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Abstract. Bianchi type-III inflationary universe is investigated in the presence
of mass less scalar field with a flat potential. To get an inflationary universe a
flat region in which potential V is constant is considered. Some physical and
kinematical properties of the universe are also discussed.
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1 Introduction

Inflation, the stage of accelerated expansion of the Universe, first proposed in the
beginning of the 1980s, nowadays receives a great deal of attention. Guth [1]
proposed inflationary model in the context of grand unified theory (GUT), which
has been accepted soon as the model of the early Universe. Barrow and Turner
[2] showed that the large anisotropy prevents transition into an inflationary era
according to Guth’s original inflationary scenario. Inflationary models play an
important role in solving a number of outstanding problems in cosmology like
the homogeneity, the isotropy and the flatness of the observed universe. The
standard explanation for the flatness of the universe is that it has undergone at an
early stage of the evolution a period of exponential expansion named as inflation.

Scalar fields are the simplest classical fields and there exists an extensive lit-
erature containing numerous solutions of the Einstein equation where the scalar
field is minimally coupled to the gravitational field. In particular, self-interacting
scalar fields play a central role in the study of inflationary cosmology.

Many authors Burd and Barrow [3], Wald [4], Barrow [5], Ellis and Madsen[6],
Heusler[7] studied several aspects of scalar field in the evolution of the universe
and FRW models. Using the concept of Higgs field φ with potential V (φ) has
a flat region and the φ field evolves slowly but the universe expands in an expo-
nential way due to vacuum field energy.
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The role of self-interacting scalar fields in inflationary cosmology in four–
dimensional space-time has been investigated by Bhattacharjee and Baruah [8],
Bali and Jain [9], Rahman et al. [10], C.P. Singh et al. [11], Reddy and Naidu
[12], Reddy et al. [13]. In recent years, Katore et al. [15], Reddy and Naidu
[16] have studied the cosmological models with constant deceleration parameter
of the universe in the context of different aspects of different space-time. Re-
cently Reddy [17] has discussed Bianchi type-V inflationary universe in general
relativity. Very recently, Katore et al. [18] have discussed Kantowaski-Sachs
inflationary universe in general relativity.

In this paper, we have investigated Bianchi type-III cosmological model in the
presence of mass less scalar field with a flat potential in general relativity. To get
a determinate solution, we have considered a flat region in which the potential is
constant. We have also assumed a relation between metric coefficients for this
purpose.

2 Metric and the Field Equations

We consider the Bianchi type-III metric of the form

ds2 = dt2 − A2dx2 − B2e2xdy2 − C2dz2, (1)

where A, B, C are the functions of t only.

The non-vanishing components of the Einstein tensor for the metric (1) are
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Here the subscript 4 denotes the differentiation with respect to t.

In this case of gravity minimally coupled to a scalar field V (φ), the Lagrangian
is

L =
∫ [

R − 1
2
gijφ,iφ,j − V (φ)

]√−g d4x, (3)

which on variation of L, with respect to the dynamical fields, to Einstein field
equations

Gij = Rij − 1
2
gijR = −Tij (4)
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with

Tij = φ,iφ,j −
[
1
2
φ,kφ,k + V (φ)

]
gij . (5)

The field equation is

φi
;i = −dV

dφ
, (6)

where comma and semicolon indicate ordinary and covariant differentiation re-
spectively.

Other symbols have their usual meaning and units are taken so that

8πG = C = 1.

Now the field equations (4) for the metric (1) with the help of equation (5) are
given by
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and (6), for the scalar field, takes the form
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From (11), without loss of generality, we get

A = B. (13)

Using (13), the above set of equations reduces to
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Here the subscript 4 denotes the differentiation with respect to t.
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3 Solution of the Field Equations and the Model

Stein–Schabas [19] has shown that Higgs field φ with potential V (φ) has flat
region and the field evolves slowly but the universe expands in an exponential
way due to vacuum field energy. It is assumed that the scalar field will take
sufficient time to cross the flat region so that the universe expands sufficiently to
become homogeneous and isotropic on the scale of the order of the horizon size.
Thus, we are interested here, in inflationary solutions of the field equations.

The flat region is considered where the potential is constant, i.e.,

V (φ) = const = v0. (18)

Also, the set of equations being highly non-linear, we assume a relation between
metric coefficients given by

B = μC , (19)

where μ is constant.

We solve the above set of highly non-linear equations with the help of special law
of variation of Hubble’s parameter, proposed by Bermann that yields constant
deceleration parameter models of the universe.

We consider only constant deceleration parameter model defined by

q = −
[RR44

(R4)2
]

= const, (20)

where R = (B2Cex)
1/3 is the over all scale factor. Here the constant is taken as

negative (i.e., it is an accelerating model of the universe.)

The solution of (20) is given by

R = (αt + β)
1/1+q , (21)

where α �= 0 and β are constants of integration. This equation implies that the
condition of expansion is 1 + q > 0.

Field equations (14)-(17) with the help of (19) and (21), now admit an exact
solution given by

A = B = μ
1/3e

−x/3(αt + β)
1/1+q , (22)

C = μ
−2/3e

−x/3(αt + β)
1/1+q , (23)

φ = k1e
x
(1 + q

q − 2

)
(αt + β)

q−2/1+q + φ0, (24)

where k1 and φ0 are constants, 1 + q > 0.
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Hence, Bianchi type-III cosmological model corresponding to the above solu-
tions, can be written (through a proper choice of co-ordinates and constants of
integration) as

ds2 = dT 2 − μ
2
3 e

−2x
3 T

2
1+q dX2 − μ

2
3 e

−4x
3 T

2
1+q dY 2 − μ

−4
3 e

−2x
3 T

2
1+q dZ2.

(25)
It is interesting to note that this model is free from singularities.

4 Some Physical and Kinematical Properties

The physical quantities that are important in cosmology are proper volume V 3,
the expansion scalar θ, shear scalar σ and Hubble’s parameter H . They have the
following expressions for the model (25):

Special volume = T
3/1+q , (26)

Scalar expansion θ =
1
3
ui
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α
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, (27)
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1
2
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R
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( α
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) 1
T

. (29)

It is observed that at initial epoch (T = 0), the spatial volume will be zero. For
large values of T , the spatial volume tends to infinity. The volume increases as
the time increases, i.e., the model is expanding. It is observed that when T → 0
the expansion scalar θ tends to infinity. While for large value of T , the expansion
scalar θ becomes zero. Also for T tends to zero the scalar field φ diverges.

It is observed that when T → 0 the shear scalar σ tends to infinity. While for
large value of T , the shear scalar σ becomes zero, i.e., the shear dies out as T
increases.

At the initial epoch (T = 0), the Hubble parameter becomes infinite and for
large value of T , H becomes zero. Also, the ratio σ2/θ2 �= 0 for large T , which
imply that the model does not approach isotropy.

5 Conclusion

In this paper, we have obtained a Bianchi Type-III inflationary universe in the
presence of mass less scalar field with flat potential in general relativity. It can
be observed that for large T , the parameters φ, θ, σ, H vanish and diverge when
T → 0. It is observed that the model is free from singularities. The model is
expanding and does not approach isotropy at late times. Our investigations for
Bianchi type-III resembles to the investigations of D.R.K. Reddy et al. [12],
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Reddy et al. [16], Katore et al. [18] whereas our investigation differs to the
results obtained by Reddy et al. [13], Katore et al. [20] for shear scalar, expan-
sion scalar and Reddy [17] for isotropy. The inflationary model obtained here
has considerable astrophysical significance. For example, classical scalar fields
are essential in the study of the present day cosmological models. In view of
the fact that there is an increasing interest, in recent years, in scalar fields in
general relativity and alternative theories of gravitation in the context of infla-
tionary Universe and they help us to describe the early stages of evolution of the
Universe.
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