
EJTP 6, No. 22 (2009) 85–96 Electronic Journal of Theoretical Physics

Bianchi Type V Bulk Viscous Cosmological Models
with Time Dependent Λ-Term

J. P. Singh∗ and P. S. Baghel†

Department of Mathematical Sciences, A. P. S. University, Rewa 486003, India

Received 29 May 2009, Accepted 15 August 2009, Published 30 October 2009

Abstract: Spatially homogeneous and anisotropic Bianchi type V space-time with bulk viscous

fluid source and time-dependent cosmological term are considered. Cosmological models have

been obtained by assuming a variation law for the Hubble parameter which yields a constant

value of deceleration parameter. Physical and kinematical parameters of the models are

discussed. The models are found to be compatible with the results of cosmological observations.
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1. Introduction

Observations during the last few years provided increasingly strong evidence that the

universe at present is expanding with acceleration [3, 33, 36, 37]. In Einstein’s theory

of general relativity, to account for such an expansion, one needs to introduce some

new energy density with a large negative pressure in the present universe, in addition

to the usual relativistic or non-relativistic matter. This exotic matter causing cosmic

acceleration is known as dark energy. The nature of dark energy is unknown and many

radically different models related to this dark energy have been proposed [29, 38].

The simplest explanation of dark energy is provided by the cosmological constant

Λ, but it needs to be severely fine-tuned due to the problem associated with its energy

scale. The vacuum energy density observed today falls below the value of the vacuum

energy density predicted by quantum field theory by many order of magnitude [54]. To

explain the decay of the density, a number of dynamical models have been suggested
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in which cosmological term Λ varies with cosmic time t. These models give rise to an

effective cosmological term which as long as the universe expands, decays from a huge

value at initial times to the small value observed at present. Cosmological models with

different decay laws for the variation of cosmological term were investigated during last

two decades [1, 7, 9, 30, 45, 46, 49, 51].

In the investigation of most of the cosmological models, the source of the gravitational

field is assumed to be a perfect fluid. But these models do not explain satisfactorily the

early stages of evolution. Viscosity may be important in cosmology for a number of

reasons. Dissipative mechanisms responsible for smoothing out initial isotropies and the

observed high entropy per baryon in the present state of the universe can be explained

by involving some kind of dissipative mechanisms e.g. bulk viscosity [52, 53]. Dissipative

effects including bulk viscosity are supposed to play a very important role in the early

evolution of the universe. During the neutrino decoupling stage, apart from streaming

neutrinos moving with fundamental velocity, there is a part behaving like a viscous fluid

co-moving with matter. Decoupling of radiation and matter during the recombination

era is also expected to give rise to viscous effects. Moreover, a combination of cosmic

fluid with bulk dissipative pressure can generate accelerated expansion [28]. Influence of

viscosity on the nature of the initial singularity and on the formation of galaxies have

been investigated [16, 28]. It has been shown that the coincidence problem can be solved

by taking viscous effects into account [12, 13]. Bulk viscosity leading to an accelerated

phase of the universe today has been studied by Fabris et al. [17]. Santos et al. [39] have

derived exact solution with bulk viscosity by considering the bulk viscous coefficient as

power function of mass density. Johri and Sudarshan [21] have investigated the effect

of bulk viscosity on the evolution of Friedmann models. Cosmological models with bulk

viscosity have also been studied by Burd and Coley [8], Maartens [24], Pavon and Zimdahl

[31], Pavon et al. [32].

In the construction of a cosmological model, assumption of homogeneity and isotropy

of the universe are motivated by the cosmological principle and mathematical tractabil-

ity of the resulting FRW models. However, the observed universe is obviously neither

homogeneous nor isotropic. So these symmetries can only be approximate. There are

theoretical arguments [11, 27] and recent experimental data regarding cosmic background

radiation anisotropies which support the existence of an anisotropic phase that approaches

an isotropic one [22]. These observations led us to consider more general anisotropic cos-

mologies, whilst retaining the assumption of (large scale) spatial homogeneity. Spatially

homogeneous and anisotropic cosmological models which provide a richer structure, both

geometrically and physically, than the FRW model play significant role in the description

of early universe. Bianchi type V models being anisotropic generalization of open FRW

models are interesting to study. These models are favoured by the available evidences

for low density universes. Bianchi type V cosmological models have been investigated

by Collins [15], Farnsworth [18], Maartens and Nel [25], Wainwright et al. [50]. Coley

[14] has investigated Bianchi type V imperfect cosmological model. Bianchi type V bulk

viscous cosmological models have also been studied by Bali and Singh [4], Pradhan and
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Yadav [35], Singh and Chaubey [47].

In the present paper, we examine the possibility of the following three cases of phe-

nomenological decay of Λ in the background of Bianchi type V space-time with bulk

viscous fluid source:

Case 1: Λ ∼ H2

Case 2: Λ ∼ H

Case 3: Λ ∼ ρ.

Here H and ρ are, respectively, the Hubble parameter and matter energy density of the

Bianchi type V space-time. The dynamical laws for decay of Λ have been widely studied

by Arbab [1, 2], Carvalho et al. [9], Chen and Wu [10], Schutzhold [40, 41], Vishwakarma

[48] to name only a few.

2. Metric and Field Equations

We consider the Bianchi type V space-time in orthogonal form represented by the line

element

ds2 = −dt2 + A2(t)dx2 + e2αx
{
B2(t)dy2 + C2(t)dz2

}
. (1)

We assume the cosmic matter consisting of bulk viscous fluid given by the energy-

momentum tensor

Tij = (ρ+ p̄)vivj + p̄gij, (2)

with

p̄ = p− ζvi;i, (3)

where ρ is the energy density of matter, p is the isotropic pressure, ζ is the coefficient

of bulk viscosity and vi, the four-velocity vector of the fluid satisfying viv
i = −1. The

semicolon stands for covariant differentiation. On thermodynamical grounds bulk viscous

coefficient ζ is positive, assuring that the viscosity pushes the dissipative pressure p̄

towards negative values. But correction to the thermodynamical pressure p due to bulk

viscous pressure is very small. Therefore, the dynamics of cosmic evolution does not

change fundamentally by the inclusion of viscous term in the energy momentum tensor.

The Einstein’s field equations with time-varying cosmological term Λ(t) are given by

Rj
i −

1

2
Rgji = −8πGT j

i + Λgji . (4)

We use comoving system of reference so that vi = −δi4. The field equations (4) for the

Bianchi type V space-time lead to

8πGp̄− Λ =
α2

A2
− B̈

B
− C̈

C
− ḂĊ

BC
, (5)

8πGp̄− Λ =
α2

A2
− Ä

A
− C̈

C
− ȦĊ

AC
, (6)

8πGp̄− Λ =
α2

A2
− Ä

A
− B̈

B
− ȦḂ

AB
, (7)
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8πGρ+ Λ = −3α2

A2
+

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
, (8)

0 =
2Ȧ

A
− Ḃ

B
− Ċ

C
, (9)

where an overhead dot(·) denotes ordinary differentiation with respect to cosmic time t.

Covariant divergence of (4) gives

ρ̇+ (ρ+ p̄)

(
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
+

Λ̇

8πG
= 0. (10)

We observe that for a constant Λ, equation (10) reduces to the equation of continuity.

In view of energy conservation, equation (10) shows that a decaying vacuum term Λ

transfers energy continuously to the matter component. The effective time-dependent

cosmological term is regarded as second fluid component with energy density ρv = Λ(t)
8πG

,

where ρv is the vacuum energy density. We assume that the non-vacuum component of

matter obeys the equation of state

p = ωρ, ω ∈ [0, 1]. (11)

To write metric functions explicitly, we introduce the average scale factor R of Bianchi

type V space-time defined by R3 = ABC. From equations (5)–(7) and (9), we obtain

Ȧ

A
=

Ṙ

R
, (12)

Ḃ

B
=

Ṙ

R
− k1

R3
, (13)

Ċ

C
=

Ṙ

R
+

k1
R3

, (14)

where k1 is constant of integration. Equations (12)–(14), on integration yield

A = m1R, (15)

B = m2R exp

(
−k1

∫
dt

R3

)
, (16)

C = m3R exp

(
k1

∫
dt

R3

)
, (17)

where m1, m2 and m3 are constants of integration satisfying m1m2m3 = 1. Using suitable

coordinate transformations, constants m2 and m3 can be absorbed. Therefore, m2 and

m3 can be taken to be 1 implying m1 = m2 = m3 = 1.

We introduce the dynamical scalars such as volume expansion θ and shear scalar σ

as usual

θ = vi;i, σ2 =
1

2
σijσ

ij, (18)
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where σij is the shear tensor defined by

σij =
1

2

(
vi;αh

α
j + vj;αh

α
i

)− 1

3
θhij. (19)

Here hij is the projection tensor given by

hij = gij + vivj. (20)

For the Bianchi type V metric, the dynamical scalars have the form

θ =
3Ṙ

R
(21)

and

σ =
k1
R3

. (22)

In analogy with FRW universe, we define generalized Hubble parameterH and generalized

deceleration parameter q as

H =
Ṙ

R
, (23)

q = − R̈

RH2
. (24)

We can write equations (5)–(8) and (10) in terms of H, σ and q as

8πGp̄− Λ =
α2

R2
+H2(2q − 1)− σ2, (25)

8πGρ+ Λ = − 3α2

R2
+ 3H2 − σ2, (26)

ρ̇+ 3(ρ+ p̄)H +
Λ̇

8πG
= 0. (27)

From equation (26), we get

σ2

θ2
=

1

3
− 8πGρ

θ2
− 3α2

R2θ2
− Λ

θ2
. (28)

Therefore 0 < σ2

θ2
< 1

3
and 0 < 8πGρ

θ2
< 1

3
for Λ ≥ 0. Thus a positive Λ restricts the upper

limit of anisotropy whereas a negative Λ will increase the anisotropy. From the equations

(25) and (26), we obtain

dθ

dt
= −4πG(ρ+ 3p)− 2σ2 − θ2

3
+ 12πGζθ + Λ, (29)

which is the Raychaudhuri equation for the given distribution. We observe that for Λ ≤ 0

and ζ = 0, the universe will always be in decelerating phase provided the strong energy

condition [19] holds. In this case, we have

dθ

dt
≤ −θ2

3
, (30)
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which integrates to give
1

θ
≥ 1

θ0
+

t

3
, (31)

where θ0 is the initial value of θ. If θ0 < 0, θ will diverge (θ → −∞) for t < 3
|θ0| . From

equation (29), one also concludes that the presence of viscosity and a positive Λ will slow

down the rate of decrease of volume expansion. Again from equation (22), we get

σ̇ = −3σH. (32)

Thus, the energy density associated with the anisotropy σ decays rapidly in an evolving

universe and it becomes negligible for infinitely large values of R. From equations (25)

and (26), we obtain

R̈

R
= −4

3
πG(ρ+ 3p)− 2

3
σ2 + 4πGζθ +

Λ

3
. (33)

We observe that the positive cosmological term and bulk viscosity contribute positively

in driving the acceleration of the universe. Also from equation (26), we get

3Ṙ2

R2
=

3α2

R2
+ σ2 + 8πGρ+ Λ. (34)

When Λ ≥ 0, each term on the right hand side of (34) is non-negative. Thus Ṙ does not

change sign and we get ever-expanding models. For Λ < 0, however, we can get universes

that expand and then recontract. From equation (10), we obtain

R−3(ω+1) d

dt

{
ρR3(ω+1)

}
= 9ζH2 − Λ̇

8πG
. (35)

Thus, decaying vacuum energy and viscosity of the fluid lead to matter creation.

Over the years, it has been difficult and fascinating problem for cosmologists to explain

the expansion history of the universe. To describe the dynamics of the universe, Hubble

parameter H and deceleration parameter q are important observational quantities. The

present value H0 of Hubble parameter sets the present time scale of the expansion while

q0, the present day value of deceleration parameter tells us that the expansion of the

present universe is accelerating rather than going to decelerate as expected before the

supernovae of Ia observations [3, 33, 36, 37]. From equations (12)–(14), we observe that

scale factors are completely characterized by the Hubble parameter H. Therefore, we

assume a relation between Hubble parameter H and average scale factor R given by

H = kR−m (36)

where k > 0 and m ≥ 0 are constants. Such a relation has already been discussed

by Berman [5], Berman and Gomide [6] in case of FRW models that yields a constant

value of deceleration parameter. Models with constant deceleration parameter have also

been studied by a number of authors [20, 26, 34, 42–44] for FRW and Bianchi cosmology.

For the relation (36), deceleration parameter q comes out to be constant i.e.

q = m− 1. (37)
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The equation (37) shows that the universe is decelerating for m > 1 and it represents

an accelerating universe for m < 1. When m = 1, we obtain H = 1
T

and q = 0.

Therefore galaxies move with constant speed and the model represents anisotropic Milne

universe [23] form = 1. Form = 0, we getH = k and q = −1. Thus Hubble parameterH,

being constant in time, equals to its present value H0 and the model describes accelerated

phase of the universe.

Equation (36) integrates to give

R = (mkt+ t1)
1
m for m 
= 0 (38)

and

R = exp{k(t− t0)} for m = 0, (39)

where t1 and t0 are constants of integration.

Equation (38) along with (15)–(17) gives

A = (mkt+ t1)
1
m , (40)

B = (mkt+ t1)
1
m exp

{
−k1(mkt+ t1)

m−3
m

k(m− 3)

}
, (41)

C = (mkt+ t1)
1
m exp

{
k1(mkt+ t1)

m−3
m

k(m− 3)

}
. (42)

For this solution, the metric (1) assumes the following form after suitable transformation

of coordinates

ds2 = −dT 2 + (mkT )
2
mdX2

+(mkT )
2
m exp

{
2αX − 2k1(mkT )

m−3
m

k(m− 3)

}
dY 2

+(mkT )
2
m exp

{
2αX +

2k1(mkT )
m−3
m

k(m− 3)

}
dZ2. (43)

Equations (15)–(17) with the use of equation (39) yield

A = exp{k(t− t0)}, (44)

B = exp

{
k(t− t0) +

k1
3k

e−3k(t−t0)
}
, (45)

C = exp

{
k(t− t0)− k1

3k
e−3k(t−t0)

}
. (46)

The line-element (1) for this solution can be written as

ds2 = −dT 2 + e2kTdX2

+exp

(
2kT + 2αX +

2k1
3k

e−3kT
)
dY 2

+exp

(
2kT + 2αX − 2k1

3k
e−3kT

)
dZ2. (47)
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3. Discussion

We now discuss the models resulting from different dynamical laws for the decay of Λ.

3.1

For the model (43), average scale factor R is given by

R = (mkT )
1
m . (48)

Volume expansion θ, Hubble parameter H and shear scalar σ for this model are:

θ = 3H =
3

mT
, (49)

σ = k1(mkT )
−3
m . (50)

We observe that the model is not tenable for m = 0 and m = 3. For m < 3, σ
θ
→ 0 as

T → ∞. Therefore, the model approaches isotropy asymptotically.

3.1.1 Case 1:

We consider

Λ = 3βH2, (51)

where β is a constant. From equations (11), (25) and (26), we obtain

8πGρ =
3− 3β

m2T 2
− 3α2

(mkT )
2
m

− k1
2

(mkT )
6
m

, (52)

24πGζ =
3(1 + ω)(1− β)− 2m

mT
− (1 + 3ω)mα2T

(mkT )
2
m

+
(1− ω)k1

2mT

(mkT )
6
m

, (53)

Λ =
3β

m2T 2
. (54)

We observe that the model has singularity at T = 0. It starts with a big bang from its

singular state at T = 0 and continues to expand till T = ∞. At T = 0, ρ, p, Λ, ζ are all

infinite and they become negligible for large values of T . Therefore, for large times, the

model represents a non-rotating, shearing and expanding universe having big bang start

and approaches isotropy asymptotically.

3.1.2 Case 2:

We assume

Λ = aH, (55)
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where a is a positive constant. For this choice, we obtain

8πGρ =
3

m2T 2
− 3α2

(mkT )
2
m

− k1
2

(mkT )
6
m

− a

mT
, (56)

24πGζ =
3(1 + ω)− 2m

mT
− (1 + 3ω)mα2T

(mkT )
2
m

+
(1− ω)mk1

2T

(mkT )
6
m

− (1 + ω)a, (57)

Λ =
a

mT
. (58)

This model also has singularity at T = 0. It evolves from its singular state at T = 0 with

ρ, p, Λ, ζ all diverging and expansion in the model becomes zero for T → ∞. We observe

that the vacuum energy in this case decays slowly than the case 1.

3.1.3 Case 3:

We now consider

Λ = 8πGγρ, (59)

where γ is a constant. In this case, we obtain

8πG(1 + γ)ρ =
3

m2T 2
− 3α2

(mkT )
2
m

− k1
2

(mkT )
6
m

, (60)

24πG(1 + γ)ζ =
3(1 + ω)− 2m(1 + γ)

mT

−(1 + 3ω − 2γ)mα2T

(mkT )
2
m

+
(1− ω + 2γ)mk1

2T

(mkT )
6
m

, (61)

(
1 +

1

γ

)
Λ =

3

m2T 2
− 3α2

(mkT )
2
m

− k1
2

(mkT )
6
m

. (62)

This model also starts expanding with a big bang at T = 0 with ρ, p, Λ, ζ all infinite and

expansion in the model ceases at T = ∞. The bulk viscosity coefficient, being infinitely

large at the initial singularity decreases with time. Matter density ρ and cosmological

term Λ also decrease in the course of expansion to become zero for large times.

3.2

For the model (47), average scale factor R, expansion scalar θ, Hubble parameter H,

shear scalar σ and deceleration parameter q are given by

R = ekT , (63)
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θ = 3H = 3k, (64)

σ = k1e
−3kT , (65)

q = −1. (66)

The energy density ρ and bulk viscosity ζ have the expressions:

8πGρ = 3k2 − 3α2e−2kT − k1
2e−6kT − Λ (67)

24πGkζ = 3(ω + 1)k2 − (3ω + 1)α2e−2kT

+(1− ω)k1
2e−6kT (ω + 1)Λ. (68)

We observe that Λ ∼ H2 and Λ ∼ H, give Λ to be constant because Hubble parameter

H is constant. Therefore, in these cases we obtain the model similar to the model (40)

considered by Singh and Baghel [44].

For the case Λ = 8πGγρ, from equations (67) and (68), we obtain

8πG(1 + γ)ρ = 3k2 − 3α2e−2kT − k1
2e−6kT , (69)

24πG(1 + γ)kζ = 3(1 + ω)k2 − (1 + 3ω − 2γ)α2e−2kT

+(1− ω + 2γ)k1
2e−6kT , (70)(

1 +
1

γ

)
Λ = 3k2 − 3α2e−2kT − k1

2e−6kT . (71)

The model has no initial singularity. Expansion in the model starts at T = 0 with ρ,

θ, σ, Λ and ζ all finite. The expansion scalar θ is constant throughout the expansion.

Therefore the model represents uniform expansion. For large values of T , matter density

ρ, bulk viscosity ζ and cosmological term Λ remain non-zero constants and anisotropy

σ/θ becomes zero. Therefore the model approaches isotropy. For this model, deceleration

parameter q = −1. Therefore, the model represents an accelerating universe. Thus, the

model behaves in accordance with cosmological observations which indicate that the

universe has entered a phase of accelerating expansion. This model represents a non-

singular, shearing and accelerating universe which becomes isotropic for large times.

Conclusion

Anisotropic Bianchi type V cosmological models with bulk viscous fluid and time varying

cosmological term are investigated by assuming a variation law for the Hubble’s parameter

that yields a constant value of deceleration parameter. Universe models for m 
= 0 and

m = 0 have been derived. Three different decay laws for the cosmological term have been

discussed in the context of models obtained. We observe that for m 
= 0, the model starts

with a big bang at T = 0 where cosmological parameters diverge. It becomes isotropic

for large values of T , provided m < 3. The cosmological term Λ being infinite at the

initial singularity becomes negligible for large times.



Electronic Journal of Theoretical Physics 6, No. 22 (2009) 85–96 95

When m = 0, we obtain a non-singular model representing accelerated phase of the

universe. It evolves with finite values of kinematical parameters and expands uniformly.

The model approaches isotropy for large values of T . In this model, matter density ρ,

bulk viscosity ζ and cosmological term Λ remain non-zero for T → ∞.

From equation (37), one concludes that form > 1, the model represents a decelerating

universe and for 0 ≤ m < 1, it gives rise to an accelerating universe. When m = 1, we

obtain H = 1
T
and q = 0 so that every galaxy moves with constant speed. Therefore, for

m = 1, we recovers an anisotropic Milne model [23].
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