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Abstract In this paper, we study Bianchi type-I universe in
the presence of Barrow holographic dark energy and matter.
Anisotropic cosmological model is explored here using the
recently proposed holographic principle by Barrow where
the standard Bekenstein–Hawking entropy is a special case.
The holographic dark energy is employed to investigate the
evolution of matter density and the dark energy density in an
anisotropic Bianchi-I universe. The equation of state param-
eter of the dark energy is found to lie in the quintessence
or in the phantom regime at the present epoch depending on
the value of the new exponent and anisotropy in the universe.
We found that an anisotropic universe with higher anisotropy
transits to a late accelerating phase before a universe with
lower anisotropy. It is also observed that the new exponent
plays an important role to identify the nature of the universe.

1 Introduction

The astronomical observations predict that the universe
emerged from an inflationary universe in the past which is
now not only expanding but accelerating [1,2]. To accom-
modate accelerating universe the gravitational or matter sec-
tor needs to be modified. A number of modifications in the
gravitational sector with theories of gravity namely, f (R),
f (T ), f (R, T ), f (Q) and f (R,G) proposed in the litera-
ture [3–8]. It remains to be understood properly, consequently
a modification of the matter sector with dark energy (DE)
and dark matter (DM) originated. In this context holographic
dark energy [9–21] is an interesting alternative for the quan-
titative description of the dark energy, that originated from
the holographic principle [22–26]. It is known that the holo-
graphic principle in the cosmological framework is applica-
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ble assuming that the entropy of the universe is proportional
to its area. The Bekenstein–Hawking entropy of a black-hole
is proportional to the area. However, recently Barrow pro-
posed a modified form of the black hole entropy that arises
from the incorporation of quantum gravitational effects and
considering an intricate idea i.e., fractal features of the black-
hole structure.

In cosmology it is known that the universe on a sufficiently
large scale is homogeneous and isotropic. However, on small
scales it is neither homogeneous nor isotropic. The theoreti-
cal study that the universe was highly anisotropic in the past
which is supported by cosmological observations [27,28].
The Bianchi type-I space-time represents a universe which
gives rise to a universe with anisotropic behaviour [29,30].
In this paper, we consider Bianchi type-I universe with Bar-
row holographic dark energy principle to obtain cosmologi-
cal model that describes the features of the observed universe
with matter in the framework of Einstein gravity.

The holographic dark energy proposed by Barrow [31]
has a complex structure that lead to a finite volume but with
infinite (or finite) area, which is given by

SB =
(

A

A0

)1+ Δ
2

(1)

where A represents standard horizon area and A0 is the
Planck area. The new form of the exponent Δ was intro-
duced by Barrow, which lies in the range 0 ≤ Δ ≤ 1. For
Δ = 0, the expression reduces to the standard Bekenstein–
Hawking entropy. It is interesting to look for a cosmological
model with the above extended entropy relation which is the
basis of holographic dark energy. The new functional form of
the entropy improves the cosmological scenario compared to
the standard scenarios of holographic dark energy [32–35].
The motivation of the paper is to investigate the evolution of
an anisotropic universe with the Barrow Holographic dark
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energy [36] and to obtain an accelerated universe in the late
epoch.

The paper is organized as follows: In Sect. 2 Bianchi
type-I space-time and basic field equations in a four dimen-
sional Einstein gravity are given. In Sect. 3 we discuss the
isotropization of the Bianchi-I universe. The Barrow holo-
graphic dark energy and corresponding equations are dis-
cuss in Sect. 4. In Sect. 5, the evolution of dark energy den-
sity parameter and equation of state parameter are analyzed.
Finally, in Sect. 6, we give brief discussions.

2 Einstein’s field equations

We consider anisotropic Bianchi I space-time metric given
by

ds2 = −dt2 + A2(t)dx2 + B2(t)dy2 + C2(t)dz2, (2)

where A, B and C are the directional scale factors, and are
the functions of the cosmic time t . The Bianchi I space-time
becomes isotropic if all the directional scale factor becomes
same and we get usual FRW space-time. We assume that
the cosmic matter is represented by the energy–momentum
tensor as follows

Tμν = (ρ + p)uμuν + pgμν, (3)

where ρ is the energy density of the cosmic matter, p is its
pressure and uμ is the four velocity vector such that uμuμ =
1.

The Einstein field equation is given by

Rμν − 1

2
Rgμν = 8πGTμν, (4)

where Rμν , R and gμν are the Ricci tensor, Ricci scalar and
the metric tensor respectively with the Newton’s gravitational
constant G. The non zero components of the field Eq. (4) for
the metric (2) and the energy–momentum tensor (3), yield

Ȧ

A

Ḃ

B
+ Ḃ

B

Ċ

C
+ Ȧ

A

Ċ

C
= 8πGρ (5)

B̈

B
+ C̈

C
+ Ḃ

B

Ċ

C
= −8πGp, (6)

Ä

A
+ C̈

C
+ Ȧ

A

Ċ

C
= −8πGp, (7)

Ä

A
+ B̈

B
+ Ȧ

A

Ḃ

B
= −8πGp. (8)

The energy conservation equation T ν
μ ;ν = 0, yields

ρ̇ + (ρ + p)

(
Ȧ

A
+ Ḃ

B
+ Ċ

C

)
= 0. (9)

We denote the average scale factor of the Bianchi-I uni-
verse by a(t) which is given by

a(t) = (ABC)
1
3 . (10)

The Hubble parameters in different axial directions are H1 =
Ȧ
A , H2 = Ḃ

B and H3 = Ċ
C , therefore, we define an average

Hubble parameter H which is given by

H = ȧ

a
= 1

3

3∑
i=1

Hi . (11)

In terms of the Hubble parameters in the axial directions the
Eqs. (5)–(8) can be expressed as

H1H2 + H2H3 + H3H1 = 8πGρ, (12)

Ḣ2 + Ḣ3 + H2
2 + H2

3 + H2H3 = −8πG p, (13)

Ḣ3 + Ḣ1 + H2
3 + H2

1 + H3H1 = −8πG p, (14)

Ḣ1 + Ḣ2 + H2
1 + H2

2 + H1H2 = −8πG p, (15)

and the energy–momentum conservation Eq. (9) is given by

ρ̇ + 3H(ρ + p) = 0. (16)

Now the volume expansion (Θ), the average anisotropic
expansion rate (A), shear (σ ) and the deceleration parameter
(q) are given by

Θ = 3H, (17)

A = 1

3

3∑
i=1

(
ΔHi

H

)2

, (18)

σ 2 = 1

2
σμνσ

μν, (19)

q = − ä

aH2 = −1 − Ḣ

H2 , (20)

where, ΔHi = Hi − H and σμν is the sheer tensor.
For the Bianchi-I anisotropic metric given by Eq. (2) we
express the shear tensor as

σμνσ
μν =

3∑
i=1

(Hi − H)2 = H2
1 + H2

2 + H2
3 − 3H2. (21)

Using Eqs. (12), (19) and (21) we obtain the time-time com-
ponent of the field equation as

3M2
pH

2 = ρ + M2
pσ

2, (22)

where Mp = 1√
8πG

is the Plank mass.

Thereafter, using the Eqs. (12)–(15), (19) and (21), we obtain
the following

2
(
Ḣ1 + Ḣ2 + Ḣ3

) + 9H2 + 3σ 2 = −24πG p. (23)

Now, differentiating Eq. (11) once with respect to t , it yields(
ä

a
− H2

)
= 1

3

(
Ḣ1 + Ḣ2 + Ḣ3

)
(24)
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Eqs. (20), (23) and (24) leads to

M2
pH

2(2q − 1) = p + M2
pσ

2. (25)

To determine shear tensor we use Eqs. (13)–(15) and obtain

d(Ḣi − Ḣ j )

Hi − Hj
= −dV

V
,

for i �= j and i, j = 1, 2, 3 and V = a3 = ABC . On
integration we get the following

Hi − Hj =
√

2k j
V

(26)

where
√

2k1,
√

2k2 and
√

2k3 are the integration constant.
The shear tensor is given by

σμνσ
μν =

3∑
i=1

(Hi − H)2

= 1

3

[
(H2 − H1)

2 + (H3 − H2)
2

+(H1 − H3)
2
]
. (27)

Finally the sheer scalar (σ ) can be expressed as

σ = k√
3a3

, (28)

where we denote k =
√
k2

1 + k2
2 + k2

3 in terms of the integra-
tion constant. It is important to mention here that although
k2 = ∑3

i=1 �= 0 one gets
∑3

i=1 ki = 0.

3 Isotropization of Bianchi-I universe

The present universe is isotropic and homogeneous which
may have attained by an asymptotic situation emerged from
an anisotropic universe, namely, Bianchi-I universe that
formed at the phase transition of matter decoupling era.
For this we define an isotropization criterion to distinguish
anisotropic universe from an isotropic universe which how-
ever evolves in such a way that the effect of the anisotropic
parameter is negligible at the present epoch z → 0. We study
in this section the mean anisotropic parameter A and shear
scalar σ in the anisotropic Bianchi-I universe as defined by
the Eqs. (18) and (19) at the present epoch which are given
by

A = 1

3

3∑
i=1

(
ΔHi

H

)2

→ 0 (29)

σ 2 = 1

2
σμνσ

μν = k2

3a6 → 0 (30)

for isotropization asymptotically. One obtains the above cri-
terion if k → 0 0r a → ∞ at late time.

Also, isotropization defined by the expansion factor of the
Bianchi-I universe grows at the same rate at the late stage
of evolution, when t → t0. The Bianchi-I universe becomes
isotropic if the ratio of each of the directional scale factors
A(t), B(t) and C(t) and the expansion factor a(t) follow

A

a
,
B

a
,
C

a
→ constant (31)

when t → ∞.
The anisotropic Bianchi-I universe satisfying the above
isotropization criterion becomes isotropic. In particular, its
dynamics becomes FRW if the constant is unity.

4 Cosmological models with Barrow holographic dark
energy

The standard holographic dark energy is given by the inequal-
ity ρDE L4≤S, where L is the horizon length, and imposing
the inequalities S ∝ A ∝ L2. We consider here a modified
form of density introduced by Barrow to define the entropy
caused by quantum-gravitational effects, which yields

ρDE = CLΔ−2, (32)

with C is a parameter with dimension [L]−2−Δ. When
Δ = 0, the above expression provides the standard holo-
graphic dark energy ρDE = 3M2

pL
−2 , where C = 3M2

p and
setting c the velocity of light equal to unity. However in the
case of the deformation effects introduced by Δ when non-
zero, one gets the Barrow holographic dark energy which is
distinguishable from the standard expression. The new for-
mula for entropy introduced by Barrow may be important in
understanding the evolution of the universe particularly, an
anisotropic universe. This motivate us to take up Barrow’s
formula in an anisotropic Bianchi-I universe for understand-
ing the evolutionary behaviour. For a large horizon length L
which occurs in the expression of holographic dark energy,
although there are many possible choices, the most common
in the literature is to use the future event horizon [11], which
is given by

Rh ≡
∫ ∞

t

dt

a
= a

∫ ∞

a

da

a2H
. (33)

Substituting the expression for L in Eq. (32) with Rh we
obtain the energy density due to the Barrow holographic dark
energy,

ρDE = CRΔ−2
h . (34)

We consider an anisotropic universe composed of matter
describe by a linear EoS and a holographic dark energy. The
total energy density ρ and pressure p are given by

ρ = ρm + ρDE ,
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and

p = pm + pDE ,

where ρm , pDE , pm are the energy density, the pressure of the
Barrow holographic dark energy and the pressure of matter
respectively.
Now, the Eqs. (22) and (25) are expressed as

3M2
pH

2 = ρm + ρDE + M2
pσ

2 (35)

M2
pH

2(2q − 1) = pm + pDE + M2
pσ

2. (36)

We define the density parameters of matter (Ωm), Barrow
holographic dark energy (ΩDE ) and anisotropic energy (Ωσ )
as

Ωm = 1

3M2
pH

2 ρm, (37)

ΩDE = 1

3M2
pH

2 ρDE , (38)

Ωσ = σ 2

3H2 . (39)

Using the above Eqs. (37)–(39) in Eq. (35) we get

Ωm + ΩDE + Ωσ = 1. (40)

Using the density parameter ΩDE , we get from Eqs. (33) and
(34),

∫ ∞

x

dx

aH
= 1

a

(
C

3M2
pH

2ΩDE

) 1
2−Δ

, (41)

where x = ln a. Using the energy conservation equation of
matter

ρ̇m + 3H(ρm + pm) = 0,

and integrating we get ρm = ρm0
a3 , where ρm0 the present

matter energy density (setting the present size a0 = 1) as for
matter pm = 0. Substituting ρm into Eq. (37) we get

Ωm = Ωm0H2
0

a3H2 . (42)

Using Eqs. (39) and (42) with σ = k√
3a3 in the Eq. (40) we

obtain

1

aH
= 3

√
a4(1 − ΩDE )

k2 + 9Ωm0H2
0 a

3
. (43)

Now, making use of Eq. (43) in Eq. (41), we get the useful
relation

∫ ∞

x
3

√
a4(1 − ΩDE )

k2 + 9Ωm0H2
0 a

3
dx = 1

a

(
C

3M2
pH

2ΩDE

) 1
2−Δ

.

(44)

Differentiating Eq. (44) once with respect to x = ln a, we
get

Ω
′
DE

Ω(1 − ΩDE )
= 4 + Δ

+ ξ(1 − ΩDE )
Δ

2(Δ−2) (ΩDE )
1

2−Δ (k2+9Ωm0H
2
0 e

3x )e
3Δ

Δ−2 x

− 27Ωm0H2
0 e

3x

k2 + 9Ωm0H2
0 e

3x
, (45)

where ξ = (2 − Δ)3
Δ

Δ−2

(
C

3M2
p

) 1
Δ−2

is a dimensionless

parameter and primes denote derivatives with respect to x .
The above differential equation cannot be solved analytically.
The numerical solutions determine the evolution of density
parameter ΩDE of Barrow holographic dark energy. There-
fore, we obtain Ωm and Ωσ which are given in terms of dark
energy density parameter as,

Ωm = (1 − ΩDE )
9Ωm0H2

0 a
3

k2 + 9Ωm0H2
0 a

3
, (46)

Ωσ = (1 − ΩDE )
k2

k2 + 9Ωm0H2
0 a

3
, (47)

where we set x = ln a. Using the above relations we
can calculate the EoS parameter ωDE = pDE

ρDE
(we con-

sider cosmic fluid obeying a linear EoS : p = ωρ, ω is
the EoS parameter). Differentiation of Eq. (32) once gives
ρ̇DE = (Δ−2)CRΔ−3

h Ṙh, with Ṙh calculated using Eq. (33)
as Ṙh = HRh − 1, and according to (32) Rh can be elimi-

nated in terms of ρDE as Rh = (ρDE/C)
1

Δ−2 . Inserting this
in the dark energy conservation equation given by

ρ̇DE + 3HρDE (1 + ωDE ) = 0,

we get

(Δ − 2)C
(ρDE

C

)Δ−3
Δ−2

[
H

(ρDE

C

) 1
Δ−2 − 1

]

+3HρDE (1 + ωDE ) = 0. (48)

Inserting H from Eq. (43) and using (38) we finally obtain
the EoS parameter of Barrow holographic dark energy as

ωDE = −Δ + 1

3

−ξ

3
(ΩDE )

1
2−Δ (1 − ΩDE )

Δ
2(Δ−2) e

3Δ
Δ−2 x

(k2 + 9Ωm0H
2
0 e

3x )
Δ

2(2−Δ) . (49)

Therefore, the evolution of ωDE in terms of x = ln a can be
determined as we find ΩDE from the Eq. (45). For Δ = 0 we

obtain ωDE |Δ=0 = − 1
3 − 2

3

√
3M2

pΩDE

C , which reduces to the
usual standard holographic dark energy. The present acceler-
ating phase of the universe can be obtained in this case. But
in the early epoch the universe was decelerating. Therefore,
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the transition from deceleration to present acceleration can
be analyzed here plotting the variation of the deceleration
parameter with redshift z. From Eq. (36), we get

q = 1

2
+ 3

2
ωDEΩDE + 3

2

k2(1 − ΩDE )

k2 + 9Ωm0H2
0 e

3x
, (50)

for dust (pm = 0) dominated universe. In this model, we find
the transition of the universe from deceleration to accelera-
tion for different redshift parameter.

5 Evolution of ΩDE , Ωm, ωDE and q

In this section we investigate the evolutionary behaviour of
density parameter and EoS parameter in the framework of
the Barrow holographic dark energy (HDE) in an anisotropic
universe. For different values of Δ and k we plot the evolution
of the density parameters and other cosmological parameters.
The evolution of the dark energy density parameter ΩDE is
obtained from Eq. (45) by numerical integration making use
of the initial conditions Ωm (x = −ln (1+z) = 0) = Ωm0 ≈
0.3 and ΩDE (x = −ln(1+z) = 0) = ΩDE0 ≈ 0.7 in agree-
ment with observation. We now plot the different parameters
with respect to redshift parameter z for k = 0.001, 0.01, 0.05
and 0.1 for a given Δ = 0.2. In Figs. 1, 2, 3 and 4, we plot
the evolution of the parameters ΩDE , Ωm , ωDE and q(z)
with redshift (z) for Δ = 0.2 and k = 0.001, 0.01, 0.05 and
0.1. The plot in Fig. 1 shows that in an anisotropic universe
the density parameter of DE, ΩDE attains the present value
ΩDE = 0.69 independent of the anisotropy. It is evident that
in a large anisotropic universe, the DE density was small in
the early universe and a universe with small anisotropy the
DE energy at an epoch was higher than that in a universe
with large anisotropy for a given Δ. The plot in Fig. 2 shows
that the dark matter density with the usual matter decreases
to 0.31 rapidly for a universe with lower anisotropic universe
in the early era. However, a universe with large anisotropy
the matter contribution increases as the universe evolves but
in that case we do not find a universe with the observed pre-
dictions. In this case there exists a critical anisotropy below
which it permits the observed universe otherwise the cos-
mological model fails to accommodate the present universe.
This is a new result in an anisotropic universe when probed
with the Barrow HDE. In Fig. 3 the evolution of DE EoS
parameter is plotted, it is evident that the matter in the uni-
verse crosses phantom for lower anisotropy than a universe
with higher anisotropy at the present epoch. In Fig. 4, the
evolution of the deceleration parameter is plotted, it shows
that for a fixed Δ, an anisotropic decelerating universe in the
past with small anisotropic parameter (say, k = 0.001) tran-
sits to an accelerating universe before a universe with large
initial anisotropy (say, k = 0.1). The evolution of the density
parameters drawn in Fig. 5 shows that ΩDE increases and

Fig. 1 Evolution of Barrow holographic dark energy density param-
eter, as a function of redshift z, for Δ = 0.2 and C = 3, in unit of
M2

p = 1. The line corresponds: red: k = 0.001; blue: k = 0.01; green:
k = 0.05; magenta: k = 0.1

Fig. 2 Evolution of matter density parameter, as a function of redshift
z, for Δ = 0.2 and C = 3, in unit of M2

p = 1. The line corresponds:
red: k = 0.001; blue: k = 0.01; green: k = 0.05; magenta: k = 0.1

ω

Fig. 3 Evolution DE EoS parameter, as a function of redshift z, for
Δ = 0.2 and C = 3, in unit of M2

p = 1. The line corresponds: red:
k = 0.001; blue: k = 0.01; green: k = 0.05; magenta: k = 0.1

Ωm decreases, it signals the existence of interaction in the
early universe. It is also evident that for a given anisotropy as
Δ is increased in the early universe the density parameter was
small compared to lower Δ but the present value of ΩDE is
independent of the cosmological model parameters. It is also
noted that the at the present epoch Ωσ → 0, a homogeneous
universe results.

For others values of Δ and k, we also investigate the evolu-
tion of parameters to agree with the observation. Now we take

123



76 Page 6 of 7 Eur. Phys. J. C (2022) 82 :76

Fig. 4 Evolution deacceleration parameter, as a function of redshift z,
for Δ = 0.2 and C = 3, in unit of M2

p = 1. The line corresponds: red:
k = 0.001; blue: k = 0.01; green: k = 0.05; magenta: k = 0.1

Fig. 5 Evolution of density parameter of matter and Barrow holo-
graphic dark energy, as a function of redshift z, for C = 3, in unit
of M2

p = 1. The lines corresponds: red: Δ = 0.3 and k = 0.01; blue:
Δ = 0.4 and k = 0.01; green: Δ = 0.4 and k = 0.03; magenta:
Δ = 0.5 and k = 0.03

Fig. 6 Evolution of DE EoS parameter, as a function of redshift z, for
C = 3, in unit of M2

p = 1. The lines corresponds: red: Δ = 0.3 and
k = 0.01; blue: Δ = 0.4 and k = 0.01; green: Δ = 0.4 and k = 0.03;
magenta: Δ = 0.5 and k = 0.03

(Δ, k) = (0.3, 0.01), (0.4, 0.01), (0.4, 0.05), (0.8, 0.05).
The results are shown in Figs. 5 and 6.

6 Discussion

In this paper, we present cosmological scenario in Bianchi
type-I universe filled with Barrow holographic dark energy

Fig. 7 Evolution of density parameter of matter and Barrow holo-
graphic dark energy, as a function of redshift z, for C = 3, in unit
of M2

p = 1. The lines corresponds: red: Δ = 0 and k = 0.01; blue:
Δ = 0.2 and k = 0.01

Fig. 8 Evolution of DE EoS parameter, as a function of redshift z, for
C = 3, in unit of M2

p = 1. The lines corresponds: red: Δ = 0 and
k = 0.01; blue: Δ = 0.2 and k = 0.01

(HDE) and matter in the framework of Einstein’s general the-
ory of relativity. We derive the field equations for the Bianchi-
I universe and then construct Barrow HDE by applying the
usual holographic principle at a cosmological framework,
making use of the proposed Barrow entropy relation. We esti-
mate different values of Barrow exponent Δ and anisotropy
(k) which permits a realistic cosmology.
In Fig. 1, it is evident that in an anisotropic universe the
evolution of density parameter (ΩDE ) is dependent on the
anisotropy determined by k for a given Barrow’s exponent
factor. Using the predictions of observational cosmology we
set the boundary conditions and integrated the differential
equation numerically setting Δ = 0.2 with different values
of k (0.1, 0.05, 0.01, 0.001). The dark energy which was
lower in the early era is dominant and at the present epoch
it attains ΩDE = 0.7 which follows from PLANCK 2018
result [37]. It is evident that universe with a high anisotropy
or low anisotropy which are prominently differentiated in
the early era are insignificant at the present epoch. In Fig. 2
the evolution of the density parameter show that the matter
density decreases and it gives the observed value which are
same for k = 0.01 and k = 0.001 at the present epoch. But
for higher k the present matter density are different. Thus our
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universe may not be highly anisotropic in the early universe.
The evolution of the DE EoS parameter drawn in Fig. 3 shows
that the universe always lies in the quintessence regime.
It is found from Fig. 4 that for a given Barrow’s exponent
Δ = 0.2, the universe transits from decelerated phase to an
accelerated phase at the red shift values z = 0.95, z = 0.82,
z = 0.32 and z = 0.14 when k = 0.001, 0.01, 0.05, 0.1
respectively. Thus we conclude that an anisotropic universe
with lower anisotropy (determined by k) transits early from
decelerating phase to an accelerating phase compared to that
with higher anisotropy. It is evident from Fig. 5 that the
cosmological parameters satisfy the present observed values
although they are significantly different in the early universe
for given values of k and Δ. Thus Barrow’s exponent for
0 ≤ Δ ≤ 1 leads to new cosmological scenario which is
interesting. In Fig. 6, the evolution of the DE EoS parame-
ter is plotted for a set of values of the following pairs (Δ,
k) to study the effect of the Barrow HDE in an anisotropic
universe. It is found that DE EoS parameter ωDE is high
for large anisotropic universe with the same Δ = 0.4. For
a given anisotropic universe, ωDE is found lower as Δ is
higher. We note that ωDE decreases then attains a minimum
thereafter increases but does not cross the phantom limiting
value at the present epoch. It is also evident from Fig. 7 that
a universe with Barrow HDE the dark energy ωDE crosses
the quintessence limit but it does not cross for Δ = 0 in an
anisotropic universe with (k = 0.01). The plot in Fig. 8
shows that in the case of an anisotropic universe the ωm

is lower in the early universe and ωDE was higher which
follows from the entropy proposed by Barrow compared to
a universe described by Bekenstein and Hawking entropy
though at the present epoch their values are same as pre-
dicted from observations. In an anisotropic universe the new
exponent Δ changes with anisotropy where ωDE0 lies in the
phantom region but in an isotropic universe ωDE0 lies in the
quintessence region, the result obtained here is important to
differentiate an isotropic universe from anisotropic universe.
Thus Δ is playing an important role to identify the universe. It
is necessary and interesting to study the effect of interaction
among the fluids in anisotropic universes with Barrow HDE
confronting the scenario with observational data in order to
constrain the new exponent Δ which is beyond the scope of
present work and left for future investigation.
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