 

(AAGGG)54 repeat sequences and were analyzed after 24 h. Cells were fixed in 4% 

methanol-free paraformaldehyde (Pierce) for 10 min at room temperature, dehydrated in a 

graded series of alcohols, air-dried and rehydrated in PBS, permeabilized for 10 min in 0.1% 

Triton X-100 in PBS, briefly washed in 2× SSC, and incubated for 30 min in pre-

hybridization solution (40% formamide, 2× SSC, 1 mg ml−1 transfer RNA (tRNA), 1 mg ml
−1 salmon sperm DNA, 0.2% BSA, 10% dextran sulfate, and 2 mM ribonucleoside vanadyl 

complex) at 57 °C. Hybridization solution (40% formamide, 2× SSC, 1 mg ml−1 tRNA, 1 

mg ml−1 salmon sperm DNA, 0.2% BSA, 10% dextran sulfate, 2 mM ribonucleoside 

vanadyl complex, 0.2 ng μl−1 (AAGGG)5 or (CCCTT)5 locked nucleic acid probe, 5’-

TYE563-labeled (Exiqon)) was heated at 95 °C for 10 min before incubation with sections 

for 1 h at 57 °C. Cells were washed for 30 min at 57 °C with high-stringency buffer (2× 

SSC, 0.2% Triton X-100, 40% formamide) and then for 20 min each, in 0.2× SSC buffer. 

Nuclei were stained with 4,6-diamidino-2-phenylindole. Coverslips were then dehydrated in 

70 then 100% ethanol and mounted onto slides in VECTASHIELD Antifade Mounting 

Medium (Vector Laboratories). Images were acquired using an LSM 710 confocal 

microscope (ZEISS) using a planapochromat ×63 oil immersion objective.

Response to DNA damage.

Fibroblasts were grown in 10-cm dishes in Dulbecco’s Modified Eagle’s medium 

supplemented with 10% fetal bovine serum. Asynchronous cell cultures were grown to 

approximately 80% confluency and treated with ultraviolet light or methyl 

methanesulfonate, or left untreated. For ultraviolet light irradiation, cells were washed with 

PBS and exposed to 30 or 120 J m−2 ultraviolet light (254 nm) using a Stratalinker UV 

crosslinker (Stratagene). For genotoxin treatment, methyl methanesulfonate (Sigma-Aldrich) 

was added to the culture medium to give a final concentration of 1 mM, and cells were 

exposed for 8 h. After ultraviolet irradiation or genotoxin treatment, cells were allowed to 

recover for 24 h before analysis.

Cells were homogenized in RIPA buffer containing 50 mM Tris, pH 7.4, 150 mM NaCl, 1% 

Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS, 1 mM EDTA, and protease inhibitor. 

Samples were sonicated and centrifuged before protein levels were quantified using a BCA 
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assay (Thermo Fisher Scientific). For the western blot analysis, protein (5 μg) was size-

separated using SDS-PAGE, transferred to nitrocellulose membranes, and subjected to 

standard immunoblotting procedures using antibodies to the following: γH2AX (1:1,000; 

ab11174, Abcam) and β-actin (1:1,000; A1978, Sigma-Aldrich). γH2AX has been 

extensively used as a marker for double-strand DNA breaks67,68. It is one of the initial 

markers of double-strand DNA breaking common to all DNA-repair pathways. Secondary 

HRP-conjugated antibodies were purchased from Proteintech and used at a 1:2,000 

concentration. Antibody staining was detected by enhanced chemiluminescence (Pierce ECL 

Western Blotting Substrate; Thermo Fisher Scientific) and visualized by X-ray film.

Cell viability was assessed with a CellTiter-Glo Luminescent Cell Viability Assay 

(Promega) according to the manufacturer’s protocol. To assess cell viability, 20,000 cells per 

well were seeded in 96-well plates before treatment and were treated as described 

previously.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Clinical spectrum and pedigrees of late-onset ataxia.

a, Clinical spectrum of idiopathic late-onset ataxia from isolated cerebellar, vestibular, and 

sensory variants to full-blown CANVAS. b, Pedigrees of CANVAS families. The squares 

indicate males and the circles females. The diagonal lines are used for deceased individuals. 

CANVAS patients are indicated with filled shapes. The black dots indicate genotyped 

individuals. The red dots indicate patients enrolled for WGS study.
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Fig. 2 |. Identification of CANVAS locus.

a, Non-parametric multipoint linkage analysis identifies a unique locus associated with the 

disease in chromosomal region 4p14 with a maximal HLOD score of 5.8. b, Schematic 

representation of shared haplotypes within single families. The light blue bars indicate a 

genomic region shared by affected siblings in a family and for which unaffected siblings are 

discordant. Two red dashed lines define a 1.7-Mb region common to the different families. 

SNPs defining the haplotypes are represented on the top line. c, Fine mapping inside the 1.7-

Mb region identifies a recessive haplotype shared by all distinct families (highlighted in 
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green), except for individual Fam 5b-2, who probably shares only one allele (highlighted in 

light green). d, Schematic representation of the candidate region encompassing all 24 exons 

and flanking regions of RFC1 and the last exon and flanking intron of WDR19.
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Fig. 3 |. Recessive expansion of a mutated AAGGG repeated unit in intron 2 of RFC1 causes 
CANVAS and late-onset ataxia in familial and sporadic cases.

a, A reduced read depth of WGS is observed in CANVAS patients (n = 6) in a region 

corresponding to a short tandem AAAAG repeat in intron 2 of RFC1. b, Visualization on 

IGV of reads aligned to the short repeat and flanking region shows in patients (n = 6) the 

presence of a mutated AAGGG repeat unit (representative image). Reads from both sides are 

interrupted and are unable to cover the entire length of the microsatellite region. Note that, 

per IGV default setting, AAGGG repeated units that do not map to the (AAAAG)11 

reference sequence are soft-clipped and do not contribute to the coverage of the STR in a, 
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which is virtually absent. However, ≥20 reads containing the AAGGG repeated unit could be 

observed in each patient if soft-clipped reads were shown. c, RP-PCR targeting the mutated 

AAGGG repeated unit. Fluorescein amidite-labeled PCR products were separated on an ABI 

3730 DNA Analyzer. Electropherograms were visualized on GeneMapper at 2,000 relative 

fluorescence units. The representative plots from a patient carrying the AAGGG repeat 

expansion and one non-carrier are shown. RP-PCR experiments were repeated 

independently twice with similar results. d, Sanger sequencing of long-range PCR reactions 

confirms the AAAAG to AAGGG nucleotide change of the repeated unit in patients.
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Fig. 4 |. Polymorphic configurations of the repeat expansion locus and allelic distribution in 
healthy controls.

a, Schematic representation of the repeat expansion locus in intron 2 of RFC1 and its main 

allelic variants. b, Estimated allelic frequencies in 608 chromosomes from 304 healthy 

controls. c, Average size and s.d. of (AAAAG)exp (n = 24) and (AAAGG)exp (n = 30) 

expansions in healthy controls and (AAGGG)exp (n = 72) in controls and CANVAS patients.
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Fig. 5 |. Pathology of cerebellar degeneration in a patient with CANVAS carrying the recessive 
AAGGG repeat expansion.

a-j, Hematoxylin and eosin (H&E)-stained sections (a-e) and sections immunostained for 

p62 (f-j). In a control brain (a), age-matched for the patient with CANVAS syndrome, there 

is well preserved density of Purkinje cells (yellow arrowhead); the granule cell layer is 

densely populated with small neurocytes (green asterisk). b, In CANVAS syndrome, there is 

severe, widespread depletion of Purkinje cells with associated prominent Bergmann gliosis 

(blue arrowhead), while cell density in the granule cell layer is well preserved. c, In a patient 

with genetically confirmed FRDA, there is patchy depletion of Purkinje cells associated with 

Bergmann gliosis and unremarkable appearance of the granule cell layer. d, In a patient with 

genetically confirmed SCA17, there is widespread Purkinje cell loss with only occasional 

Purkinje cells remaining; also, in this patient, the granule cell layer is densely populated 

with small neurocytes. e, In a patient with FTD due to C9orf72 expansion, Purkinje cell loss 

is patchy and the granule cell layer is unremarkable. f-h, Immunostaining for p62 shows no 

pathological cytoplasmic or intranuclear inclusions in the cerebellar cortex in the control 

patient (f), the patient with CANVAS syndrome (g), and also in the patient with FRDA (h). 

i, In the SCA17 patient, there are scattered discrete intranuclear p62 immunoreactive 

inclusions in the small neurons within the granule cell layer (high-power view of a 

representative intranuclear inclusion is demonstrated in the inset within i). j, In the patient 

with the C9orf72 expansion, there are frequent characteristic perinuclear p62 positive 

inclusions in the granule cell layer (high-power view of a representative inclusion is shown 

in the inset within j). Scale bar, 100 μm in a-e, 30 μm in f-j, and 5μm in the insets in f-j. 

Staining was carried out once on patient samples with appropriate controls according to 

standard practice and histopathology procedures in an ISO 15189-accredited laboratory.
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Fig. 6 |. RFC1 expression is not affected by the AAGGG repeat expansion.

a, Plots showing the expression levels of RFC1 and FXN in controls (n = 3), patients with 

FRDA (n = 2), and one CANVAS patient in postmortem cerebellum and frontal cortex. b, 

Mapping on RFC1 transcript 1 of the primers used for assessment by qRT-PCR of RFC1 

mRNA (cF1-cR1 and cF2-cR2) and pre-mRNA (cF1/iR1) expression. The blue arrows 

indicate the primers mapping to the exonic and intronic regions of the canonical RFC1 

transcript. Primers spanning across exonic junctions are connected by dotted lines. A red 

triangle indicates the site of the AAGGG repeat expansion. c, Expression levels of the 
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canonical coding RFC1 mRNA as measured by qRT-PCR using two separate sets of primers, 

cF1-cR1 and cF2-cR2, in control (n = 3) and CANVAS (n = 2) lymphoblasts, control (n = 5) 

and CANVAS (n = 5) fibroblasts, control (n = 3), FRDA (n = 3), and CANVAS (n = 1) 

cerebellum and frontal cortex, and control (n = 5) and CANVAS muscles (n = 7). d, RFC1-

encoded protein levels as measured by western blotting using the polyclonal antibody 

GTX129291 and normalized to β-actin in control (n = 5) and CANVAS (n = 5) fibroblasts, 

control (n = 3) and CANVAS (n = 4) lymphoblasts, and control (n = 3), FRDA (n = 3), and 

CANVAS (n = 1) postmortem cerebellum and frontal cortex. The bar graphs show the mean

±s.d. and data distribution (black dots). A two-tailed t-test was performed to compare RFC1 

transcript and encoded protein expression in patients versus healthy or disease controls. All 

experiments were repeated independently twice with similar results.
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