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Abstract

A Bianchi type | massive string cosmological model in thesgrece of a magnetic field is investigated.
Some exact solutions are produced using a few tractablenggsuns usually accepted in the literature. The
analytical solutions are supplemented with numerical agtajpns. In the frame of the present model the
evolution of the Universe and other physical aspects amidied.
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1 Introduction

Since the observation of the current expansion of the Usevarhich has apparently accelerated in the recent
past, the anomalies found in the cosmic microwave backgrdGiMB) and the large structures observations it
becomes obvious that a pure Friedmann-Lemaitre-RobeWé&iker (FLRW) cosmology should be amended.

Bianchi type | (Bl) cosmological models are the simplessatibpic Universe models playing an important
role in understanding essential features of the Universéhis class of models it is possible to accommodate
the presence of cosmic strings as an example of an anisotfogyace-times generated by one dimensional
topological defects.

In the last time cosmic strings have drawn considerabledgateamong the researchers for various aspects
such as the study of the early Universe. The presence of caririgs in the early Universe could be explained
using grand unified theories. These strings arise duringlti@se transition after the Big Bang explosion as
the temperature goes down below some critical critical polhis believed that the existence of strings in
the early Universe gives rise to the density fluctuationsctvhéads to the formation of the galaxies. Also
the cosmic strings have been used in attempts to investigasetropic dark energy component including a
coupling between dark energy and a perfect fluid (dark m)dtiér The cosmic string has stress energy and it
is couple to the gravitational field.

In what follows we shall investigate the evolution of a Bl madogical models in presence of a cosmic
string and magnetic fluid [2]. The inclusion of the magnetiddiis motivated by the observational cosmology
and astrophysics indicating that many subsystems of thegse possess magnetic fields (see e. g. the reviews
[3, 4] and references therein).

The paper has the following structure. We shall review th&idbaquations of an anisotropic Bl model
in the presence of a system of cosmic string and magnetic firl&ection Il we introduce a few plausible
assumptions usually accepted in the literature and son sghutions are produced. We present also some
numerical results regarding the evolution of the Universéhe presence or absence of a magnetic string. At
the end we shall summarize the results and outline futurgpeas.

2 Fundamental Equations and general solutions

The line element of a Bl Universe is
ds? = (dt)? —ay (t)?(dxt)? — ap(t)?(dx?)? — ag(t)?(dx®)?. (2.1)
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There are three scale fact@&gi = 1, 2, 3) which are functions of timeonly and consequently three expansion
rates. In principle all these scale factors could be diffeend it is useful to express the mean expansion rate
in terms of the average Hubble rate:
l/&ég & &
:—<—1+—2+§>, (2.2)

3\ay & &
where over-dot means differentiation with respedt. to
In the absence of a cosmological constant, the Einsteiaigtgtional field equation has the form
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wherek is the gravitational constant. The energy momentum temsa $ystem of cosmic string and magnetic
field in a comoving coordinate is given by

T/ = puyu’ — Ax,x’ +EJ, (2.4)

wherep is the rest energy density of strings with massive partialésched to them and can be expressed as
p = pp+A, wherep, is the rest energy density of the particles attached to tivegstandA is the tension
density of the system of strings [5, 6, 7] which may be positiv negative. Herg; is the four velocity anc;

is the direction of the string, obeying the relation

uu = —xx =1, ux =0. (2.5)

In (2.4) E,y is the electromagnetic field given by Lichnerowich [8]

EY— ﬁ[|h|2<uuuv—%5g) —huhV] (2.6)

Here i is a constant characteristic of the medium and called thenetagpermeability. Typicallyu differs
from unity only by a few parts in fO(u > 1 for paramagnetic substances anet 1 for diamagnetic). In (2.6)
hy is the magnetic flux vector defined by

wherexF, is the dual electromagnetic field tensor defined as
v—9
*Fyy = TSWO,BF“B. (2.8)

Here F28 is the electromagnetic field tensor aggl o is the totally anti-symmetric Levi-Civita tensor with
go123= +1. Here the co-moving coordinates are taken tobe 1, u! = u? = u® = 0. We choose the incident
magnetic field to be in the direction gfaxis so that the magnetic flux vector has only one nontragahponent,
namelyh; # 0. In view of the aforementioned assumption from (2.7) oneiobfg > = F13= 0. We also assume
that the conductivity of the fluid is infinite. This leadsRg; = Fg» = Foz3 = 0. Thus We have only one non-
vanishing component d¢%,, which isF>3. Then from the first set of Maxwell equation

Fuvig +Fopip +Fauw =0, (2.9)
where the semicolon stands for covariant derivative, orasfin

Fo3=7J, J=const (2.10)
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Introducing (2.10) in (2.7) and taking into account (2.8) ge&t

aJ
h) = = . 2.11
L= TTa0ts (2.11)

The electromagnetic field has only the following non-tridamponents
32
2uagad
Choosing the string along direction and using co-moving coordinates we have theviollg components
of energy momentum tensor [9]:

EQ=El!=-E2=—-E= (2.12)

T, = p+ 212 (2.13a)
92 a2

T = A+ Z_Er_% (2.13b)

72 a2
T = —Z—ET—; (2.13¢)

92 a2
TS = —Z—ET—;, (2.13d)

where we introduce the volume scale of the Bl space-time
T = aqapag, .

(2.14)

namely,T = /—g[10]. It is interesting to note that the evolution in timetois connected with the Hubble rate
(2.2): _
; _3H. (2.15)

In view of T2 = T3 from (2.3b), (2.3c) one finds

ap =agD exp(X / ?), (2.16)

with D andX being integration constants. Due to anisotropy of the sofiled, in order to solve the remaining
Einstein equation we have to impose some additional camditiHere we give two different conditions. It can
be shown that the metric functions can be expressed in tefrms 8o let us first derive the equation for
Summation of Einstein Egs. (2.3a), (2.3b), (2.3c) and 34i(2e3d) gives

(2.17)

Taking into account the conservation of the energy-monmertensor, i.e.T,V., = 0, we get in our case

g IHY

1d & & a3
() - =T - =T -=2T8=0. 2.18
Tdt(TO) a1 1 a22 a33 ( )

After a little manipulation from (2.18) one obtains
. T &

-p——A=0. 2.19
PP~ (2.19)
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3 Someexamples and explicit solutions

The above equations involve some unknowns and we need saditoaal relations between them to have
a tractable problem. In what follows we shall use a relatieibweenp and A in accordance with the state
equations for strings used in the literature. The simplastlzeing a proportionality relation:

p=aAi (3.20)
with the most usual choices of the constant
1 geometric string
a=¢ 1+w w>0, pstring or Takabayasi string (3.21)
-1 Reddy string

In order to solve the Einstein equations completely, we raed to impose some additional conditions.
As an example, we shall follow the condition introduced byi REL] which was used in [2]. Following this
proposal let us assume that the average Hubble rate H (212 model is proportional to the eigenvalag of
the shear tensar),’. For the BI space-time we have

1/ a & a3
1 1 2
= (a2 2= ). 3.22
1 3( a Ay a3) (3.22)
Writing the aforementioned condition as
one comes to the following relation
N
ap =Z(apag) , (3.24)

whereN = —(n+1)/(4n+ 1) being the proportionality constant aé@ds the integration constant.
From (2.16) and (3.24) after some manipulation for the rodtmctions one finds [9]

a = Zl/(N-‘rl)TN/(N-i-l)’ (325&)
a = VD(5)YANH exp[5 / E] (3.25b)
z 2) 1) '
1 TNy _é/ﬂ
ag = 75 (Z) exp[ > T}. (3.25¢)
In this case Eq. (2.19) takes the form _
. N T
p+(p—N—+1)\)?_O. (3.26)
Eq. (2.17) now reads
3 A J2
T= éK(p + §)T +XxtN-D/(N+D - \where X = KZ—EZZ/(N“). (3.27)

We will see later, the right hand side of (3.27) is the funttid T, hence can be written as
t=F(1). (3.28)
Eqg. (3.28) admits first integral which can be written as
T =+/2[€ —U(T)] (3.29)

with
U(t) = —/?(T)dr. (3.30)

The expression (3.30) can be viewed as potential, whie energy level. A detailed analysis of this mechanism
can be seenin, e.g., [12].
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Let us now study Eqgs. (3.26) and (3.27) for different equtiof state. Assuming the relation (3.20)
between the pressure of the perfect flpidnd the tension density from Eq. (3.26) one finds

p N T
—=(——<-1)- 3.31
p (cr(N+1) )T (3-31)
with the solution N
p = Coremin 7, (332)
while the equation for reads
. 3 1. N _
t = ~KCo(1+ @)raw% oA, (3.33)
This equation can be set in the following form
. KCo(3a +1)(N+1) X(N+1)
F— T1+N/a(N+1) T/ r2N/(N+1) e 3.34
¢ N+a(N+1) TN oo (3.34)
id is relatedtasEg = 2€.
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Figure 1: Potential correspond- Figure 2: Evolution of the Uni-
ing to the different equations of verse for different equations of
state in absence of a magnetic state in absence of a magnetic

field. field.

In Figs. 1 and 3 we have illustrated the potential correspantb the different equations of state without
and with the magnetic field, respectively. The Figs. 2 andaotstie evolution ofr for different cases. Here
"G”, "P” and "R” stand for geometric stringp string and Reddy string, respectively. The reason to st
figures with and without magnetic field is to show the role ogmetic field. As one sees, in all casemight
be zero at the initial stage of evolution, thus giving risehe initial singularity in one hand; is not bound
from above which means in all three cases we have ever exgaldiiverse. But introduction of magnetic field
into the system results in rapid growthofln numerical analysis we used the following value for thetyem
parametersk =1, w=1,N=4,Z = 1. In case of string only we sét= 0, otherwiseJ = 1. For magnetic
permeability we choosg@ = 1.00001 andu = 0.99999, respectively. Since it doesn’t make any significant
change in the behavior af, we illustrate only case witly = 1.00001. The initial value for is taken to be
7(0) = 0.0001 and corresponding first derivative is calculated fr8r84) at€o = 1.

4 Conclusions

In the present paper we investigated in the frame of Bl modeidging cosmological model in the presence
of a magnetic field. We used some tractable assumptions gongehe parameters entering the model. In
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Figure 3: Potential correspond- Figure 4: Evolution of the Uni-
ing to the different equations of verse for different equations of
state in presence of a magnetic state in presence of a magnetic
field. field.

doing so we consider the case when the trace of the expanstoage Hubble ratel and the eigenvalue; of

the shear tensor are proportional to each other. It shoultbtexl that system in question can also be studied
implying some other conditions. We plan to do that in someiogmpapers applying numerical methods and
investigating the qualitative behaviour of the solutiod8][ Further we plan to examine the role of viscous
fluid added to the system in question. We also plan to studgyktem within the scope of Bianchi type-VI
cosmological model.
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