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Bianchi Type I model of universe with customized scale factors
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According to standard cosmology, the universe is homogeneous and isotropic at large scales. However,

some anisotropies can be observed at the local scale in the universe through various ways. Here we have

studied the Bianchi type I model with customizing the scale factors to understand the anisotropic nature of the

universe. We have considered two cases with slight modifications of scale factors in different directions in the

generalized Bianchi Type I metric equation, and compared the results with the ΛCDM model and also with

available cosmological observational data. Through this study, we also want to predict the possible degree of

anisotropy present in the early universe and its evolution to current time by calculating the value of density

parameter for anisotropy (Ωσ) for both low and high redshift (z) along with the possible relative anisotropy that

exist among different directions. It is found that there was a relatively higher amount of anisotropy in the early

universe and the anisotropic nature of the universe vanishes at the near past and the present epochs. Thus at near

past and present stages of the universe there is no effective distinction between this anisotropic model and the

standard ΛCDM model.
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Keywords: Bianchi type I universe; anisotrpy; relative shear anisotropy; density parameter for anisotropy

I. INTRODUCTION

The standard cosmology has assumed that the universe is exactly homogeneous and isotropic at large scales [1]. The spacetime

of this kind of universe is described by the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric, and it is assumed to be

occupied by some ideal fluids with a diagonal energy momentum tensor [2, 3]. Various cosmological observational data like, data

of Type Ia Supernovae (SNe Ia) [1, 4–9], Cosmic Microwave Background (CMB) [1, 5–8, 10–14], Baryon Acoustic Oscillation

(BAO) [1, 5–8], Hubble parameter [1, 5–9, 15–17], the Wilkinson Microwave Anisotropy Probe (WMAP) [6, 16–23] and the

Large Scale Structure (LSS) [6, 17] etc. have suggested that the current expansion of the universe is accelerating [5, 6]. This

current accelerated expansion of the universe is considered to be due to the presence of a large negative pressure component

in the universe, which is referred as the Dark Energy (DE). On the other hand, an unknown form of matter known as the Dark

Matter (DM) is thought to be responsible for the formation of LSS in the universe [2, 24]. However, at this point it would be

appropriate to mention that according to the modified gravity theories scenario, the current accelerated expansion of the universe

and DM are the manifestations of the modifications of spacetime behaviours at large scales, which could not be accounted

for by the general theory of relativity [25–27]. Although the distribution of galaxies under the background of dominated DM

is observed to be inhomogeneous [2], other observational sources like different galaxy redshift catalogues have suggested a

statistical transition from the inhomogeneity to homogeneity on scale exceeding ∼ 100 Mpc [2, 28, 29]. Thus, the assumption of

isotropy and homogeneity of the universe is applicable only for the large scales [1]. However, the standard cosmological models

are challenged by few other puzzling cosmological observations [16, 30], such as power asymmetry of the CMB perturbation

maps [31–35], anisotropy in accelerating expansion rate [36–38], the large scale velocity flow [39–43], spatial dependence of

the value of the fine structure constant [16, 44–47], etc. Based on the observations of these cosmic anomalies [16], the Planck

collaboration had rightly stated that “The Universe is still weird and interesting” [35]. The origin of these anomalies are still

unknown. These may either be arised due to the large statistical fluctuations or may have some physical origin like geometry or

energy of the universe [16] or may favour of a preferred cosmological direction, and perhaps depict the anisotropic nature of the

universe.

Testing the large-scale geometry of the universe by using cosmological scale is one of the major challenges of modern cos-

mology [8]. Reliable observational data from the various sources like WMAP, BAO, Planck [48] etc. have given new insight

on the study of the basic assumptions (i.e. isotropy and homogeneity) of the standard cosmological models and also shown

the anisotropic characteristics of the universe at least at the local scale. In our real universe, there exist some kind of strange

motions due to the local inhomogeneity and anisotropy of surrounding structures, which can not be neglected [2]. To explain

the anisotropic character of the universe, spatially homogeneous and anisotropic cosmological models play a significant role to

describe the large-scale behaviour of the universe. These models have been widely studied under the regime of general relativity
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to understand the relativistic picture of the universe at its early stage [9]. Thus, we need a simple and convincing cosmological

model with a relativistic background metric [7], which allows directional scale factors [1, 7–9, 49] while maintaining the spatial

homogeneity and flatness. The Bianchi Type I model [1, 7–9, 16, 24, 49] and its metric fulfill the above criteria and hence it

is suitable for study the anisotropic nature of the universe in its early stages as well as in the current scenario. Bianchi Type I

model describes the anisotropic nature of the universe by considering the anisotropic and homogeneous background [1]. It gives

a very small deviation from the exact isotropy. Hence, use of Bianchi Type I geometry corresponds to replacing the spatially flat

FLRW background by Bianchi Type I background metric [1]. Therefore, the Bianchi Type I geometry can be considered as an

alternative option to the FLRW metric to study the various cosmic anomalies as mentioned above.

Keeping in view of the above points, in this study, we have used the Bianchi Type I metric [7, 9, 16, 24, 49] with the

“customized scale factors” in different directions. Here we have considered two cases. For case I, we have modified directional

scale factors in the Bianchi type I metric by considering the second and third scale factors in terms of the first one with some

multiplicative constants. For case II, we have again considered the second and third scale factors in terms of the first one, but here

we have added constant terms with them rather than multiplying. With these two cases of scale factors in the metric, we have

derived various cosmological parameters [1, 7, 9, 16, 17, 24, 26, 49, 50] including the directional Hubble parameters, average or

mean Hubble parameter, deceleration parameter, shear scalar, relative shear anisotropy parameter or Hubble normalized shear

parameter, average anisotropic expansion, density parameters (matter, radiation, anisotropy and dark energy), distance modulus,

Equation of State (EoS) etc. We have also studied the evolution of various cosmological parameters with respect to cosmological

redshift (z) [17, 24, 26] by plotting those parameters against z or (1 + z) and compared them with the standard cosmological

model (ΛCDM model) and also with the available observational data of various sources for both the cases.

This paper is organized as follows. In Section II, the basics of the Bianchi Type I model have been discussed. Here, we have

mainly included the various mathematical equations and expressions of the Bianchi type I universe from various literatures. In

Section III, we have derived all the mathematical equations and expressions using the “customized scale factors approach” for

the Bianchi Type I model of the universe. This section is subdivided into two subsections III A and III B, in which we have

derived all the expressions and equations for two separate cases respectively. In Section IV, we have made graphical analysis of

the various cosmological parameters with respect to z and tried to give the explanations of those results obtained from the plots

for both the cases. The paper has been summarized in Section V with conclusions. Throughout this work we use the geometrized

unit system, where c = G = 1 with (−,+,+,+) metric convention.

II. BASIC EQUATIONS OF BIANCHI TYPE I MODEL

The general form of the metric for the Bianchi Type I universe [7, 9, 16, 24, 49] can be written as

ds2 = − dt2 +

3
∑

i=1

ai(dx
i)2, (1)

where ai is the directional scale factor along the ith direction, which is the function of time t only. The average expansion scale

factor (a1a2a3)
1

3 arises from the average Hubble parameter defined as

H =
1

3

3
∑

i=1

Hi

with Hi =
ȧi

ai

is the directional Hubble parameter along the ith direction The most general form of the energy-momentum tensor

Tµν for the given metric can be considered in the form:

T ν
µ = diag

[

− ρ, P, P, P
]

, (2)

where ρ is the energy density and P is the isotropic pressure of a perfect fluid. Now, in view of the present scenario of our

accelerating universe, we consider the Einstein field equations with the cosmological constant Λ as

Rµν −
1

2
gµνR+ Λgµν = 8πTµν , (3)
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where Rµν is the Ricci tensor, R is the Ricci scalar and gµν is the metric tensor. For the above metric (1) and the energy-

momentum tensor (2), the following set of field equations can be obtained from the Einstein field equations:

H1H2 +H1H3 +H2H3 = 8πρ+ Λ, (4)

ä2
a2

+
ä3
a3

+H2H3 = − 8πP + Λ, (5)

ä3
a3

+
ä1
a1

+H3H1 = − 8πP + Λ, (6)

ä1
a1

+
ä2
a2

+H1H2 = − 8πP + Λ. (7)

Combining Eqs. (5), (6) and (7) and then subtracting Eq. (4) from the combined one, we may write the resulting Friedmann

equation as

3
∑

i=1

äi
ai

= − 4π
(

3P + ρ
)

+ Λ. (8)

The continuity equation in this model of the universe is given by [49],

ρ̇+
(

ρ+ P
)

3
∑

i=1

ȧi
ai

= 0. (9)

Considering the EoS P = ωρ in Eq. (9), in which the parameter ω tells us about the nature of energy or matter density in

the universe, for example, ω = 0 for the non-relativistic matter, ω = 1
3 for the radiation and ω = −1 for the vacuum energy

[7, 9, 17], the energy density of the universe can be found as

ρ = ρ0

3
∏

i=1

a
−(1+ω)
i . (10)

Here ρ0 is the present energy density of the universe. From this equation it is seen that the future energy density of this model

of the universe is the EoS parameter ω dependent, i.e. on the nature of the matter or energy content of the universe. It is clear

that ρ ∝ (a1a2a3)
−1 for the matter, ρ ∝ (a1a2a3)

− 4

3 for the radiation and ρ = ρ0 (constant) for the vacuum energy dominated

cases respectively.

Using Eq. (4) the Hubble parameter of this universe can be expressed in terms of the present density parameters of the universe

as

H = H0

√

Ωm0(a1a2a3)−1 +Ωr0(a1a2a3)−
4

3 +ΩΛ0 +Ωσ0(a1a2a3)−2, (11)

where H0 is the current Hubble parameter, and Ωm0 = 8πρm0/3H
2
0 is the density parameters for the matter content, Ωr0 =

8πρr0/3H
2
0 is the density parameter for the radiation content, ΩΛ0 = Λ/3H2

0 is the density parameter for the vacuum energy

and Ωσ0 = σ2
0/3H

2
0 is the density parameter for the anisotropy [6, 7, 9] of the present universe. Here, ρm0 and ρr0 are current

values of matter density ρm and radiation density ρr of the universe respectively. The term σ2
0 in Ωσ0 is the current value of

shear scalar. The shear scalar is the parameter through which the contribution of the expansion anisotropy in Bianchi type I

model of universe can be quantified. It arises due to the different scale factor taken for different directions in the Bianchi model

of universe. For the isotropic case, σ2
0 = 0. The current value of shear scalar, i.e. σ2

0 is related with the shear scalar σ2 by the

relation σ2 = σ2
0(a1a2a3)

−2. In general the shear scalar σ2 in terms of the average and directional Hubble parameters can be

written as [7, 9, 49]

σ2 =
1

2

[

3
∑

i=1

H2
i − 3H2

]

. (12)

Again, the deceleration parameter for the Bianchi Type I universe can be derived as

q = −
1

3H2

(

ä1
a1

+
ä2
a2

+
ä3
a3

)

+
2σ2

3H2
. (13)
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Using Eq. (8) and the EoS mentioned above, this equation for the deceleration parameter q can expressed in terms of density

parameters of the universe as

q =
1

2
Ωm +Ωr − ΩΛ + 2Ωσ, (14)

where Ωm = 8πρm/3H2, Ωr = 8πρr/3H
2, ΩΛ = Λ/3H2 and Ωσ = σ2

3H2 [7] are the matter density parameter, radiation

density parameter, vacuum energy density parameter and anisotropy or shear density parameter respectively of the universe at

any given instant. Similarly, the average anisotropic expansion [9, 49] for Bianchi type I universe is

A =
1

3

3
∑

i=1

( ∆Hi

H

)2

= 2Ωσ, ∆Hi = (Hi −H). (15)

The cosmological redshift (z) is another cosmological parameter, which is a very important parameter to understand the

evolution and history of the universe in the sense that it is a directly observable parameter, not the scale factor. Hence to quantify

the effect of anisotropy in the observable domain of the universe, it is necessary to express all other cosmological parameters

mentioned above as the functions of z. In this context, it is to be noted that in the case of the Bianchi type I universe, there exist

three redshifts in three spatial directions due to the directional dependence of scale factor. If z1, z2, z3 are these three redshift

parameters along three spatial directions, then they can be defined as

a1(t)

a10
=

1

1 + z1
,

a2(t)

a20
=

1

1 + z2
and

a3(t)

a30
=

1

1 + z3
. (16)

Here, a10, a20, a30 are the scale factors of present time along the three spatial directions. Now, from the current observations,

we have taken a10 = a20 = a30 = 1 [9] and thus the scale factors can be rewritten in terms of z1, z2, z3 as

a1(t) =
1

1 + z1
, a2(t) =

1

1 + z2
and a3(t) =

1

1 + z3
. (17)

With this form of the scale factors, the directional Hubble parameters (Hi) can be written in terms of zi as

Hi = −
żi

1 + zi
(18)

and hence the average Hubble parameter takes the form:

H = −
1

3

3
∑

i=1

żi
1 + zi

. (19)

Thus, Eq. (11) for the average Hubble parameter can be rewritten in terms of redshift parameters (z1, z2, z3) as

H = H0

√

E(z1, z2, z3), (20)

where E(z1, z2, z3) = Ωm0

[

(1 + z1)(1 + z2)(1 + z3)
]

+Ωr0

[

(1 + z1)(1 + z2)(1 + z3)
]

4

3 +ΩΛ0 +Ωσ0

[

(1 + z1)(1 + z2)(1 + z3)
]2
. (21)

With the help of Eqs. (18), (19) and (20), the age of the universe can be expressed in terms of the directional redshift parameters

(z1, z2, z3) as follows:

tage =

∫ t

0

dt =
1

3H0

[

∫ ∞

0

dz1

(1 + z1)
√

E(z1, z2, z3)
+

∫ ∞

0

dz2

(1 + z2)
√

E(z1, z2, z3)
+

∫ ∞

0

dz3

(1 + z3)
√

E(z1, z2, z3)

]

.

(22)

Other cosmological parameters in terms of redshift can be derived for this model of the universe as follows:
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(i) Deceleration parameter:

q(z1, z2, z3) =
1

E(z1, z2, z3)

[

1

2
Ωm0 (1 + z1)(1 + z2)(1 + z3) + Ωr0

{

(1 + z1)(1 + z2)(1 + z3)
}

4

3

− ΩΛ0 + 2Ωσ0

{

(1 + z1)(1 + z2)(1 + z3)
}2

]

. (23)

(ii) Equation of State:

ω(z1, z2, z3) =
1
3 Ωr0

[

(1 + z1)(1 + z2)(1 + z3)
]

4

3 − ΩΛ0

Ωm0

[

(1 + z1)(1 + z2)(1 + z3)
]

+Ωr0

[

(1 + z1)(1 + z2)(1 + z3)
]

4

3 +ΩΛ0

. (24)

(iii) Ricci Scalar:

R(z1, z2, z3) = 3H2
0

[

Ωm0(1 + z1)(1 + z2)(1 + z3) + 4ΩΛ0

]

. (25)

(iv) Luminosity distance:

dL(z1, z2, z3) =

[

(1 + z1)(1 + z2)(1 + z3)
]

1

3

3H0

∫ ∞

0

{

[

(1 + z2)(1 + z3)
]

1

3

(1 + z1)
2

3

√

E(z1, z2, z3)
dz1 +

[

(1 + z1)(1 + z3)
]

1

3

(1 + z2)
2

3

√

E(z1, z2, z3)
dz2

+

[

(1 + z1)(1 + z2)
]

1

3

(1 + z3)
2

3

√

E(z1, z2, z3)
dz3

}

. (26)

(v) Distance Modulus:

Dm = 5 log dL + 25. (27)

These are some important expressions in general Bianchi Type I cosmology in generic form, which will be useful to study the

properties of the universe in terms of the observable parameter z for our considered cases as discussed in the following sections.

III. CUSTOMIZED SCALE FACTOR APPROACH FOR BIANCHI TYPE I MODEL

In this section we implement two different cases to the Bianchi type I model for which we use two different types of directional

scale factors to calculate the various cosmological parameters as discussed below.

A. Case I

In this case we consider the following set of directional scale factors:

a1 = a(t), a2 = αa(t), and a3 = β a(t), (28)

where α and β are two multiplicative constants. Since α and β are two time independent constants, the directional dependence

of scale factors or the anisotropy in the universe in this case should be considerable only for very small values of the scale factor

a(t), i.e. for the cosmological redshift z ≫ 1. The major advantage of these forms of scale factors is that we can express every

equation and cosmological parameter in terms of a single scale factor multiplied by some constants. It helps to simplify the

problem and hence reduces the complexity. The directional Hubble parameters for the above considered set of scale factors take

the same form as in the case of the isotropic situation, i.e.

H1 = H2 = H3 =
ȧ

a
, (29)

and consequently the average Hubble parameter is

H =
ȧ

a
. (30)
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Also it can be easily seen that

ä1
a1

=
ä2
a2

=
ä3
a3

=
ä

a
. (31)

Thus the temporal component of the Einstein field equations, i.e. Eq. (4) is transformed for this case as

H2 =
8πρ

3
+

Λ

3
. (32)

Whereas all the three spatial components of the Einstein field equations, given in Eqs. (5), (6), (7) take the same form for this

case as

2
ä

a
+H2 = − 8πP + Λ, (33)

and hence the combination of all the three spatial field equations leads to the equation:

6
ä

a
+ 3H2 = − 8π (3P ) + 3Λ. (34)

Now multiplication of Eq. (32) by a factor 3 and then subtracting it from Eq. (34) give rise a new equation:

ä

a
= −

4π (ρ+ 3P )

3
+

Λ

3
. (35)

It should be pointed out that this Eq. (35) can also be derived directly from Eq. (8). Eqs. (32) and (35) are the two independent

form of field equations. Similarly the Eq. (9) i.e. the continuity equation can be rewritten in this case as

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (36)

Again Eq. (10), i.e. the expression of energy density for this case becomes,

ρ = (αβ)−(1+ω)ρ0 a
−3(1+ω). (37)

It is clear that this expression is different from the isotropic situation as it depends on the parameters α and β. Hence, although

the expressions for directional and average Hubble parameters, and some other expressions derived above look identical to the

isotropic situation, they would behave differently because of the different form of the energy density in this case. This can be

seen clearly from the expression (11) for the Hubble parameter, which can rewritten for this case as

H = H0

√

(αβ)−1Ωm0 a−3 + (αβ)−
4

3Ωr0 a−4 +ΩΛ0. (38)

Here Ωσ = 0 as σ2 = 0 from Eq. (12) for this case. We see that the matter and radiation parts of energy density contributed

differently in the Hubble parameter than the isotropic condition because of the expression (37) for the energy density. This

situation will be similar to all other cosmological parameters discussed here. The deceleration parameter of Eq. (13) in this case

reduces to

q = −
ä

aH2
. (39)

And in terms of density parameter, q can be rewritten as

q = Ωr +
1

2
Ωm − ΩΛ. (40)

If we denote z1 = z, the relations between the cosmological redshift parameters and the directional scale factors given in Eq.

(17) will be transformed in this case as

a1(t) =
1

1 + z
, a2(t) =

α

1 + z
, and a3(t) =

β

1 + z
. (41)

Here, the other two redshift parameters z2 and z3 can be found as

z2 =
1 + z

α
− 1, and z3 =

1 + z

β
− 1.
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Accordingly, the directional Hubble parameters can be written as

Hi = −
ż

1 + z
. (42)

and hence the form of the expression of the average Hubble parameter becomes exactly the same as the directional Hubble

parameters’ expression given above. Thus, in terms of the cosmological redshift parameters Eq. (38) can be rewritten as

H = H0

√

(αβ)−1Ωm0(1 + z)3 + (αβ)−
4

3Ωr0(1 + z)4 +ΩΛ0 = H0

√

E(z), (43)

where

E(z) = (αβ)−1Ωm0(1 + z)3 + (αβ)−
4

3Ωr0(1 + z)4 + ΩΛ0. (44)

Consequently, the age of the universe given by Eq. (22) can be rewritten for this case as

tage =

∫ t

0

dt =
1

H0

∫ ∞

0

dz

(1 + z)
√

E(z)
. (45)

Similarly, with the same approach the other cosmological parameters for the present case can be obtained as a function of

redshift parameters as

(i) Deceleration parameter:

q(z) =
1

√

E(z)

[1

2
(αβ)−1Ωm0(1 + z)3 + (αβ)−

4

3Ωr0(1 + z)4 − ΩΛ0

]

. (46)

(ii) Equation of State:

ω(z) =
1
3Ωr0(αβ)

− 4

3 (1 + z)4 − ΩΛ0

(αβ)−1Ωm0(1 + z)3 +Ωr0(αβ)−
4

3 (1 + z)4 +ΩΛ0

. (47)

(iii) Ricci Scalar:

R(z) = 3H2
0

[

(αβ)−1Ωm0(1 + z)3 + 4ΩΛ0

]

. (48)

(iv) Luminosity distance:

dL =
(αβ)−

2

3 (1 + z)

H0

∫ ∞

0

dz
√

E(z)
. (49)

(v) Density parameter of matter:

Ωm(z) =
Ωm0(αβ)

−1(1 + z)3

E(z)
. (50)

These are the forms of expressions of the cosmological parameters we have obtained for the given set of scale factors in

Eq. (28). The detailed analysis of these expressions are done graphically in section IV.

B. Case II

In this case we consider that scale factors of the three dimensional universe differ from each other by some constant amounts

and hence here we consider the following set of anisotropic scale factors:

a1 = a(t), a2 = a(t) + δ, and a3 = a(t) + γ, (51)

where δ and γ are two constants. As in the previous case, these form of scale factors help us to reduce the complexity and hence

easier to deal with the problem. For convenience, this set of scale factors can also be written as

a1 = a(t), a2 = a(t)faδ, and a3 = a(t)faγ , (52)
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where faδ = 1+δ/a(t) and faγ = 1+γ/a(t). It is clear that faδ, faγ → 1, when the scale factor a(t) → ∞ or the cosmological

redshift z → −1. On the other hand when a(t) → 0 or z ≫ 1, faδ, faγ ≫ 1. Thus, according to this case the universe will

be almost in an isotropic state in the distant future and the anisotropy in the universe was significant in the distant past as in the

case I. With this set of scale factors (52) the directional Hubble parameters of the anistropic universe becomes:

H1 =
ȧ

a
, H2 =

H1

faδ
, H3 =

H1

faγ
(53)

and hence the average Hubble parameter can be written as

H =
H1

3

[

1 + f−1
aδ + f−1

aγ

]

. (54)

Again,

ä1
a1

=
ä

a
,

ä2
a2

=
ä

a
f−1
aδ ,

ä3
a3

=
ä

a
f−1
aγ . (55)

The Einstein field equations as mentioned in Eqs. (4), (5), (6) and (7) are transformed for the present case as

H2
1

[

f−1
aδ + f−1

aγ +
(

faδfaγ
)−1

]

= 8πρ+ Λ, (56)

ä

a

[

f−1
aδ + f−1

aγ

]

+H2
1

(

faδfaγ
)−1

= − 8πP + Λ, (57)

ä

a

[

1 + f−1
aγ

]

+H2
1 f

−1
aγ = − 8πP + Λ, (58)

ä

a

[

1 + f−1
aδ

]

+H2
1 f

−1
aδ = − 8πP + Λ. (59)

And Eq. (8) can be rewritten as

ä

a

[

1 + f−1
aδ + f−1

aγ

]

= − 4π(3P + ρ) + Λ. (60)

The continuity equation for this case becomes,

ρ̇+
(

ρ+ P
)

H1

[

1 + f−1
aδ + f−1

aγ

]

= 0 (61)

and the energy density Eq. (10) can be rewritten as

ρ = ρ0
(

faδfaγ)
−(1+ω)a−3(1+ω). (62)

Similarly, the expression of shear scalar takes the form:

σ2 =
H2

1

3

[

1 + f−2
aδ + f−2

aγ −

(

f−1
aδ + f−1

aγ +
(

faδfaγ
)−1

)

]

. (63)

This expression of shear scalar can be used to calculate the density parameter for anisotropy, Ωσ = σ2/3H2. The Hubble

parameter expression (11) for this case can be found as

H = H0

√

Ωmo

(

faδfaγ
)−1

a−3 +Ωro

(

faδfaγ
)− 4

3 a−4 +ΩΛ0 +Ωσ0

(

faδfaγ
)−2

a−6 (64)

The deceleration parameter of Eq. (13) for the present case takes the form:

q = −
1

3H2

ä

a

[

1 + f−1
aδ + f−1

aγ

]

+ 2Ωσ. (65)

However, the expression of q in terms of density parameters is same as Eq. (14).

As in the case I, in this case also all cosmological parameters need to be expressed in terms of the cosmological redshift

parameter, which is an observable quantity. The relation between cosmological redshift parameters and directional scale factors

in this present case will take the form:

a1(t) =
1

1 + z
, a2(t) =

1

1 + z
+ δ, and a3(t) =

1

1 + z
+ γ. (66)
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As earlier, for the convenient notational purpose this set of scale factors can also be re-expressed as

a1(t) =
1

1 + z
, a2(t) =

fzδ
1 + z

, and a3(t) =
fzγ
1 + z

, (67)

where fzδ = 1 + (1 + z)δ and fzγ = 1 + (1 + z)γ. Indeed, the behaviours of fzδ and fzγ are exactly same as faδ and faγ for

different values of z as discussed above. Here the directional cosmological redshift parameters z2 and z3 can be obtained as

z2 =
1 + z

fzδ
− 1, and z3 =

1 + z

fzγ
− 1.

For this set of scale factors the directional Hubble parameters can be written as

H1 = −
ż

1 + z
, H2 = −

ż

(1 + z)fzδ
, H3 = −

ż

(1 + z)fzγ
. (68)

Thus the expression of average Hubble parameter takes the form:

H = −
ż

3(1 + z)

[

1 + f−1
zδ + f−1

zγ

]

. (69)

In view of the above set of scale factors, Eq. (64) can now be rewritten as

H = H0

√

E(z), (70)

where

E(z) = Ωm0

(

fzδfzγ
)−1

(1 + z)3 +Ωr0

(

fzδfzγ
)− 4

3 (1 + z)4 +ΩΛ0 +Ωσ0

(

fzδfzγ
)−2

(1 + z)6. (71)

Correspondingly, the age of the universe can be written as

tage =
1

H0

∫ ∞

0

dz

(1 + z)
√

E(z)
−

1

3H0

∫ ∞

0

[ δ

fzδ
√

E(z)
+

γ

fzγ
√

E(z)

]

dz. (72)

As before, other cosmological parameters in terms of redshift are as follows:

(i) Deceleration parameter:

q(z) =
1

√

E(z)

[1

2
Ωm0

(

fzδfzγ
)−1

(1 + z)3 +Ωr0

(

fzδfzγ
)− 4

3 (1 + z)4 +ΩΛ0 + 2Ωσ0

(

fzδfzγ
)−2

(1 + z)6
]

. (73)

(ii) Equation of State:

ω(z) =
1
3Ωr0

(

fzδfzγ
)− 4

3 (1 + z)4 − ΩΛ0

Ωm0

(

fzδfzγ
)−1

(1 + z)3 +Ωr0

(

fzδfzγ
)− 4

3 (1 + z)4 +ΩΛ0

. (74)

(iii) Ricci Scalar:

R(z) = 3H2
0

[

Ωm0

(

fzδfzγ
)−1

(1 + z)3 + 4ΩΛ0

]

. (75)

(iv) Luminosity distance:

dL(z) =

(

fzδfzγ
)− 1

3 (1 + z)

H0

∫ ∞

0

[

1
(

fzδfzγ
)

1

3

√

E(z)
−

δ(1 + z)

3 f
4

3

zδf
1

3

zγ

√

E(z)
−

γ(1 + z)

3 f
1

3

zδf
4

3

zγ

√

E(z)

]

dz. (76)

(vi) Density parameter for anisotropy:

Ωσ =
AB

CE(z)
, (77)
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where A = Ωm0

(

fzδfzγ
)−1

(1 + z)3 + Ωr0

(

fzδfzγ
)− 4

3 (1 + z)4 + ΩΛ0, B = 1 + f−2
zδ + f−2

zγ −

[

f−1
zδ + f−1

zγ +
(

fzδfzγ
)−1

]

and C = f−1
zδ + f−1

zγ +
(

fzδfzγ
)−1

.

(vii) Density parameter for matter:

Ωm(z) =
Ωm0

(

fzδfzγ
)−1

(1 + z)3

E(z)
. (78)

As in the previous case, we have obtained these forms of expressions of various cosmological parameters by considering the

scale factors as given in Eq. (52). The detailed graphical analysis of these expressions are presented in the next section.

IV. GRAPHICAL ANALYSIS AND RESULTS

In this section we focus on the graphical analysis of various cosmological parameters discussed above and try to give possible

explanations of the results obtained from the emerging graphs. Here, in the numerical calculations, we have taken the Planck

2018 results on cosmological parameters [48].

1. Hubble parameter

To understand the behaviour of Hubble parameter H(z) with respect to z, we first plot the values of H(z) with 1 + z over a

large range of its values for three different sets of values of α and β for the case I and two sets of values of γ and δ for the case

II as shown in the Fig. 1 by using Eqs. (43) and (70) respectively. As mentioned earlier, it is seen from the figure that both the

cases deviate significantly from the isotropic universe (ΛCDM model) in the remote past, whereas they agree with the isotropic

universe at present and at distant future epochs. However, there is a difference of variation patterns of H(z) in between these

two cases in the past. In the case I, the values of H(z) can be greater or smaller than its corresponding values in the ΛCDM

model in the past depending on the values of parameters α and β. On the other hand in the case II, the values of H(z) never

greater than its corresponding values in the ΛCDM model in the past for any set of values of parameters γ and δ. Also we have

noticed that, more the values of α and β moves towards one, higher the tendency of the Hubble parameter plot in case I to move

towards the ΛCDM model. Whereas, smaller values of δ and γ show excellent agreement with the ΛCDM plot.
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FIG. 1: Behaviour of Hubble parameter H(z) with respect to 1 + z for the case I (left) and case II (right) with different associated model

parameters.

Moreover, to choose a reliable range of values of model parameters, i.e. α, β for the case I and γ, δ for the case II, we have

used four sets of available H(z) data, viz., HKP and SVJ05 data [61], SJVKS10 data [62] and GCH09 data [63] in the H(z)
versus z plots of Fig. 2 to constrained the model parameters within the observable range of z values. Since the SVJ05 data set

has been replaced already by SJVKS10 data, we have taken this data set only as a reference [5]. From this figure, we have found

a good range of values of the product of the two free parameters (i.e. αβ) from 0.6 to 1.21 for the case I. For different sets of

values of α and β, whose products lie in between the above mentioned range of values will give us consistent results with the
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observational data. In this paper, we have taken three different sets of values of α and β: (0.75, 0.8), (0.905, 0.954) and (1.1, 1.1)

as shown in the left plot of Fig. 2. For the case II, we have found a best possible range of values of γ and δ as (0.001, 0.0095) to

(0.1, 0.05), within which any set of values of γ and δ gives results that fit to data within range of error bars. It is also seen that

the set γ = 0.001 and δ = 0.0095 produces the results that almost agree with the results of the ΛCDM model upto the values of

z ∼ 1.2.
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FIG. 2: Behaviour of Hubble parameter H(z) for the small z values with different values of model parameters in conformity with four sets of

observed data within the available ranges of errors for the case I (left) and case II (right).
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FIG. 3: Least square fitting curve and the best fitted curve of H(z) obtained from Eq. (70) for the values of the parameters δ and γ as 0.001

and 0.0095 respectively to the observed Hubble parameter data set shown in Table I.

Further, to get the precise values of above free parameters for both the cases, which should be consistent with the ΛCDM

model at least around the present epoch, we have considered the compilation of 43 observational Hubble parameter data against

43 different values of redshift [7, 26] as shown in Table I. We have plotted the best fitted curve to this set of Hubble parameter

data against the redshift by using a non-linear curve fitting (least square fitting) technique as shown in Fig. 3. From the curve we

have calculated the value of αβ = 0.86275 for the case I at z = 0. It is important to mention that we may be able to consider

a set of values of α and β, which satisfy the condition that αβ = 0.86275. Thus, we can use different sets of α and β with this

condition. Here, we have not consider any special set of values of α and β, but just considered the condition αβ = 0.86275 in

the rest of the paper. However, it is not easy to get the values of the parameters δ and γ for the case II using this method. So,

for the case II we have used a suitable set of values of δ and γ, for which the expression of H(z) for this case (Eq. (70)) gives

a curve very close to the least square fitting curve to the observational data as shown in Fig. 3. This set of values of δ and γ
are found to be 0.001 and 0.0095 respectively, which is the same as the lower limit values of these parameters found from the

analysis with Fig. 2. Thus the graphical plots of H(z) for both the cases obtained from these derived free parameters values as
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mentioned above should be consistent with the ΛCDM plot shown in Fig. 2, especially for the range of small z.

TABLE I: Presently available observational Hubble parameter (Hobs(z)) data set. Hobs(z) is in unit of km/s/Mpc.

z Hobs(z) Reference z Hobs(z) Reference

0.0708 69.0 ± 19.68 [53] 0.48 97.0 ± 62.0 [57]

0.09 69.0 ± 12.0 [61] 0.51 90.8 ± 1.9 [60]

0.12 68.6 ± 26.2 [53] 0.57 92.4 ± 4.5 [66]

0.17 83.0 ± 8.0 [61] 0.593 104.0 ± 13.0 [59]

0.179 75.0 ± 4.0 [59] 0.60 87.9 ± 6.1 [67]

0.199 75.0 ± 5.0 [59] 0.61 97.8 ± 2.1 [60]

0.20 72.9 ± 29.6 [53] 0.68 92.0 ± 8.0 [59]

0.24 79.69 ± 2.65 [63] 0.73 97.3 ± 7.0 [67]

0.27 77.0 ± 14.0 [61] 0.781 105.0 ± 12.0 [59]

0.28 88.8 ± 36.6 [53] 0.875 125.0 ± 17.0 [59]

0.35 84.4 ± 7.0 [65] 0.88 90.0 ± 40.0 [57]

0.352 83.0 ± 14.0 [59] 0.90 117.0 ± 23.0 [61]

0.38 81.9 ± 1.9 [60] 1.037 154.0 ± 20.0 [59]

0.3802 83.0 ± 13.5 [56] 1.30 168.0 ± 17.0 [61]

0.40 95.0 ± 17.0 [61] 1.363 160.0 ± 33.6 [58]

0.4004 77.0 ± 10.2 [56] 1.43 177.0 ± 18.0 [61]

0.4247 87.1 ± 11.2 [56] 1.53 140.0 ± 14.0 [61]

0.43 86.45 ± 3.68 [63] 1.75 202.0 ± 40.0 [61]

0.44 82.6 ± 7.8 [67] 1.965 186.5 ± 50.4 [58]

0.4497 92.8 ± 12.9 [56] 2.34 223.0 ± 7.0 [52]

0.47 89.0 ± 50.0 [57] 2.36 227.0 ± 8.0 [54]

0.4783 80.9 ± 9.0 [56]

2. Ricci scalar

Ricci scalar is an important parameter to specify the geometric property of spacetime of the universe. Some mathematical and

graphical analysis of the evolution of Ricci scalar for various cosmological models in modified cosmology are also found in Ref.

[26]. So, to understand the evolution of Ricci scalar in our anisotropic model of the universe, we have plotted Ricci scalar R(z)
against the redshift (z) for the case I and case II by using Eqs. (48) and (75) respectively as shown in Fig. 4. In this plot we have

used the observationally constrained value of αβ = 0.86275 for the case I, and γ = 0.001 and δ = 0.0095 for the case II as

mentioned in the previous subsection. Here, we have also shown the plot of this cosmological parameter for the ΛCDM model.

Figure shows that both the cases of our model are consistent with the ΛCDM model from the present epoch to the near past.

However, the deviation of both the cases increases with higher curvature of spacetime for the case I and with lower curvature for

the case II, from the ΛCDM model as we move towards the distant past.

3. Deceleration Parameter and Equation of State

As the deceleration parameter q(z) is an important parameter to understand the pattern of evolution of the universe, we have

plotted it with respect to 1+ z for the both the cases of our model for the constrained values of the free parameters as mentioned

above by using Eqs. (46) and (73) along with the plot for the ΛCDM model as shown in Fig. 5. It is found that for both the

cases, at z = 0, q(0) tends to −0.55, which is a good agreement with the ΛCDM model’s prediction for the current value of q(z).
In reality for any value of z, q(z) for both the cases shows a good agreement with the ΛCDM model, especially the case II has

the excellent agreement. This implies that the pattern of evolution of our anisotropic model of universe is same as that of the

isotropic model.
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FIG. 4: Ricci scalar versus redshift plots for the case I (left) and case II (right) of the proposed anisotropic model of the universe with the

constrained values of free model parameters along with the plot for the ΛCDM model.
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FIG. 5: Deceleration parameter versus redshift plots for the case I (left) and case II (right) of anisotropic model of the universe with the

constrained values free model parameters along with the plot for the ΛCDM model.

Similarly, the Equation of State (EoS) is an important cosmological parameter to understand the composition of the universe

as well as its characteristics. We have plotted the EoS (ω) against 1 + z for both the cases by using Eq. (47) and (74) with

the constrained values of free model parameters as shown in Fig. 6. We found that at z = 0, EoS ω is close to −0.7 for both

the cases, which is also consistent with the ΛCDM model and agrees with the current era of the universe as the dark energy

era. The curves show good agreement with the ΛCDM model (in fact it is excellent for the case II) and hence support the three

phases of the universe, viz., the radiation dominated phase (ω = 1/3), the matter dominated phase (ω = 0) and the dark energy

phase (ω = −1). Thus this anisotropic model of the universe has the same evolution characteristics as the isotropic model of the

universe.

4. Distance modulus

The distance modulus is a reliable observational parameter to understand the cosmic evolution with redshift. Here, we have

plotted the distance modulus (Dm) against redshift for both the cases with the free model parameters as mention above by using

Eqs. (49) and (76) in Eq. (27) along with the Union2.1 observational data [64] and Dm for the ΛCDM model as shown in Fig.

7. It is clear from the figure that for both the cases, for the constrained free parameter values, the distance modulus plot shows

excellent agreement with observational data along with the ΛCDM plot. This implies that the anisotropic model of the universe

agrees very well with the observed data of the distance modulus of galaxies.
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FIG. 6: Equation of State parameter with respect to redshift for the case I (left) and case II (right) of anisotropic model of the universe with the

constrained values free model parameters along with the plot for the ΛCDM model.
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FIG. 7: Distance modulus versus redshift plots for the case I (left) and case II (right) of anisotropic model of the universe with the constrained

values free model parameters in comparison with Union2.1 data along with the plot for the ΛCDM model.

5. Anisotropy density parameter

The anisotropy density parameter is an important parameter to understand the possible anisotropy that exists in the universe.

For the case I it’s value is zero, but for the case II it has a definite expression as mentioned in Eq. (77). Fig. 8 shows the plot

of this Ωσ against 1 + z for the constrained values of δ and γ. This figure suggests that a considerable amount of anisotropy

exists for a much higher value of redshift, which indicates that the universe had prominent anisotropic character in its early

stages and which is now almost reduced to zero. The existence of anisotropy after inflation period can be explained with the idea

like breaking the Lorentz invariance by introducing a condensation of vector field [68], slow roll phase of vector fields like as

inflation field in chaotic inflationary scenario, [68–70] or considering anisotropic inflation model with vector impurity[68] etc.

However, this is a broad area of study and hence to be considered latter. In Ref. [7], the upper limits of the present value of the

anisotropy density parameter (Ωσ0) has been calculated by using the BAO and CMB data for the matter dominated recombination

era as Ωσ0 ≤ 10−15, and by demanding that the standard big bang nucleosynthesis (BBN) is not significantly affected by the

expansion anisotropy as Ωσ0 ≤ 10−23. From these two upper limits of Ωσ0 we have calculated the corresponding values of the

free parameters δ and γ of the case II, and found that their values may lie in between 10−3 and 10−8. It should be noted that this

calculated upper limit of values of δ and γ is in agreement with their constrained values obtained from the Hubble parameter

data as mentioned above.
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FIG. 8: Anisotropy density parameter versus redshift plot for the case II with the constrained values of free model parameters γ = 0.001 and

δ = 0.0095.

6. Relative shear anisotropy parameter

The relative shear anisotropy parameters r and s can be defined as [50]

r =
H1 −H2

H
, s =

H1 −H3

H
,

where as mentioned above H1, H2, H3 are the directional Hubble parameters and H is the average Hubble parameter. The

parameters r and s provide the information about if the anisotropy exists in different directions and their plot against redshift

gives the picture about the evolution of directional anisotropy. Fig. 9 shows the plots of both the parameters for case II. The

figure shows that there was a considerable amount of relative shear anisotropy present for the higher value of redshift (z). Thus

the model predicts the existence of higher value of relative shear anisotropy in the early stage of the universe. However, for the

case I both these parameters vanish. Thus for case I, the universe has no relative shear anisotropy.
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FIG. 9: Relative shear anisotropy versus redshift plot for the case II.

7. Density parameter of matter

To visualize how the matter density parameter varies from early stages to present epoch according to our anisotropic model

of the universe, we have plotted the Ωm/Ωmo against the redshift in Fig. 10 by using Eq. (50) and (78) for the case I and case II
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respectively for the constrained values of free parameters for each cases. The left panel of Fig. 10 is for case I and the right panel

is for case II. We have plotted this parameter for both the cases against the value of z up to 106. From the figure, we have seen

that there is a matter dominated era up to z ∼ 103 for both the cases and it supports the matter dominated region 0.5 ≤ z ≤ 3000
as mentioned in Ref. [17]. For very high values of z, the density parameter for matter drops down considerably close to zero.

It suggests that the universe was radiation dominated at it’s early stage. Thus this anisotropic model of the universe agrees well

with the observed or predicted evolution nature of the standard cosmology. However, there are differences between the matter

density parameter evolution in case I and case II. Firstly, falling of this parameter for very high z values is not smooth in the

case II in comparison to in the case I. Secondly, in the case I the ratio Ωm/Ωmo moves gradually towards one as z tends to zero

as expected, but in the case II this ratio reached to the value one before z reached its zero value.
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FIG. 10: Variation of matter density parameter with respect to redshift for case I (left) and case II (right) with the constrained set of free model

parameters.

8. Age of the universe

According to the standard model of cosmology (ΛCDM) the age of the universe is calculated to be ∼ 13.786 Gyr. To find the

age of the universe in our model we have calculated it by using Eqs. (45) and (72) for the case I and case II respectively with the

constrained sets of corresponding free parameters. We found that according to case I the age of the universe is ∼ 13.084 Gyr and

according to case II it is ∼ 13.741 Gyr. Thus we see that case II result agrees very well with the results of the standard model of

cosmology with a deviation of only 0.33%. Whereas the deviation of the result in case I is 5.09%.

V. CONCLUSIONS

In this study we have considered the simplest Bianchi type I metric with slight modifications in directional scale factors for

two different cases to understand the possible anisotropy that may exist in the universe. Here, we have used the generalized

equations of Bianchi type I cosmological model and implemented them in both the considered cases. Starting from the field

equations, we have construct all the cosmological parameters including average Hubble parameter, luminosity distance, distance

modulus, deceleration parameter, equation of state, shear scalar and various density parameters etc. for both the cases. After

the mathematical constructions, we have tried to plot various parameters with respect to cosmological redshift and compare the

results with ΛCDM model which is the best fitted model to cosmological data till date. Also we compare the results with various

observational data like HKP data, SVJ05 data, SJVKS10 data and GCH09 data for the Hubble parameter and with Union 2.1

data for the distance modulus. Further, we have used observational data of Hubble parameter given in Table I that are obtained

from various sources as mentioned in the table to constrained the free parameters of both the cases i.e. α and β for the case I, and

δ and γ for the case II as shown in Fig.3. In this context, explicitly we should state that we have used the observational Hubble

parameter data to find out the best possible values of model parameters as mentioned above. For the case I, we have equated

Eq. (43) with H0 for z = 0 using the Planck 2018 data [48] for the same and found that αβ = 0.86275. Thus any set of values

of α and β which satisfies this condition are eligible for consideration in the case I. In our work, we have not considered any

special set of values of α and β but taken the condition as a whole for the graphical analysis. However, for case II this method is
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not suitable as the expression for the Hubble parameter in this case is complicated as compared to the case I. Therefore we have

fitted the 43 observational Hubble parameter data in Table I using the least square fitting technique. Then we have changes our

model parameters δ and γ in Eq. (70) for H(z) of the case II to find out which values of these parameters give the suitable or

close result with the least square fitting curve. In our analysis we have found that for δ = 0.001 and γ = 0.0095, the plot of the

Hubble parameter fairly agrees with the fitting curve as shown in Fig. 3. Thus from our analysis we have taken αβ = 0.86275
for the case I, and δ = 0.001, γ = 0.0095 for the case II as the constrained values of the model parameters in all other graphical

analysis.

After constraining the model parameters we have plotted various cosmological parameters against cosmological redshift for

both the cases with the constrained values of free parameters and tried to explain those plots. From the results of this analysis

we have found that for the case I, where the directional scale factors are modified by multiplicative constants, the model unable

to show any kind of anisotropy as the shear scalars and density parameter of anisotropy are zero in this case. It is to be noted

that for α = β = 1, the case I is reduced to the ΛCDM model. For the case II, we found relatively higher amount of anisotropy

as compared to case I for higher values of redshift and it becomes very very small at z ≤ 20 (see Fig. 8). The case II also shows

the presence of relative shear anisotropy, which is obviously very small for small value of redshift. The case II also reduces to

the ΛCDM model when δ = γ = 0. Moreover, in terms of age of the universe the case II is found to be in very good agreement

with the ΛCDM model. Further, we have found that the current value of the Hubble parameter (H0) for the case I is 69.31 and

for the case II is 67.56. The result obtained for case II shows more consistency with the Planck 2018 result [48]. Similarly, the

current value of deceleration parameter for case I is −0.47 and for case II is −0.54. Here also the result obtained from case II

is more consistent with the Planck 2018 data [48]. Furthermore, the constrained values of model parameters for both the cases

give the matter dominated region in the density parameter of matter vs redshift (z) plots of Fig. 10, which show good agreement

within the range 0.5 ≤ z ≤ 3000 as mentioned in Ref. [17]. For the range of values of density parameters of anisotropy Ωσ0 as

suggested in Ref. [7] i.e. 10−23 ≤ Ωσ0 ≤ 10−15, the values of δ and γ lies in between 10−8 and 10−3 for the case II.

Thus from our work, we have shown that even there exist variations in directional scale factors, the Bianchi type I model

sometime gives purely isotropic universe just like the case I. Also we have found that although very small variations of directional

scale factors unable to change the isotropic nature of the universe significantly in the current state, but it may possess relatively

higher contribution of anisotropy in early stage of the universe compared to the current state.

Finally, it needs to be mentioned that in most of the past studies on various anisotropic cosmological models authors tried to

constraint the cosmological parameters related to the possible anisotropy of the universe using the available cosmological data

with various statistical methods. For example, in Refs. [7, 71] Bayesian inference technique is used, goodness of fit is used in

Refs. [10] and simulation techniques like Monte Carlo is used in Refs. [10, 22]. Whereas in our work we constrain our model

parameters using the available cosmological data as well as the constrained anisotropic density parameter to predict the possible

anisotropy present in the universe as mentioned above. Apart from this difference, our work is mainly based on analytical

techniques in contrast to statistical methods of previous studies as mentioned. We have derived analytical expressions of all

the cosmological parameters based on our model, that contain the anisotropic parameters of the model. So these cosmological

parameters and hence our findings can hopefully be tested with the early universe cosmological data that may be available in

future from the future advanced telescopes, such as the Thirty Meter Telescope [72], Extremely Large Telescope [73], CTA [74]

etc.
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