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Abstract: Metasurfaces as optically thin composite 

 layers  can be modeled as electric and magnetic surface 

current sheets flowing in the layer volume in the meta­

surface plane. In the most general linear metasurface, the 

electric surface current can be induced by both incident 

electric and magnetic fields. Likewise, magnetic polariza­

tion and magnetic current can be induced also by external 

electric field. Metasurfaces which exhibit magnetoelectric 

coupling are called bianisotropic metasurfaces. In this 

review, we explain the role of bianisotropic properties 

in realizing various metasurface devices and overview 

the state­of­the­art of research in this field. Interestingly, 

engineered bianisotropic response is seen to be required 

for realization of many key field transformations, such as 

anomalous refraction, asymmetric reflection, polarization 

transformation, isolation, and more. Moreover, we sum­

marize previously reported findings on uniform and gra­

dient bianisotropic metasurfaces and envision novel and 

prospective research directions in this field.

Keywords: anomalous reflection; anomalous refraction; 

bianisotropy; chiral; metasurface.

1   Introduction

Despite the rich variety of known natural materials with 

different electromagnetic properties, we always explore 

new possibilities for material design to uncover all poten­

tial opportunities for applications. One straightforward 

solution to extend available properties of matter is to 

engineer atoms and molecules: their sizes, spatial distri­

bution in the lattice, content as well as the electron cloud. 

Although this solution is not realistic at the atomic scale, 

it leads us to an idea of macro­engineering of matter con­

stituents, which underlies the concept of metamateri­

als [1–4]. Metamaterials are composites of macroscopic 

“atoms” (meta­atoms) whose sizes are big enough to be 

easily fabricated and adjusted, and at the same time, small 

enough compared to the wavelength of incident radiation. 

Due to the subwavelength periodicity, metamaterials can 

be homogenized and described as ordinary materials with 

microscopic constituents.

During the last decade, two­dimensional counter­

parts of metamaterials, so­called metasurfaces, have been 

studied intensively (see reviews [5–14]). A metasurface 

represents an electrically thin composite material layer, 

designed and optimized to function as a tool to control 

and transform electromagnetic waves. The layer thickness 

is small and can be considered as negligible with respect 

to the wavelength in the surrounding space. In contrast 

to bulky metamaterials, metasurfaces do not require com­

plicated three­dimensional fabrication techniques and 

suffer less from dissipation losses.

The concepts of metamaterials and metasurfaces are 

strongly associated with the notion of spatial dispersion 

[15–17]. Spatial dispersion effects occur when polarization 

in a specific location inside material depends not only on 

the local electric field at that location, but also on the field 

at other neighboring locations: a wave inside the material 

“feels” the structure of each atom (meta­atom). This effect 

is due to the finite sizes of meta­atoms and the finite wave­

length of electromagnetic radiation, or equivalently, due 

to the finite speed of light. In natural materials, as a result 

of very small sizes of atoms and molecules compared to 

the wavelength of electromagnetic radiation (from radio­

waves to ultraviolet), spatial dispersion can be observed 

only as weak effects of the order of 10−3 as compared with 

the locally induced electric polarization (e.g. optical activ­

ity of quartz) and smaller. Since in metamaterials and 

metasurfaces, the size of inclusions and the distances 

between them become comparable to the wavelength, 
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composites constructed from them possess strong spatial 

dispersion, i.e. nonlocal polarization response. Figure  1 

illustrates spatial dispersion effects by an example of a 

split­ring resonator illuminated by a standing wave. As is 

seen from the figure, the direction of polarization current 

(bound current induced due to polarization of the inclu­

sion) at each point of the metal wire is not determined 

solely by the electric field at that point. Indeed, in the 

middle of the wire, the current is maximum, while the 

external electric field is zero.

The power of the metamaterial concept is in the ability 

to engineer the shapes and content of separate inclusions 

to control the polarization response of the composite in 

the most general fashion. By tailoring spatial dispersion 

in the composite, one can achieve two important phe­

nomena. One of them, artificial magnetism, provides the 

possibility of creating materials with strong magnetic 

(diamagnetic or paramagnetic) properties in an arbitrary 

frequency range. This phenomenon opened the initial 

path for the rapid development of the field of metamateri­

als by enabling such paradigms as negative­index materi­

als [1, 2, 18–20], invisibility cloak [21–24], subwavelength 

focusing [25, 26], and other.

The second phenomenon resulting from engineered 

spatial dispersion is bianisotropy [27]. Bianisotropic mate­

rials acquire magnetic (electric) polarization when excited 

by electric (magnetic) external field. Thus, term “bianisot­

ropy” implies double (“bi­”) polarization mechanism and 

anisotropic response. As is seen from Figure 1, a single 

split­ring resonator, in addition to electric and magnetic 

polarizations, also possesses bianisotropic response [28, 

29] (electric field E
ext

 excites magnetic dipole moment m). 

Although first known study on bi­isotropic materials dates 

back to 1811 when François Arago observed rotation of the 

polarization plane of linearly polarized light in quartz, 

general properties for fields in bianisotropic media were 

understood only in 1970s [30], and wave propagation in 

bianisotropic media was extensively studied only in the 

1990s [31–34]. During the last decade, the interest in biani­

sotropy has resumed thanks to the unique opportunities 

it provides for the design of metasurfaces: optical activity, 

asymmetric absorption and reflection, one­way transpar­

ency, anomalous refraction, etc. Moreover, bianisotropy is 

a stronger effect of spatial dispersion compared to artifi­

cial magnetism [31], which makes it an ideal candidate for 

achieving strong magnetic polarization at optical frequen­

cies where magnetic response of conventional split­ring 

resonators saturates [35, 36].

Bianisotropy is not always attributed to spatial dis­

persion. Alternatively, nonreciprocal bianisotropic effects 

can be achieved, for example, in composites containing 

both magnetically and electrically polarizable compo­

nents which are coupled via their reactive fields and expe­

rience influence of some external time­odd bias field or 

force [37–40]. Nonreciprocal bianisotropic metasurfaces 

can be used to design, for instance, various types of isola­

tors with simultaneous control of amplitude and polariza­

tion of transmitted waves.

Despite recent growing interest to bianisotropic meta­

surfaces, to date, no systematic review of their principles 

of operation and applications has been presented. Thus, 

the goal of this work is to carry out in­depth analysis of 

physics of different bianisotropic effects in metasurfaces 

as well as to make an extensive overview of the known 

bianisotropic metasurfaces from the literature. Further­

more, the present paper aims to demonstrate the unique 

applications and functionalities which can be accom­

plished only with bianisotropic metasurfaces. The expo­

sition of the content goes in the following order. Section 

2 outlines the physics and features of different funda­

mental classes of bianisotropic meta­atoms. Section 3 

provides a brief description of different homogenization 

models of bianisotropic metasurfaces. Finally, Sections 4 

and 5 present an overview of earlier published works on 

uniform and gradient bianisotropic metasurfaces as well 

as classification of different functionalities they offer.

2   Bianisotropic meta-atoms

2.1   Reciprocal meta-atoms

The electromagnetic response of a homogenizable meta­

surface is determined by electric and magnetic dipole 

E
ext

+

–

m

p

J

Figure 1: A metal split-ring resonator positioned in the electric 

field distribution E
ext

 of a standing wave. Since the resonator size is 

comparable to the wavelength, the induced polarization current J 

is nonlocal, i.e. depends on the external field in the whole volume 

occupied by the resonator. Due to the geometry of the split ring, 

electric field excites both the electric p and magnetic m dipoles.
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moments induced in unit cells forming the metasurface. 

For a general linear meta­atom, the relations between the 

induced electric and magnetic dipole moments and the 

external fields existing at the position of the meta­atom 

are written as

 ee loc em loc me loc mm loc
, ,α α α α= ⋅ + ⋅ = ⋅ + ⋅p E H m E H  (1)

where 
ee mm em

, ,  ,α α α  and 
me

α  are the electric, magnetic, 

electromagnetic, and magnetoelectric polarizability 

dyadics (or tensors) of the inclusion. Here the index “loc” 

indicates that if the meta­atom is positioned in an array, 

these fields are the local fields which excite this particu­

lar meta­atom. The local fields are created by external 

sources and the currents at all other meta­atoms which 

form the metasurface. If a single meta­atom is located in 

free space (not in an array), then the local fields are the 

incident fields measured at the position of the meta­atom.

Polarization response of atoms and molecules of 

natural nonmagnetic materials is predominantly deter­

mined by electric polarizability α
ee

. Due to electrically 

small size of atoms (a = λ), the magnetoelectric α
em

, α
me

 

and magnetic α
mm

 polarizabilities are negligible, as weak 

spatial dispersion effects of a/λ and (a/λ)2 orders. Atoms of 

magnetic materials exhibit additionally strong magnetic 

polarization response (not due to spatial dispersion), 

however, it occurs only at microwaves frequencies and 

below. General polarization response can be achieved in 

artificial meta­atoms with dimensions comparable to the 

wavelength. Engineering their shape and internal struc­

ture, one can enhance specific polarization effects, and in 

this case the magnitudes of the inclusion polarizabilities 

are not limited by (a/λ)m order (where m = 1, 2).

The polarizability dyadics of particles made from 

linear materials obey the Onsager­Casimir symmetry rela­

tions [31, 41–45]. If the particles are reciprocal (that is, 

there is no external time­odd bias field nor external time 

modulation), they read

 ee ee mm mm em me
,   ,    .

T T T
α α α α α α= = = −  (2)

Here T denotes the transpose operation. These relations 

follow only from the time­reversal symmetry of  Maxwell’s 

equations and linearity of the particle response. Note 

that they are valid also for absorptive particles. It is seen 

that for reciprocal meta­atoms 
me

α  is completely defined 

through 
em
.α

The term “bianisotropic” refers to meta­atoms whose 

polarizability dyadics 
em

α  and 
me

α  are not zero and non­

negligible. As is seen from (1), there are two basic scenar­

ios of magnetoelectric coupling depending on the mutual 

orientation of the field (E
loc

 or H
loc

) and the dipole moment 

which is induced by this field (m or p, respectively). All 

other scenarios can be considered as a superposition of 

these two. The first scenario, where the moment and the 

field vectors are collinear, can be realized with a mul­

titurn metallic three­dimensional helix [46–49] shown in 

Figure 2A. Under excitation by vertically oriented electric 

fields, the current induced in the wire forms a loop corre­

sponding to a magnetic moment along the external electric 

field. The direction of the magnetic moment as well as the 

sign of the magnetoelectric polarizability depends on the 

helicity state of the helical inclusion. Such  bianisotropic 

meta­atoms are called chiral meaning that they have 

broken mirror symmetry: a mirror image of the meta­atom 

cannot be superposed onto the original one by any opera­

tions of rotation and translation. Possible topologies of 

chiral meta­atoms at optical frequencies are plasmonic 

[50–52] and dielectric [31, 53, 54] multilayer patterns, as 

well as properly shaped plasmonic [55–58] and dielectric 

[59, 60] nanoparticles.

In the second scenario, the induced moment (e.g. m) 

and the field vector (E
loc

) are orthogonal. This can be real­

ized by combining a loop and a straight electric dipole 

antenna, as shown in Figure 2B. This planar geometry, 

often referred to as the omega meta­atom [34, 61, 62] (after 

the Greek letter Ω), provides magnetoelectric polarization 

orthogonal to the exciting field. The sign of the magneto­

electric polarizability can be reversed by twisting the loop 

of the inclusion at 180° [63]. A split­ring resonator is a 

special case of the omega inclusion depicted in Figure 2B. 

At optical frequencies, omega meta­atoms can be imple­

mented with both plasmonic [35, 64, 65] and dielectric [66, 

67] materials.

The aforementioned scenarios define two basic 

functionalities of reciprocal bianisotropic metasurfaces 

composed of meta­atoms: polarization rotation and 

asymmetric scattering (see detailed discussion in Section 

4). However, to achieve these functionalities, it is not 
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Figure 2: Topologies of two basic reciprocal bianisotropic inclusions.

(A) A chiral metal inclusion with the shape of a true helix and (B) an 

omega inclusion with shape of the Ω letter.
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necessary to use the meta­atoms shown in Figure 2. In 

fact, an inclusion of a general shape can act as chiral and 

omega meta­atoms for different illuminations. Indeed, 

an arbitrary electromagnetic dyadic 
em

α  can be always 

decomposed into a linear combination of three basic 

dyadics [31, 68–71]:

 
3

em
1

( ),
i i i

i

TI P A Iα

=

= + + ×∑ a a b  (3)

where T, P
i
 and A are complex amplitudes defining the 

weights of each dyadic in the linear combination, I  is the 

unit dyadic, a
i
 and b are unit vectors [72] (the directions 

that they define are clarified below). The first term in (3) 

defines isotropic true (or intrinsic) chiral bianisotropic 

response. It is not zero only for meta­atoms with broken 

mirror symmetry. One can model this response, as is 

shown in Figure 3A, by the response of three helices of the 

same helicity state arranged with equal density along the 

Cartesian basis unit vectors in a lattice. The dimensions 

of the helices define amplitude T. A true chiral meta­atom 

(the three helices) exhibits chiral effects (polarization 

rotation, circular dichroism, etc.) when illuminated from 

an arbitrary direction. It should be noted that true chirality 

can be achieved only with three­dimensional meta­atoms.

The second term in (3) refers to the so­called pseudo­

chiral (or extrinsic) bianisotropic response. In the lossless 

case it can be modeled by three metal helices oriented 

along the basis vectors a
i
 with the strengths of electro­

magnetic coupling determined by amplitudes P
i
 (see 

Figure  3B). The sum of all amplitudes P
i
 must be equal 

to the trace of the second dyadic in composition (3), i.e. 

equal to zero. This implies that the helices oriented along 

the basis vectors a
i
 must be of different handedness so 

that in total true chirality in the entire inclusion (unit 

cell) is compensated. Importantly, although pseudochi­

ral bianisotropic inclusions do not possess true chiral 

electromagnetic response, they do exhibit chiral effects 

for certain illumination directions, namely along the 

eigenvectors a
i
. This fact has led to far­reaching implica­

tions, enabling to achieve various chiral effects even with 

planar (two­dimensional) structures suitable for various 

nanofabrication techniques [68, 73–78].

Finally, the last (antisymmetric) term in (3) represents 

omega bianisotropic coupling. A uniaxial omega meta­

atom (formed by two orthogonal omega­shaped inclu­

sions) shown in Figure 3C oriented along vector b models 

such electromagnetic coupling. Illuminated along the −b 

and +b directions, the omega meta­atom possesses asym­

metric scattering toward the direction of the source.

The universality of the described classification of 

reciprocal bianisotropic meta­atoms can be demonstrated 

by an example of an arbitrary inclusion with a given 

 electromagnetic tensor 
em
:α

 em

2 1 0

1 2 1 ,

0 1 2

jV

c
α

 
 

= − − 
 
 

 (4)

where V is the volume of the meta­atom, c is the speed 

of light in vacuum and j is the imaginary unit. Through­

out the paper, time­harmonic dependency in the form 

ejωt is assumed. From (3), the following amplitudes can 

be found: T = −2jV/c, P
1
 = jV/c, P

2
 = 0, P

3
 = −jV/c, A = −jV/c. 

The eigenvectors are given in terms of the original basis 

vectors as a
1
 = [−1;  1;  0]T, a

2
 = [0;  0;  1]T, and a

3
 = [1;  1;  0]T, 

while vector b is equal to [1;0;0]T. Therefore, properties 

of the meta­atom with bianisotropic tensor (4) can be 

described by the decomposition depicted in Figure 3D. As 

is seen from the figure, now the electromagnetic response 

is easily determined for different illumination directions. 

For example, the maximum chiral effect appears when 

incident wave propagates along the bisection of the angle 

between the −x and +y axes because in this scenario the 

True (intrinsic) chiral

A B C D
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a2

a2
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Pseudochiral (extrinsic chiral)
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Uniaxial omega General reciprocal bi-anisotropic

z

x

y

z

x

y

z

x
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Figure 3: Conceptual realizations of basic reciprocal bianisotropic meta-atoms.

(A) True (or intrinsic) chiral meta-atom. (B) Pseudochiral (extrinsic) meta-atom. The right- and left-handed helices are shown in yellow and 

blue, respectively. Different size of the helices corresponds to the different amplitudes of polarizabilities. (C) Uniaxial omega meta-atom. 

(D) The conceptual representation of the bianisotropic meta-atom with electromagnetic coupling described by (4).
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left­handed helix (shown in blue) is not excited, while the 

other three right­handed helices are activated. Further­

more, the highest asymmetry of backscattering occurs 

when the virtual omega inclusion is excited, i.e. for inci­

dent waves propagating along the ±x­axis.

The problem of finding proper geometrical parameters 

of a bianisotropic meta­atom knowing its required polariz­

abilities is not trivial. In some simple cases, it is possible 

to roughly determine the dimensions and material char­

acteristics of the inclusions based on known theoretical 

models [47, 79]. However, in most cases of bianisotropic 

inclusions, the correspondence between their polariz­

abilities and internal structure can be set up only with the 

use of numerical and semi­analytical techniques (see e.g. 

[80–83]).

2.2   Nonreciprocal meta-atoms

Materials and their constituents that possess different 

electromagnetic response under time reversal are called 

nonreciprocal. To break the time­reversal symmetry, there 

must be some external perturbations acting on the mate­

rial, because the microscopic and macroscopic Maxwell 

equations are symmetric under time reversal. Such per­

turbations can be of nonelectromagnetic as well as elec­

tromagnetic nature. A good example is an external static 

magnetic field bias. Materials such as metals and ferro­

magnetics placed in external magnetic field would exhibit 

different response for different directions of time flow 

in the system. The magnetic bias field is assumed to be 

invariant to the time flow since it is external to the con­

sidered system. Other examples of nonreciprocal materi­

als are magnetized plasma and magnetized graphene. 

Nonreciprocal response can be achieved also by other 

means: materials moving with some speed, magnetless 

active materials mimicking electron spin precession of 

natural magnets [37, 84–86], nonlinear materials [38], 

time­ modulated materials [87].

Nonreciprocal meta­atoms (namely those biased by 

some external force) can be engineered to exhibit non­

reciprocal bianisotropic response. For such meta­atoms, 

the polarizability dyadics can be introduced as in (1). 

The Onsager­Casimir symmetry relations have the form 

[41–43]:

 
ee 0 ee 0 mm 0 mm 0

em 0 me 0

( ) ( ),   ( ) ( ),

( ) ( ),

T T

T

α α α α

α α

= − = −

= − −

H H H H

H H
 (5)

where H
0
 denotes all external nonreciprocal parameters 

(e.g. bias magnetic field) and –H
0
 corresponds to the case 

when all these parameters switch signs.

Similarly to the above consideration for reciprocal 

meta­atoms, one can distinguish two basic nonreciprocal 

bianisotropic inclusions based on the mutual orientation 

of the local field E
loc

 and the dipole moment m induced 

by this field. In the first scenario, when E
loc

 and m are col­

linear, an example appropriate geometry of the inclusion 

is shown in Figure 4A. It consists of a ferrite sphere (here, 

ferrite is chosen since it is nonconductive in contrast to 

other magnetic alloys) magnetized by external magnetic 

field H
0
 and located in the proximity of metal wires of a 

cross shape. The electric field of the incident wave excites 

the electric current along the wires which, in turn, excites 

alternating magnetic field around the wires. This magnetic 

field induces a magnetic moment in the ferrite sphere. 

Likewise, the incident magnetic field excites an electric 

dipole moment in the wires through magnetization of the 

sphere. The inclusion shown in Figure 4A was theoretically 

studied in [40, 88, 89] and experimentally tested in [90]. 

It was named Tellegen meta­atom after Bernard Tellegen 

who suggested the first prototype of such an inclusion [39].

The topology of the inclusion corresponding to the 

second scenario, when the local field and the induced 

moment are orthogonal, is shown in Figure 4B. Such inclu­

sion is sometimes named as an artificial moving atom [40] 

since a composite of such meta­atoms exhibits the same 

electromagnetic response as that of an ordinary isotropic 

material which is truly moving with some speed. The first 

analytical study on polarizabilities of nonreciprocal biani­

sotropic inclusions was reported in [91]. Interestingly, 

it appears that no realizations of nonreciprocal bianiso­

tropic meta­atoms at optical frequencies are known. This 

interesting and challenging area remains completely 

unexplored.

field

moment
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Figure 4: Topologies of nonreciprocal bianisotropic inclusions.

(A) Uniaxial Tellegen inclusion. (B) Uniaxial artificial moving inclu-

sion. The ferrite sphere is shown in green. The inclusions are excited 

by an incident electric field E
loc

. For clarity, magnetic moments m 

induced due to only nonreciprocal bianisotropic effects are shown. 

Note that these inclusions do not exhibit pure nonreciprocal 

response and possess also reciprocal effects of chiral and omega 

couplings.
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It is important to mention that nonreciprocal biani­

sotropic coupling is not an effect of spatial dispersion. In 

contrast to reciprocal spatially dispersive inclusions where 

magnetoelectric and magnetic response can occur only 

due to their finite sizes, nonreciprocal inclusions exhibit 

these responses even in locally uniform external fields 

(when the particle size is negligibly small compared to the 

wavelength). For example, in the considered ferrite­based 

inclusions, uniform electric field excites electric current in 

the wires which in turn induce magnetic moments in the 

ferrite sphere. Thus, generally, bianisotropic properties 

of a medium can be caused by two distinguished effects: 

reciprocal spatial dispersion effects and nonreciprocal 

magnetoelectric coupling.

2.3   Maximizing bianisotropy

In many applications of bianisotropic meta­atoms, it 

is required to bring their magnetoelectric properties 

to the balance with the electric and magnetic ones. 

Such  bianisotropic meta­atoms (both reciprocal and 

 nonreciprocal) are called optimal or balanced and their 

main polarizability components satisfy the relation 

[92–94]:

 
0 ee em mm

0

1
| | | | ,η α α α

η
= =    (6)

where η
0
 is the wave impedance of free space. In par­

ticular, it was demonstrated that balanced chiral par­

ticles do not interact with the waves of one of the two 

circular polarizations at all, maximizing the effects of 

optical dichroism [92, 94, 95]. Condition (6) also appears 

for bianisotropic meta­atoms realizing various polari­

zation transformations [48, 96], cloaking [97], zero 

forward and backward scattering [98, 99], total absorp­

tion [100], one­way transparency [101], etc. Moreover, 

the  balanced  meta­atoms extract/radiate maximum 

power from the incident electromagnetic fields (for 

a given overall size and the resonant frequency of the 

inclusion) [93].

Previously, relation (6) was considered as an upper 

limit for the strength of bianisotropic coupling |α
em

 |  in 

meta­atoms [32, 47, 102, 103]. The recent study [104] dem­

onstrated that by decoupling the electric and magnetic 

modes in the meta­atom, one can largely maximize the 

bianisotropic effects (|α
em

 | ? | α
ee

 |  and |α
em

 | ? | α
mm

 |). 

Analogous giant bianisotropic properties can be achieved 

in bulk materials (so­called bianisotropic nihility) [71, 

105–107].

3   Homogenization of bianisotropic 

metasurfaces

Metasurface is a two­dimensional array of meta­atoms. An 

engineered composite structure forming a metasurface is 

assumed to behave as an effectively homogeneous sheet in 

the electromagnetic (optical) sense, meaning that it can be 

considered continuous on the wavelength scale. Thus, the 

metasurface can be adequately characterized by its effec­

tive, surface­averaged properties. In the strict sense of the 

homogenization models, if the effective parameters vary 

over the surface, it is assumed that the variations are slow 

at the wavelength scale. That is, it is assumed that there 

are at least several elements (often called meta­atoms) in 

every area of the size λ × λ, and the polarizations of these 

meta­atoms are nearly the same. However, many metas­

urfaces work in the mesoscopic regime where there are 

only a few inclusions per wavelength along the surface. 

Nevertheless, homogenized models provides most useful 

physical insight and approximate design guidelines even 

in this situation.

Similarly to volumetric materials, where the notions 

of the permittivity and permeability result from volumet­

ric averaging of microscopic currents over volumes which 

are small compared to the wavelength, the metasurface 

parameters result from two­dimensional surface averag­

ing of microscopic currents at the same wavelength scale. 

Since the physical assumptions under the homogeniza­

tion models of metasurfaces and metamaterials are the 

same, metasurfaces are sometimes defined as two­dimen­

sional versions of metamaterials.

Illuminated by an incident wave, the inclusions of the 

metasurface acquire electric and magnetic polarizations 

which can be expressed via the corresponding dipole 

moments (see Figure  5A). Homogenization implies that 

the discrete array of dipole moments is modeled by an 

m J
m

J
e

k
i

d<< <<λ d λ

E
i

k
i

E
i

p

A B

Figure 5: Homogenization of nonuniform metasurfaces.

(A) A metasurface consisting of arbitrary subwavelength inclusions. 

An incident wave excites certain electric p and magnetic m dipole 

moments in the meta-atoms. (B) Modeling the actual metasurface 

by an array of continuous sheets with averaged over the unit cell 

electric J
e
 and magnetic J

m
 currents.
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array of unit cells with continuous surface­averaged cur­

rents J
e
 and J

m
 shown in Figure 5B. These currents can be 

found as the time derivatives of the electric and magnetic 

polarization densities. These densities, in turn, equal to 

surface­averaged electric and magnetic dipole moments 

of meta­atoms. Finally, the relations between the averaged 

surface currents and the electric and magnetic moments 

read

 e m
,   ,

j j

S S

ω ω

= =

p m
J J  (7)

where S is the unit­cell area. The current flow produces 

discontinuities of the tangential components of the fields 

at both sides of the metasurface which can be expressed 

as [108–111]

 t t e t t m
( ) ,   ( ) .+ − + −

× − = × − = −n H H J n E E J  (8)

Here, “+” and “−” superscripts denote the two half­spaces 

at the two sides of the metasurface. The respective fields 

represent combinations of the incident field and the scat­

tered fields by the metasurface. The unit normal vector n 

points from half­space “ − ” to half­space “ + ”.

Relations (8) do not describe the properties of the 

metasurfaces, they only determine the tangential field 

jumps if the surface currents are known, and vice versa. 

To engineer metasurface response defined by the scat­

tered fields, it is required to control the surface currents, 

and consequently, the electric and magnetic polariza­

tions in the metasurface. There are several conventional 

models for characterization of metasurface response to 

incident fields in terms of its macroscopic parameters: 

models based on polarizabilities [112–117] and suscepti­

bilities [111, 118–121] of metasurface inclusions, equivalent 

impedance matrix model [122–126], and diffractive inter­

face model [127].

Polarizabilities relate polarizations in a metasurface 

with the local fields which cause these polarizations. The 

local fields at the position of a particular metasurface inclu­

sion are defined as 
loc i e

β= + ⋅E E p and 
loc i m

,β= + ⋅H H m  

where 
e

β  and 
m

β  are the interaction constant dyadics that 

describe the effect of the entire metasurface on a single 

inclusion. This approach allows one to express the elec­

tric and magnetic dipole moments of a single inclusion in 

terms of known incident fields E
i
 and H

i
 as

 ee i em i me i mm i
ˆ ˆ ˆ ˆ,   ,α α α α= ⋅ + ⋅ = ⋅ + ⋅p E H m E H  (9)

where the dyadics with hats denote effective or collective 

polarizabilities which characterize the properties of indi­

vidual inclusions and their interactions in the lattice [112–

117]. The polarizability­based model provides not only 

information about the macroscopic response of the array, 

but also about the individual response of the constituent 

elements giving a straightforward way to determine what 

kind of particle should be used to obtain a specific electro­

magnetic response.

By contrast, there are other homogenization models 

based on the macroscopic characteristics of the meta­

surface. For example, the susceptibility­based model 

relates the polarization moments with the electric E
av

 

and magnetic H
av

 fields averaged over the two sides of 

the metasurface. In this case the electric and magnetic 

dipole moments read 
0 ee av 0 0 em av

S Sε χ ε µ χ= ⋅ + ⋅p E H  and 

me av 0 0 mm av
/ ,S Sχ ε µ χ= ⋅ + ⋅m E H  where dyadic χ denotes 

macroscopic surface­averaged susceptibilities (SI metric 

units) [111, 118–121]. The main advantage of the homog­

enization model based on the macroscopic surface sus­

ceptibility tensors is that, knowing a specific tensor, one 

can immediately see if the metasurface inclusions must be 

lossy or possess some gain.

An alternative homogenization model for metasur­

faces can be established based on the analogy between 

plane­wave propagation in free space and signal propa­

gation in a transmission line. The electromagnetic fields 

propagating in free space can be referred to voltages and 

currents of signals propagating in a transmission line 

related by an equivalent impedance matrix [122–126]. The 

method presents several advantages. First of all, when 

the fields at both sides of the metasurface are speci­

fied, one can calculate the impedances and extract the 

following information: whether metasurface should be 

capacitive or inductive, lossy or active, reciprocal or non­

reciprocal, symmetrical or nonsymmetrical, etc. Second, 

based on the transmission­matrix approach, one can 

easily determine reflection/transmission properties of 

the metasurface.

4   Uniform bianisotropic 

metasurfaces

4.1   Early works

Metasurfaces as thin composite layers formed by sub­

wavelength unit cells have been studied for a very long 

time, well before the term metasurface has been coined. 

Perhaps the most studied and practically interesting 

example is a dense mesh of metal wires or strips. In 1898, 

H. Lamb showed that by varying the ratio between the wire 

radius and the period, it is possible to tune the reflectivity 
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from nearly zero to nearly unity [128]. Analytical homog­

enized models of single­layer arrays of conducting wires 

and strips are well developed, including the case of sparse 

grids [129].

One of the early examples of bianisotropic metasur­

faces is the high­impedance surface in form of a dense 

array of metal patches over a ground plane [130]. The 

reflection coefficients of the two sides of this metasur­

face are obviously different, which suggests that the 

metasurface exhibits omega­type bianisotropic cou­

pling. Indeed, this is the case: in [131], the bianisotropic 

coupling coefficient for such high­impedance surface 

was analytically calculated. Accurate dynamic models 

of high­impedance surfaces are available in [132, 133], 

and more complex effects of spatial dispersion in these 

structures have been studied in [134]. Engineering reac­

tive fields close to small resonant inclusions allows dra­

matic reduction of the metasurface thickness [135]. An 

interesting early example of a resonant bianisotropic 

metasurface is an array of small conducting spirals at a 

metal ground plane [136]. Besides omega bianisotropy, 

this structure possesses very strong resonant magnetic 

properties, such that the effective permeability of the 

layer becomes negative.

In the array of helices in [136], resonant spirals were 

arranged in a racemic array, so that the metasurface did 

not exhibit chiral effects. Reflections from chiral metasur­

faces formed by long (nonresonant) spirals were studied 

in [137]. In addition, properties of single and double arrays 

of small bianisotropic particles were studied in papers 

[112, 122] and other works before metasurfaces had been 

conceptualized.

4.2   Polarization transformers

4.2.1   Circular-polarization-selective surfaces

A large variety of devices for polarization transformations 

can be built based on chiral metasurfaces. To demonstrate 

it, let us consider a metasurface composed of chiral biani­

sotropic helices oriented along one direction as shown in 

Figure 6. An incident plane wave with the x­oriented elec­

tric field E
i
 induces both p and m moments in each helix 

along the x­axis (see also Figure 2A). The incident magnetic 

field does not excite the helices, and therefore, according 

to (9), the amplitudes and phases of the induced dipole 

moments are determined solely by the electric 
ee

α̂  and mag­

netoelectric 
me

α̂  polarizabilities of the helices, respectively. 

In particular, these polarizabilities can have equal ampli­

tudes and 90° phase difference, i.e. 
ee me
ˆ ˆjα α=  [96], resulting 

in the same phase shift between the electric and magnetic 

dipole moments (the phase shift is indicated in the figure by 

an imaginary unity j). Figure 6 illustrates scattering from a 

metasurface in this case. The electric and magnetic dipole 

moments radiate plane waves with orthogonal linear polari­

zations. The fields of these waves can be determined using 

(7) and (8). Due to the phase shift of 90° between two lin­

early polarized waves, the resulting scattered wave (in both 

forward and backward directions) is circularly polarized 

with the same handedness as that of the helices. Thus, if 

the helices are right­handed, the reflected wave has right­

handed circular polarization (RCP). At the same time, polar­

ization of the transmitted wave (created by the interference 

of the incident and forward scattered waves) is left­handed 

circular (LCP). Thus, such a chiral metasurface transmits 

one circular polarization and completely reflects (alterna­

tively absorbs) another one. This functionality called circu­

lar polarization selectivity or circular dichroism (in the case 

of absorption) is the basis for various polarization filters. It 

should be noted that circular polarization selectivity can be 

viewed also as an effect of polarization transformation (from 

linear to circular). Obviously, the efficiency of such polariza­

tion transformation is limited by 50%. The response of an 

ideal circular­polarization­selective surface can be easily 

visualized with the corresponding Jones matrix:

RCP

k
iE

i

x z

y

LCP

E
sc

jE
sc

jE
sc

m

E
sc

jp

Figure 6: Electromagnetic response of a basic metasurface formed 

by chiral right-handed balanced inclusions. The inset depicts the 

radiation patterns of the electric and magnetic dipole moments. 

Linearly polarized incident electric field E
i
 excites electric p and 

magnetic jm dipole moments in the inclusions which in turn radiate 

scattered waves denoted as E
sc

 and jE
sc

. Thus, the metasurface com-

pletely reflects RCP-component of the incident wave and transmits 

the LCP-component.
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ϑ  
=  − 

 (10)

where ϑ is an arbitrary phase.

Polarization selectivity is a well­known and explored 

phenomena. It can be found in nature: for example, the 

exoskeleton of scarab beetles selectively reflects left circu­

larly polarized light [138, 139]. The polarization selectiv­

ity is caused by the chiral (mirror­asymmetric) structure 

of the cells in the exoskeleton. The first artificial circular­

polarization­selective device was proposed in 1966 [140]. 

The structural unit cell (shown in Figure 7A) consisted of 

a bent wire with the overall length of λ (operating wave­

length). The wire was bent into a crank­like shape pos­

sessing broken mirror symmetry. The same design was 

independently rediscovered by Morin [144]. A short review 

on circular­polarization­selective surfaces by the year 

1996 can be found in [141].

Observation 1. To design a circular-polarization-selective 

reciprocal surface (such that the transmission coefficients 

for RCP and LCP light are not equal), it must necessarily 

possess true or pseudochiral properties (the proof can be 

made based on Section IV of [96]). This also implies that 

reciprocal anisotropic metasurfaces cannot exhibit asym­

metric transmission of circularly polarized light of oppo­

site handedness. However, to design such a metasurface, it 

is not required to use disconnected helical­like inclusions 

[96] as those shown in the conceptual example in Figure 

6. An attractive alternative to realize a chiral polarization­

selective metasurface was described in [142, 145]. It was 

demonstrated that a chiral metasurface can be synthesized 

by cascading several anisotropic patterned metallic sheets 

(electric sheet admittances) twisted one with respect to 

another (see Figure 7B). Indeed, a transfer matrix (ABCD­

matrix) of a cascade of the sheet admittances can be prop­

erly engineered to achieve desired S­parameters of the 

metasurface. Figure 7B (right) depicts simulated transmis­

sion of LCP and RCP waves through a cascade of rotated 

anisotropic sheets. It is seen that in the wide frequency 

band the metasurface exhibits asymmetric transmission 

for circularly polarized incident waves of opposite hand­

edness. The same idea of cascading electrically polarizable 

anisotropic patterns was exploited in [143, 146, 147]. The 

authors of these works proposed a systematic approach to 

design a metasurface with general reciprocal bianisotropic 

Figure 7: Circular-polarization-selective metasurfaces.

(A) Design for Pierrot’s unit cell of an artificial circular-polarization-selective surface. Reprinted figure from [141]. Copyright (1996) by IEEE. (B) Left: 

Illustration of a cascade of stacked patterned metallic sheets twisted one with respect to another. Right: Transmission coefficients of LCP (red line) 

and RCP (black line) waves through the cascade. The inset illustrates one unit cell of the metasurface. Reprinted figure from [142]. Copyright (2012) 

by Springer Nature. (C) Left: Unit cell consisted of three patterned sheets. Right: Transmittance on a linear scale (|S
21

 | 2), where the superscript + 

denotes RCP and − denotes LCP light. Reprinted figure from [143]. Copyright (2014) by the American Physical Society. (D) Explanation of the micro-

scopic chiral effect in a metasurface composed of planar inclusions. Reprinted figure from [68]. Copyright (1997) by Springer Nature. (E) A planar 

pseudochiral metasurface exhibiting circular dichroism at oblique incidence of light. Reprinted figure from [78]. Copyright (2009) by the American 

Physical Society. (F) Normal-incidence measured and theoretically calculated transmittance spectra for LCP (red) and RCP (blue) light through an 

array of right-handed metallic helices. Reprinted figure from [55]. Copyright (2009) by the AAAS.
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properties. The engineered structure consisted of three 

admittance sheets separated by subwavelength distances 

as shown in Figure 7C. The geometry of the sheet pattern 

was determined using the theory of frequency­selective 

surfaces [148]. The transmission coefficients for LCP and 

RCP waves are shown in Figure 7C. It can be seen that, at 

the design frequency, the metasurface achieved low loss 

for RCP infrared light and provided great isolation for LCP 

light. Chiral response can be also achieved in a cascade of 

two sheets with both electric and magnetic polarizations 

[149]. Interestingly, quite similar ideas were developed 

earlier in crystalloptics, where chiral structures were real­

ized as superlattices formed by rotated layers of uniaxial 

crystals, see [31], Section 9.5].

A circular­polarization­selective response can be 

achieved even with a metasurface which is not truly chiral. 

Indeed, as it was discussed in Section 2.1, even mirror­

symmetric (pseudochiral) meta­atoms might exhibit chiral 

effects when illuminated from specific directions (similarly 

to those denoted as a
i
 in Figure 3). For the first time, detailed 

theoretical analysis of this effect was reported in [68]. 

Figure 7D explains the existence of chiral effect in a unit 

cell composed of planar (nonchiral) omega meta­atoms. 

For the specific orientation of electric field E shown in the 

figure, the induced total magnetic moment m = m
1y

 + m
2x

 is 

parallel to it, resembling the scenario shown in Figure 2A. 

The first experimental demonstration of a circular­polariza­

tion­selective metasurface based on pseudochiral (extrin­

sically chiral) inclusions was independently reported in 

[77, 78, 150–152]. The metasurface comprised planar meta­

atoms lacking an inversion center, i.e. possessing a polar 

direction (denoted as s in Figure 7E). When illuminated at 

normal incidence (α = 0), such inclusions do not exhibit 

chiral properties. However, the metasurface becomes opti­

cally active at oblique incidence provided that the plane of 

incidence does not contain the polar direction.

Another mechanism of circular­polarization selec­

tivity relies on combination of internal and Bragg reso­

nances in a single metasurface with helical inclusions of 

wavelength scale [55]. Strictly speaking, such a metasur­

face structure can be considered as a diffraction grating. 

In contrast to above considered examples, this structure 

operates for illumination along the axis of the helices. The 

transmittance spectra for LCP and RCP light are shown in 

Figure 7F, revealing circular polarization selectivity.

4.2.2   Polarization rotators

Polarization rotation or optical activity phenomenon has 

been studied for the first time by French scientists Arago 

(1811) and Biot (1812) [32]. Linearly polarized light passed 

through optically active material experiences polarization 

rotation since RCP and LCP components of light travel 

through the material with different speeds (circular bire­

fringence). This response is described by the following 

Jones matrix (for the uniaxial case):

 
21

0 1
.

1 0

jS e ϑ
 −

=  
 

 (11)

Conventional ways of engineering planar polarization 

rotators are based on cascades of wire­grid polarizers 

whose wires are oriented in different directions in differ­

ent layers [153–155] or optically anisotropic planar arrays 

of meta­atoms [156, 157]. The main drawback of these 

approaches is that the structure works only for a certain 

polarization of incident waves. The same conclusion 

applies to known pseudochiral metasurfaces operating 

at oblique angles [151]. This problem can be overcome by 

using a cascade of two dielectric half­wave plates with 

crystal axes rotated by 45° relative to each other. However, 

dielectric half­wave plates are available only for certain 

frequency ranges and result in devices with thicknesses 

comparable to the wavelength, which is undesirable for 

their integration in nanophotonic systems.

Observation 2. To realize a polarization rotating subwave-

length-thin reciprocal metasurface insensitive for polari-

zation of incident waves (at normal incidence), nonzero 

chirality is a necessary condition and the inclusions must be 

uniformly distributed in the metasurface plane [96]. This is 

in sharp contrast to the case shown in Figure 6 where all 

the inclusions were aligned along one direction. Due to uni­

formly distributed inclusions and their balanced electric 

and magnetic properties, reflections can be completely sup­

pressed. The first metasurface exhibiting uniaxial polariza­

tion rotation consisted of a stack of slightly tilted metallic 

strips [158] shown in Figure 8A. The chirality of the meta­

atom is nonzero because it cannot be superposed with its 

mirror image. The meta­atoms are of the same handedness 

and randomly oriented in the metasurface plane.

Alternatively, uniaxial polarization rotation can be 

achieved with chiral metasurfaces whose constituents 

possess fourfold rotational symmetry [50, 159, 161–166] 

such as that shown in Figure 8B. Typically, these struc­

tures provide high efficiency up to 90% (see Figure 8B); 

however, their design requires intensive optimization pro­

cesses. In contrast, the authors of [58, 96, 167] proposed 

almost fully analytical synthesis of the metasurface for 

polarization rotation. This was accomplished via unit cells 

with canonical helical inclusions as that shown in Figure 

8C. The efficiency of such metasurfaces is limited only 
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by dissipation loss (see the plot in Figure 8C). Moreover, 

the helical chiral inclusions can be planarized, which is 

required for simple printed­circuit­board fabrication [96]. 

Another rigorous approach for creating polarization rota­

tors relies on aforementioned cascades of metallic pattern 

sheets [52, 143, 146]. Importantly, these cascaded meta­

surfaces can be easily fabricated for operation at optical 

frequencies.

It is worth mentioning that chiral metasurfaces have 

also found applications as absorbers of electromagnetic 

waves. Despite the fact that the presence of chirality is not 

a necessary condition for total absorption, it was dem­

onstrated that the use of chiral unit cells can allow some 

unique properties, in particular, stronger magnetic prop­

erties and off­band invisibility of the absorbing structure 

[168, 169].

4.2.3   Asymmetric transmission and other functionalities

Since chiral metasurfaces allow manipulation of two 

orthogonal polarizations, they can be potential candi­

dates for obtaining certain effects which to some extent 

resemble nonreciprocal response (although of course they 

cannot exhibit any truly nonreciprocal effect, like isola­

tion). Let us consider a metasurface described by the fol­

lowing transmission matrix:

 
21

0 0
.

1 0

jS e ϑ
 

=  
 

 (12)

Excited by x­polarized fields from the two opposite sides, 

it transmits incident energy into the y­polarization with 

different efficiencies (determined by 
21
S  and 

12 21

T
S S= ). Such 

functionality, referred as “asymmetric transmission”, 

however, does not violate reciprocity.

Observation 3. Chirality is not a required condition for real-

izing a metasurface exhibiting asymmetric transmission for 

linearly polarized waves. However, the metasurface must 

be anisotropic in its plane (assuming reciprocal response). 

Since 2010 there has been a number of works reporting on 

such metasurfaces [143, 160, 170–175]. Figure 8D illustrates 

one of the designed metasurfaces formed by two layers of 

metallic patterns. As can be seen from the right panel of 

the figure, the cross­polarization transmission coefficient 

t
yx

 equals 0 or 0.3 depending on the illumination direction.

Likewise, asymmetric transmission can be realized 

for circularly polarized waves. In this case, when RCP light 

Figure 8: Metasurfaces for polarization rotation and asymmetric transmission.

(A) A unit cell (left) and a bilayered planar chiral metasurface based on it with inductive cross-layer coupling (right). Reprinted figure from 

[158]. Copyright (2001) by AIP Publishing. (B) Transmission spectra for co- (blue) and cross-polarized (red) light. Simulated and meas-

ured data are shown as solid and dotted lines, respectively. The inset shows the metasurface unit cell with fourfold rotational symmetry. 

Reprinted figure from [159]. Copyright (2010) by AIP Publishing. (C) Transmission spectra for co- and cross-polarized incident waves. The 

inset depicts the metasurface unit cell with canonical twisted helices. Reprinted figure from [96]. Copyright (2013) by IEEE. (D) Left: A 

metasurface asymmetrically transmitting linearly polarized light from the opposite sides and a schematic of the experimental setup. Right: 

Measured transmission spectra for illuminations along the +z (left plot) and −z (right plot) directions. Reprinted figure from [160]. Copyright 

(2010) by the American Physical Society. (E) Left: Artistic illustration of a metasurface which asymmetrically transmits circularly polarized 

light. RCP light incident from the left side is converted into LCP, while RCP light is completely reflected when incident from the right side (for 

visual clarity, the incident wave from the right side is shown as oblique). Right: Measured and simulated Jones matrix of the metasurface. 

“L” and “R” denote LCP and RCP light. Reprinted figure from [51]. Copyright (2014) by the American Physical Society.
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is incident on a metasurface from one side, it is fully trans­

mitted with polarization changed to LCP. At the same time, 

when incident from the opposite side, RCP light is com­

pletely reflected back with the same polarization. Thus, 

conversion of the polarization in transmission becomes 

asymmetric: T
LR

 for illumination from side 1 is not equal to 

T
LR

 from side 2. The latter, due to reciprocity of the metas­

urface, is equivalent to T
RL

 from side 1. Thus, in the alter­

native formulation, the asymmetric transmission occurs 

when transmission coefficients T
LR

 and T
RL

 for illumina­

tion from one side are not equal. The corresponding Jones 

matrix of a metasurface with this response reads
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.
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ϑ  
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Observation 4. Asymmetric transmission for circularly 

polarized waves can be achieved in metasurfaces lacking 

chirality. The metasurface must be anisotropic in the plane 

(assuming reciprocal response) [96, 143, 170]. Since chirality 

is not required in the metasurface, asymmetric transmis­

sion effect can occur in planar anisotropic or pseudochi­

ral structures even at normal incidence [76, 176]. Recently, 

cascade metasurface with improved performance were 

synthesized based on a rigorous approach [51, 54, 143]. 

Figure 8E illustrates such a metasurface designed for near 

infrared radiation. As is seen from the plot, the metasur­

face provides high transmission asymmetry: T
LR

 = 0.55 and 

T
RL

 = 0.03 at the operating frequency. Another approach 

for designing asymmetric transmission response was pro­

posed based on metallic helices that change their handed­

ness halfway along the helix axis [56].

There are other functionalities available with chiral 

metasurfaces; however, in most of them, chirality is 

not a required property for them and plays a secondary 

role. In particular, rotation of polarization in reflection 

regime is easily available with anisotropic metasurfaces 

backed with a ground plane [177–179] (note that the rota­

tion directions are different for vertical and for horizontal 

linear polarizations of incident waves due to reciprocity). 

However, by introducing chirality in the metasurface, one 

can enable some additional exotic features such as off­

band transparency [57, 75]. Recently, an interesting appli­

cation of chiral metasurfaces for controlling optical forces 

was suggested [180].

4.3   Asymmetric reflection

As it was shown above, chiral metasurfaces have 

great potential in applications for various polarization 

transformers. In contrast, omega metasurfaces do not 

change polarization of incident waves, however, they offer 

another functionality which is inaccessible with usual 

anisotropic structures: asymmetric co­polarized (without 

change of polarization) reflection for waves normally inci­

dent on the metasurface from the opposite directions.

Let us consider an omega metasurface made of basic 

Ω­shaped inclusions as shown in Figure  9A. In the first 

scenario, it is illuminated by a plane wave with the x­ori­

ented electric field E
i
 propagating along the +z­direction. 

In the second scenario, the direction of the incidence is 

reversed (see Figure 9B). According to (9), due to the ori­

entation of the incident fields E
i
 and H

i
, all the polarizabil­

ity components contribute to the induced dipole moments 

p and m. Here, for simplicity of the analysis, we consider 

m

m
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y
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Figure 9: Illustration of asymmetric co-polarized reflection enabled 

by omega bianisotropic coupling in the metasurface. Illumina-

tion is along (A) the +z and (B) −z direction. For clarity, only dipole 

moments generated due to bianisotropic coupling are shown: 

α= ⋅
em i
ˆp H  and α= ⋅

me i
ˆ .m E  The insets depict the radiation patterns of 

the dipole moments. Only one half of each pattern is shown. Total 

backscattered (reflected) field from the metasurface is different for 

different illuminations.
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only those parts of the dipole moments which are created 

due to bianisotropic polarizabilities, i.e. 
em i

α̂= ⋅p H  and 

me i
ˆ .α= ⋅m E  It can be proven that the other dipole contri­

butions due to polarizabilities 
ee

α̂  and 
mm

α̂  always generate 

the same reflected waves regardless of the illumination 

direction (as in the case of a simple layer of an isotropic 

magnetodielectric). Figure  10A shows the orientations 

of the induced dipole moments in the metasurface due 

to bianisotropic coupling for the two scenarios (
em

α̂  and 

me
α̂  were assumed to be real valued). The dipole moments 

radiate plane waves with the same linear polarizations 

(see the radiation patterns in the insets; for clarity, only 

one half of each radiation pattern is shown). The back­

scattered fields E
b
 for both scenarios can be determined 

using (7) and (8). Comparing Figure 9A and B, it is seen 

that the backscattered field has the opposite signs in the 

two scenarios: jE
sc

 and −jE
sc

. This results in the asymme­

try of the total reflected field (created by the total dipole 

moments) when the metasurface is illuminated from the 

−z­ and +z­directions.

Observation 5. Asymmetric co-polarized reflection (ampli-

tude and/or phase) from a reciprocal metasurface normally 

illuminated from its opposite sides requires bianisotropic 

omega coupling [181]. As it was mentioned in Section 4.1, 

simple examples of planar structures possessing asym­

metric reflection are high­impedance surfaces. One of 

their sides is a ground plane (with zero impedance); there­

fore, the reflection coefficient for waves incident on this 

side is −1. While the surface impedance of the other side 

is engineered to be infinite (e.g. by corrugating the surface 

[183, 184] or by introducing so­called mushroom­type 

patch array structure [130]), resulting in the +1 reflection 

coefficient for waves impinging on this side. Figure  10A 

depicts a mushroom­type high­impedance surface. The 

upper metallic layer with the “mushroom” shape provides 

required impedance.

Such high­impedance surfaces can be described in 

terms of bianisotropic omega coupling. An alternative 

realization of asymmetric reflection based on an array of 

subwavelength omega inclusions was suggested in [181]. 

The absence of a ground plane in the design makes the 

structure transparent at frequencies outside the reso­

nance [63, 185]. The asymmetry of reflection occurs due to 

asymmetric shape of the metallic omega inclusion shown 

in Figure 10B (note that this inclusion is equivalent to that 

depicted in Figure 2B but has opposite sign of magneto­

electric coupling). As is seen from Figure 10B, the omega 

metasurface reflects with the same amplitude but differ­

ent phases when illuminated from the opposite sides. 

Subsequently, the idea of ground­plane­free metasurfaces 

for asymmetric reflection was pushed toward optical fre­

quencies using plasmonic [64, 186] and dielectric [66] 

inclusions. As it was demonstrated in [182, 187], asym­

metric co­polarized reflection response can be achieved in 

metasurfaces with symmetric inclusions if it is deposited 

onto substrate (or superstrate) with enough high dielec­

tric permittivity (see Figure 10C). Such effect was named 

“substrate­induced bianisotropy”.

Enabling dissipation loss in the metasurface, one can 

design asymmetric absorbers for normal incidence which 

provide different amplitudes of reflection coefficient from 

different sides [64, 65, 131, 188, 189]. Figure 10D illustrates 

a metasurface with asymmetric gold inclusions, which 

can be tuned to absorb different amount of impinging 

energy from different directions in the near infrared.

Figure 10: Metasurfaces for asymmetric co-polarized reflection.

(A) Side and top views of a mushroom-type high-impedance surface possessing bianisotropic omega response. Reprinted figure from [130]. 

Copyright (1999) by IEEE. (B) The amplitudes (left) and phases (right) of co-polarized reflection coefficient for opposite illumination direc-

tions of an omega metasurface. Due to the absence of a ground plane, the reflection coefficient reaches unit only at the resonance. The inset 

shows the metasurface unit cell with a metallic omega inclusion. Reprinted figure from [181]. Copyright (2014) by IEEE. (C) A planar array 

of plasmonic inclusions at the interface between two different media with characteristic impedances η
+
 and η

−
. Due to the contrast of the 

impedances omega bianisotropic effects are induced in the metasurface with symmetric inclusions. Reprinted figure from [182]. Copyright 

(2015) by the American Physical Society. (D) Geometry of a plasmonic omega metasurface for asymmetric absorption of normally incident 

waves in the near infrared. Reprinted figure from [64]. Copyright (2015) by the American Physical Society.
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The aforementioned results in this section correspond 

to the case of asymmetric reflection without polariza­

tion transformations (reflected and incident waves have 

the same polarization). However, if such transforma­

tions occur, asymmetric reflection can be achieved even 

without omega bianisotropic coupling.

Observation 6. Asymmetric cross-polarized reflection 

from a metasurface normally illuminated from its opposite 

sides can be achieved only if it possesses anisotropic (in the 

plane) electric or/and magnetic responses. Bianisotropic 

properties are not required. Asymmetric cross­polarized 

reflection occurs, for example, in metasurfaces consid­

ered in Section 4.2.3.

4.4   Non-reciprocal bianisotropic effects

Nonreciprocal response in planar structures is essential 

for realizing various types of isolators which pass elec­

tromagnetic radiation along one direction and block it 

along the opposite direction, as well as other nonrecipro­

cal devices. Nonreciprocal metasurfaces without bianisot­

ropy can be realized as two­dimensional arrays of small 

inclusions whose electric 
ee

α  or/and magnetic 
mm

α  polar­

izability dyadics possess nonzero antisymmetric parts. A 

typical example is an array of small magnetized ferrite 

spheres. Field interactions between resonant nonrecipro­

cal spheres leads to very wide frequency bands of the reso­

nant response of the metasurface, as compared with the 

response of one inclusion and of solid slabs of the same 

material [190]. Alternative realization of nonreciprocal 

response in metasurfaces is based on the use of active cir­

cuits which are embedded in meta­atoms [191, 192]. One of 

such metasurfaces is shown in Figure 11A. Due to proper 

tuning of the circuit with an electronic amplifier, Faraday­

like rotation effect was achieved for radiation passing 

through the metasurface: polarization plane of linearly 

polarized waves, impinging on the metasurface from dif­

ferent sides, is rotated in the opposite directions. Another 

example is an anisotropic nonreciprocal metasurface 

proposed in [192] which unidirectionally (only alone one 

direction) transmits circularly polarized light. There are 

other possible means to break time­reversal symmetry of 

metasurface response and enable nonreciprocal effects, 

including nonreciprocal bianisotropic coupling. In par­

ticular, we would like to mention time modulation of 

meta­atom properties and the use of nonlinear effects.

Observation 7. The Faraday rotation effect (nonrecipro-

cal circular birefringence) does not require bianisotropic 

response in the metasurface. Similarly, circular polarization 

isolators can be built based on anisotropic nonreciprocal 

surfaces.

Enabling bianisotropic coupling dramatically extends 

the range of functionalities achievable with nonreciprocal 

metasurfaces. A metasurface with Tellegen bianisotropic 

coupling (see its individual inclusion in Figure 4A) provides 

additional control over cross­polarized reflected fields. The 

authors of [195] demonstrated that a thin uniaxial layer of 

Tellegen composite (effectively, a metasurface) provides 

the effect of reflection in cross­polarization for arbitrary 

polarization of linearly polarized incident waves. Note that 

in this case the polarization plane of the reflected wave 

Figure 11: Metasurfaces exhibiting nonreciprocal anisotropic and bianisotropic effects.

(A) A photo of anisotropic magnet-less metasurface exhibiting the Faraday rotation. Reprinted figure from [191]. Copyright (2012) by United 

States National Academy of Sciences. (B) Left: Schematic of nonreciprocal metasurface with pure artificial moving coupling. Right: Transmis-

sion spectra when the structure is illuminated from the left (|S
21

 | 2, dashed black curve) and from the right (|S
12

 | 2, blue curve). Reprinted 

figure from [193]. Copyright (2014) by the American Physical Society. (C) Simulated reflectance and transmittance spectra for a metasurface 

with ferrite inclusions shown in Figure 4B. The top and bottom plots correspond to the two opposite illumination directions. Reprinted figure 

from [101]. Copyright (2014) by the American Physical Society. (D) Top: Geometry of a bianisotropic metasurface exhibiting the effect of 

gyromagnetically induced transparency. Bottom: Transmittance spectra for the “bright” (dashed line; H
0
 = 0) and “dark” (solid line; H

0
 ≠ 0) 

modes. Reprinted figure from [194]. Copyright (2014) by the American Physical Society.
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rotates always in the same direction, violating reciproc­

ity. For example, the +x­oriented incident field is reflected 

as the +y­oriented field. However, when one “reverses” 

the time flow so that the incident field is +y­oriented, the 

reflected field will be oriented along the −x, contradicting 

to the previously considered state. Such response is non­

reciprocal and is opposite to the similar reciprocal effect 

considered in the last paragraph of Section 4.2.3.

Observation 8. Nonreciprocal effect of polarization rota-

tion in reflection for incident waves with arbitrary polariza-

tion can occur only in uniaxial metasurfaces with Tellegen 

bianisotropic coupling [101]. Moreover, Tellegen coupling 

can provide additional control over cross-polarized trans-

mission, however, uniaxial response is not possible in this 

case.

Interesting functionalities are available with non­

reciprocal metasurfaces possessing artificial moving 

response (see individual inclusion in Figure 4B). Analo­

gously to omega metasurfaces, they appear asymmetric 

for different illumination directions, however, in this case, 

the asymmetry occurs in co­polarized transmission. This 

effect is, obviously, of nonreciprocal nature and can find 

important applications for compact isolators.

Observation 9. Asymmetric co-polarized transmission 

(amplitude and/or phase) through a metasurface normally 

illuminated from its opposite sides requires bianisotropic 

artificial moving coupling [101]. The first metasurface with 

pure artificial moving coupling was proposed in [193]. Its 

unit cell comprised a bar of ferromagnetic material (yttrium 

iron garnet) biased by external field H
0
 and a copper wire as 

shown in the left panel of Figure 11B. Although such geome­

try of the unit cell does not generally provide pure artificial 

moving response, the authors cleverly chose the orientation 

of the meta­atom and the external field bias with respect 

to the incident fields so that only desired bianisotropic 

response is pronounced. Transmission spectra for oppo­

site illuminations are plotted in the right panel of Figure 

11B. Asymmetric response near the resonance frequency 

is apparent. Authors of [196] experimentally demonstrated 

similar metasurface with artificial moving coupling using 

active circuits inside the meta­atoms.

Special emphasis must be given to metasurfaces pos­

sessing mixed bianisotropic properties (combination of 

two or several reciprocal and nonreciprocal effects). Such 

characteristics are inherent to the inclusions depicted in 

Figure 4. In particular, the uniaxial inclusion in Figure 

4B at the same time possesses reciprocal chiral and non­

reciprocal artificial moving properties [81, 91], and there­

fore, a metasurface with these inclusions will combine 

two functionalities: asymmetric co­polarized transmis­

sion and polarization rotation of transmitted waves [86, 

101]. Figure 11C demonstrates the simulated transmis­

sion spectra for both polarization of such a metasurface.

An interesting application of bianisotropic nonrecipro­

cal metasurfaces (with combined response) was suggested 

in [194]. The unit cell consisted of two identical metal strips 

on top of a ferrite substrate as shown in Figure 11D. Due to 

the geometry of the unit cell and the orientation of field 

bias H
0
, the induced currents in the strips constitute two 

different modes: “bright” mode when the currents point in 

the same direction and “dark” mode when the currents are 

oppositely oriented. The first mode results in strong electric 

dipole moment d
y
; hence, strong reflection and low trans­

mission thought the metasurface. Meanwhile, the second 

mode corresponds to an induced magnetic moment m
z
 

which does not radiate in the normal direction, and there­

fore, the metasurface becomes transparent. By dynami­

cally tuning the amplitude of the magnetic field bias, one 

can selectively excite the desired mode. This functionality 

leads to the so­called gyromagnetically induced transpar­

ency. The bottom panel of Figure 11D shows the transmit­

tance through the metasurface in the “bright” (dashed 

line) and “dark” (solid line) modes.

Interestingly, one can observe a kind of complemen­

tarity and resemblance of the effects due to reciprocal and 

nonreciprocal bianisotropic couplings in metasurfaces. 

Figure 12 illustrates this observation and summarizes the 
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characteristic functionalities achievable with bianiso­

tropic metasurfaces of four basic classes.

Metasurfaces with Tellegen coupling enable nonre­

ciprocal polarization transformations in reflection and 

transmission, while the artificial moving metasurfaces 

have pronounced asymmetry in transmission. In the 

reciprocal counterpart, chiral metasurfaces provide recip­

rocal polarization transformation effects, while the omega 

coupling makes asymmetric reflection possible. If one 

would be able to control all the coupling parameters in a 

metasurface, it would be possible to tune both reflection 

and transmission responses for two opposite illumina­

tions. Allowing active response of the metasurface would 

further extend opportunities for electromagnetic wave 

control.

5   Gradient bianisotropic 

metasurfaces

The metasurfaces considered above are uniform, and 

therefore, are intended to modify only the amplitudes and 

phases of the reflected and transmitted plane waves. Non­

uniform metasurfaces, i.e. those comprising more than 

one different unit cell, enable an additional functional­

ity: wavefront manipulations. This effect is achieved via 

modulation of the phase and amplitude of the transmis­

sion/reflection coefficient over the metasurface plane. 

As a result, the direction of wave propagation as well as 

the wavefront shape can be modified with such gradient 

metasurfaces. In general, the method to design nonuni­

form metasurfaces is based on the local approximation 

where the continuous phase gradient is discretized into 

elements, or unit cells, which are individually designed. 

Each unit cell is characterized under periodic condi­

tions (as a locally homogeneous array). Due to the sub­

wavelength periodicity of this array, the homogenized 

parameters can be extracted from the scattering matrix. 

However, this method is accurate only if coupling differ­

ences between identical and different adjacent cells are 

negligible [197].

5.1   Anomalous refraction

Anomalous refraction is a basic but fundamental example 

of wavefront manipulation where the direction of an 

impinging plane wave is arbitrarily changed when it is 

refracted into another plane wave. Figure 13A shows an 

illustration of the problem where θ
i
 and θ

t
 represent the 

incident and refracted angles. Conventional solutions for 

such diffraction­based devices are optical gratings where 

the amount of power sent into a specific diffraction mode 

can be controlled [198] and transmitarray antennas, also 

called array lenses, which control the phase shifts intro­

duced along the surface in the patches [199, 200]. Despite 

that these solutions have been extensively used, they have 

intrinsic drawbacks which can limit their applicability 

in some scenarios. In particular, diffraction gratings are 

effective only if reflections into only one or two propagat­

ing Floquet modes need to be canceled. Moreover, tradi­

tional devices for wave transformations are in most cases 

either bulky (e.g. microwave and terahertz gratings as 

well as optical gratings for applications in nanophoton­

ics) or require active elements (transmitarray antennas). 

Below we will discuss limitations of transmitarray anten­

nas and conventional phase­gradient metasurfaces and 

show that bianisotropy is necessary to eliminate parasitic 

reflections.

Due to their reduced thickness and ability to tailor 

the electromagnetic response at the subwavelength scale 

and for arbitrary polarizations, metasurfaces have been 

studied as an alternative approach for anomalous refrac­

tion. The first design method for a metasurface capable of 

modifying the wavefront in transmission was based on the 

same principle as that of conventional transmitarrays, i.e. 

the implementation of a linear phase shift profile along 

the metasurface which provides an additional tangen­

tial momentum, modifying the direction of the refracted 

wave [201, 202]. Such metasurfaces were called gradient 

referring to the phase gradient along the surface which 

is defined as Φ(x) = k
1
 sin θ

i
x − k

2
 sin θ

t
x (k

1
 and k

2
 are the 

wavevectors in the two media surrounding the metas­

urface, x is the coordinate along the direction of phase 

gradient).

A well­known approach for the design of refractive 

gradient metasurfaces is based on the use of Huygens’ 

meta­atoms [13, 123, 203]. The Huygens meta­atoms with 

balanced electric and magnetic responses provide full 

transmission and phase control. Although the initially 

proposed Huygens’ meta­atoms were nonbianisotropic, it 

was soon realized that bianisotropic effects can provide 

additional degrees of freedom in device design. Most of 

the known Huygens’ meta­atoms cancel reflections only 

at the design frequency, casting shadows at other frequen­

cies. However, this property limits the implementation of 

multifunctional engineered materials that possess differ­

ent functionalities at different frequencies by cascading 

metasurfaces. For the design of off­band invisible meta­

atoms, one can tailor the electric and magnetic dipole 
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response in such a way that they are always balanced in 

the range of frequencies of interest. This regime can be 

achieved using two different approaches: by spectrally 

overlapping the electric and magnetic dipole resonances 

in multimode low­loss inclusions [204–206] or by excit­

ing the same resonant mode in single­wire bianisotropic 

meta­atoms [169, 207] which ensures broadband reflection 

cancellation.

As it was demonstrated in [207], the design of non­

reflecting particles which are transparent at other fre­

quencies can be obtained with uniaxial chiral elements. 

However, meta­atoms based on single­wire chiral inclu­

sions create cross­polarized fields and are not fully suit­

able for the design of gradient metasurfaces which should 

not change the wave polarization. For this reason, the 

authors proposed an alternative approach where each unit 

cell consists of more than one bianisotropic inclusion, and 

the total chirality is compensated. Figure  13B shows the 

geometry of the metasurface with inclusions of the oppo­

site handedness. The scattering properties of the metasur­

face designed for refracting normally incident waves at 45° 

from the normal (see Figure 13B) shows that the reflection 

is nearly zero in a very broad frequency range.

Recent studies have shown that anomalous refrac­

tion devices based on anisotropic surfaces do not ensure 

the desired performance (especially for high contrast 

between the incident and refracted angles) and some part 

of the energy is spread into other directions [13, 126, 210]. 

In other words, the efficiency of phase­gradient metas­

urfaces, defined as the ratio of power refracted into the 

desired direction and that of the incident wave, is reduced 

due to existence of parasitic reflections. The theoretical 

limit for the efficiency of anisotropic gradient metasur­

faces was derived in [13] and is plotted in Figure 13C (the 

case of normal incidence is considered). As is seen, the 

achievable efficiency of such metasurfaces decreases dra­

matically for large refraction angles. The reduction in the 

efficiency is due to the wave impedance mismatch of the 

incident and refracted waves. This mismatch can be elimi­

nated using surfaces with asymmetric input impedance 

seen at the opposite sides, i.e. bianisotropic omega meta­

surfaces. Indeed, think of an ideal gradient metasurface 

which transmits all normally incident energy from side 1 

into a single diffracted mode at 45° from the normal on 

side 2 (producing zero reflection). If such a metasurface 

is illuminated normally from side 2, the incident wave is 
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Figure 13: Wavefront manipulation of refracted waves by bianisotropic metasurfaces.

(A) Illustrative representation of the anomalous refraction scenario. (B) Huygens’ metasurfaces with controlled bianisotropic response: 

gradient metasurface for anomalous refraction based on single-wire chiral elements. Since both electric and magnetic dipoles are excited 

by the same current mode, the metasurface is matched to free space in a very wide frequency range and does not produce reflections. 

Reprinted figure from [207]. Copyright (2016) by IEEE. (C) Efficiency of linear phase gradient metasurfaces for normal illumination as a func-

tion of the refraction angle. Reprinted figure from [13]. Copyright (2016) by the Optical Society of America. (D) Left: Bianisotropic omega 

inclusion made of three impedance layers as a unit cell of metasurface for perfect anomalous refraction from 0° to 80°. Right: Electric field 

distribution from the metasurface. Reprinted figure from [208]. Copyright (2017) by IEEE. (E) Unit cell composed of a stack of silicon gratings 

with different crystal axes orientations. Reprinted figure from [54]. Copyright (2017) by IEEE. (F) Unit cell composed of a dielectric asymmet-

ric nanocylinder (one quarter of the nanocylinder is shown). Reprinted figure from [67]. Copyright (2016) by the Optical Society of America. 

(G) Conceptual illustration of a low-profile single-feed cavity-excited bianisotropic metasurface antenna, capable of generating an arbitrary 

desirable field distribution on its aperture. Reprinted figure from [209]. Copyright (2017) by IEEE.
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partially reflected back in side 2, because it is actually 

matched for the incidence from the 45° direction. Thus, 

the co­polarized reflection coefficient for normal inci­

dence is different for  illuminations of the opposite sides, 

which corresponds to the bianisotropic omega response, 

as is shown in Figure 9.

Observation 10. For the design of perfect-refraction 

gradient metasurfaces, one must ensure both phase and 

impedance matching between the incident and refracted 

waves, and fulfilling these conditions requires omega-type 

bianisotropy [126, 210, 211]. This finding has opened a 

new research direction on bianisotropic gradient meta­

surfaces with fully controllable bianisotropic response 

of the meta­atoms. Although the local approach used 

for designing Huygens’ gradient metasurfaces is also 

applicable in this scenario, the design conditions are 

more complicated and both transmission and reflec­

tion have to be tailored for both forward and backward 

illuminations.

First, systematic engineering of a bianisotropic gradi­

ent metasurface was proposed based on a cascade of three 

electrically polarizable sheets [210]. In this scenario, the 

value of the surface admittance of each sheet is uniquely 

defined by the desired bianisotropic response. For micro­

waves, each admittance sheet can be implemented by pat­

terning a conductive layer on a conventional printed circuit 

board [208, 212]. Figure 13D illustrates geometry of a single 

bianistropic inclusion of the fabricated metasurface [208]. 

The right panel depicts the simulated electric field distri­

bution generated by the metasurface that was designed for 

refracting normally incident plane waves at angle 71.8°. 

The experimental results confirmed that omega gradient 

metasurfaces can provide refraction efficiencies greatly 

exceeding the theoretical limit in Figure 13C.

In the optical domain, where the use of metals is 

limited by high ohmic losses, all­dielectric meta­atoms 

with bianisotropic response are potential candidates for 

improving the performance of gradient metasurfaces. For 

example, a dielectric unit cell composed of a stack of differ­

ent dielectric gratings separated by dielectric spacers (see 

Figure 13E) can potentially provide the desired response 

[54]. One can control both bianisotropic couplings in the 

metasurface: omega coupling via the asymmetry between 

the layers and the chiral coupling via the mutual twist of 

the dielectric layers. However, this solution can present 

important drawbacks for the design of gradient metasur­

faces due to the considerable thickness of the structure 

and strong interactions between adjacent unit cells, which 

limits the use of the local approach in the design and 

forces the use of numerical optimizations for controlling 

the near fields. More compact topologies, like asymmetric 

dielectric nanocylinders [67] (see Figure 13F), may provide 

better performance within the local design approach.

Bianisotropic gradient metasurfaces can be used also 

in other applications. By controlling the evanescent fields 

at both sides of the metasurface a perfect reflectionless 

wide­angle beam splitter can be designed [211]. Another 

application is the design of low­profile antennas, where a 

gradient bianisotropic metasurface can control the aper­

ture field distribution of a single­feed cavity [209] (see 

the example shown in Figure 13G). In general, the control 

over transmission and reflection amplitudes and phases 

offered by bianisotropic meta­atoms opens new possibili­

ties for the design of more complex devices for wavefront 

manipulations such as lenses and holograms.

5.2   Anomalous reflection

Metasurfaces have been also used for controlling reflected 

wavefronts. In analogy to the refractive case, a wave 

is anomalously reflected if it does not follow the classi­

cal reflection law, meaning that the angle of reflection, 

θ
r
, is not equal to the incidence angle, θ

i
, as shown in 

Figure 14A. Most metasurfaces for reflection engineering 

are realized as some reciprocal composite layers backed 

by a continuous metal screen. Obviously, the reflection 

properties of such thin layers are different for illumina­

tions from the side of the composite layer and the side of 

the metal plate. Thus, these metasurfaces are omega­type 

bianisotropic layers, and the magnetoelectric coupling 

phenomena are essential for the operation of anomalous 

reflectors.

The simplest method for approaching the problem 

of anomalous reflection is following the generalized 

reflection law [201] (also recognized as the phased­array 

antenna principle). In this case, using the local design 

methodology, the elements of the array can be designed 

for producing a linear variation of the phase shift in 

reflection according to Φ(x) = k
1
(sin θ

i
 − sin θ

r
)x (note that 

the local design approach assumes only gradient of the 

phase, while amplitude of reflection is fixed and equal 

to unity). The 2π­phase gradient in reflection requires 

control of both electric and magnetic responses and it is 

typically obtained by using grounded metasurfaces [214, 

215]. In this case, the reflection amplitude can be very high 

if low­loss materials are used. The presence of a metal 

ground plane forbids transmission at all frequencies that 

makes the metasurface impenetrable.

An alternative solution can be found with the use 

of nongrounded arrays of bianisotropic scatterers that 
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allow re­radiation of waves in the backward direction 

with different phases, while in the forward direction, 

they scatter waves with the same phase, opposite to that 

of the incident plane wave. Due to the absence of the 

ground plane, the metasurface appears nearly absolutely 

transparent at frequencies outside the resonance band 

(off­band transparency). As shown in [63, 181], the scat­

tered field in the backward direction is proportional to 

back ee me mm
ˆ ˆ ˆ( 2 ),α α α∝ + −E  while the scattered field into the 

forward direction is proportional to 
forward ee mm

ˆ ˆ( ).α α∝ +E  

Thus, the magnetoelectric polarizability, 
me
ˆ ,α  enables 

additional freedom in the metasurface design and can be 

used for the realization of independent control of scatter­

ing in the backward and forward directions using only a 

single­layer array of small resonant inclusions. Figure 14B 

shows a schematic of a bianisotropic anomalous reflector 

consisting of different omega inclusions.

Another example of bianisotropic gradient metas­

urface is a focusing lens operating in reflection regime. 

Figure 14C illustrates a single­layer ground­free metas­

urface composed of concentric arrays of subwavelength 

bianisotropic inclusions. The local phase profile is para­

bolic in this case: 2 2

0
( ) / ,r c r fΦ φ ω= + +  where f is the 

focal distance and r is the radius of the corresponding 

concentric array. It should be noted that this metalens 

possesses asymmetrical focusing properties with respect 

to the propagation direction of incident waves, which is a 

common feature of omega layers.

It has been recently demonstrated that phase­gradi­

ent (the amplitude is constant) design scheme used for the 

above mentioned both impenetrable and off­band trans­

parent metasurfaces is not accurate and its efficiency is 

fundamentally limited [126, 216–218]. The local design of 

lossless phase­gradient metasurfaces for perfect anoma­

lous reflection requires that the normal component of the 

Poynting vector vanishes at the metasurface, a feature 

only satisfied for retro­reflection or specular reflection 

scenarios [219]. In the most general case, the incident and 

anomalously reflected plane waves interfere, generat­

ing modulation of the power flow which does not allow 

us to satisfy the condition of zero power flow into loss­

less boundaries using flat surfaces without exciting some 

additional, evanescent waves close to the metasurface. 

As a consequence of the imprecise design process, part of 

the incident energy is scattered into undesired directions 

reducing the efficiency of the metasurface. The efficiency 

limit of anomalously refracting and reflecting metasur­

faces based on a linear phase gradient follow the same 

curve (see Figure 13C). For small reflection angles (up to 

60°), the required reflection phase variations are slow and 

the conventional simple phase­gradient design approach 

works quite well. However, for wider reflection angles, the 

efficiency drops dramatically [216, 218].

For a limited range of relations between the incidence 

and reflection angles, when the required period of the 

metasurface is such that not more than three propagating 

Floquet modes exist, reflections into the unwanted modes 

can be cancelled using diffraction gratings. Often, it is 

enough to position only one or two scatters in each period 

of the array to nearly perfectly cancel reflections into the 

unwanted directions (first of all, specular reflection). 

Such devices are called blazed gratings or binary gratings 

[220]. Recently, a realization of this approach with the use 

of bianisotropic omega scatterers has been theoretically 

proposed [213]. Figure 14D shows a schematic represen­

tation of the operation principle and the reflected field 
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Figure 14: Wavefront manipulations of reflected waves by gradient bianisotropic metasurfaces.

(A) Schematic representation of the anomalous reflection scenario, where θ
i
 and θ

r
 represent the incidence and reflection angles. The meta-

surface is shown in red. (B) One period of a ground-free metasurface consisting of copper inclusions that provide a linear phase variation of 

the reflection spanning a 2π range. Reprinted figure from [63]. Copyright (2015) by the American Physical Society. (C) A nonperiodic meta-

surface composed of 6 concentric arrays of omega inclusions and designed for focusing incident waves in reflection. Reprinted figure from 

[63]. Copyright (2015) by the American Physical Society. (D) Meta-grating for perfect anomalous reflection based on bianisotropic omega 

inclusions and corresponding electric field distribution of the scattered waves. Reprinted figure from [213]. Copyright (2017) by the American 

Physical Society. (E) Simulated reflected electric field distribution from a bianisotropic gradient metasurface. Perfect anomalous reflection is 

accomplished based on the excitation of auxiliary evanescent fields. Reprinted figure from [211]. Copyright (2016) by the American Physical 

Society.
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distribution from a meta­grating designed for reflecting 

the normally incident energy into 83°.

Another theoretical proposal for fulfilling the condi­

tion of zero normal component of the Poynting vector at 

the reflecting boundary is based on excitation of auxiliary 

evanescent fields propagating along the interface [211]. 

Figure 14E shows simulated field distribution of scattered 

waves from a metasurface designed by this approach. In 

this particular case, two evanescent waves are carefully 

designed for mimicking the normal component of the 

Poynting vector produced by the propagating waves at the 

other side of the metasurface. One can see the field distri­

bution at both sides of the metasurface and power flow 

marked with gray lines.

The actual design of 100% efficient metasurfaces 

exhibiting anomalous reflection [211, 216, 218] is possi­

ble only if they possess strongly nonlocal response [216]. 

The spatial dispersion in these structures is stronger than 

that modeled by the omega coupling coefficient. Impor­

tantly, the requirement of strong nonlocal response can 

be lifted if the metasurface is designed in such a way that 

the anomalously reflected wave has orthogonal polari­

zation to that of incident wave. In this case, there is no 

interference between the incident and reflected waves and 

the metasurface can be designed locally. The transforma­

tion of polarization into an orthogonal one can be accom­

plished with anisotropic [221] or chiral metasurfaces [126].

6   Conclusions and discussions

In recent years, interest in bianisotropic metasurfaces 

has expanded to a large degree due to their capability 

for advanced wavefront manipulations. However, it was 

the studies of uniform bianisotropic metasurfaces that 

led the way toward understanding the means of achiev­

ing complete control of the electromagnetic response 

of thin layers. From these studies, we know that chiral 

meta­atoms, in which the induced electric (magnetic) 

moment and the exciting magnetic (electric) field vectors 

Figure 15: Illustration of the evolution of the knowledge on bianisotropic metasurfaces (BMS) and its prospective research directions.

Bianisotropic flatland represents all the possible functionalities offered by the most general linear metasurfaces. In bianisotropic flatland, 

our knowledge is represented by man-made constructions: the complex city represents the well-studied research directions, whereas the 

village represents recent ideas and studies that have not been fully analyzed yet. In contrast, the mysterious forest with the unicorn symbol-

izes emerging but not yet explored research directions on bianisotropic metasurfaces and their applications.
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are collinear, are necessary for creation of uniaxial polari­

zation rotating metasurfaces and circular­polarization­

selective metasurfaces. In contrast, omega meta­atoms, 

in which the induced moments and the exciting fields are 

orthogonal, allow realization of co­polarized asymmetric 

reflection. Furthermore, the two fundamental nonrecipro­

cal types of bianisotropy have been successfully used for 

creating compact one­way transparent metasurfaces.

As a result of accumulated deep knowledge on 

uniform bianisotropic metasurfaces, we have solid foun­

dations that allowed us to continue moving toward 

new goals. One of the most immediate application of 

 bianisotropy is perfect wavefront manipulations with 

gradient ( nonuniform) metasurfaces. It has been demon­

strated that omega­type bianisotropy is a fundamental 

requirement for the design of 100% efficient anomalous 

refractive and reflective metasurfaces.

Despite all these advances, there is still a long way 

to go and the expectations for the application possibili­

ties of bianisotropic metasurfaces increase. The design 

of more complex reciprocal metasurfaces for wavefront 

transformation (e.g. holograms, lenses) can benefit from 

the new knowledge extracted from the studies of anoma­

lous reflection and refraction of plane waves. Only basic 

phenomena enabled by nonreciprocal bianisotropic 

metasurfaces have been explored so far. Moreover, there 

are rather promising directions leading to the creation 

of active bianisotropic metasurfaces, nonlinear bianiso­

tropic metasurfaces, and time­modulated bianisotropic 

metasurfaces. Another challenge is the design of tunable, 

and eventually software­defined, bianisotropic metasur­

faces providing different operations modes, dynamically 

and adaptively adjusted to the environment.

In addition, the results obtained for manipulations of 

electromagnetic waves can be extended and generalized 

for finding means to manipulate waves of different nature 

such as acoustic or elastic waves. Even further, one can 

think about metasurfaces simultaneously controlling and 

transforming waves of different nature, which can lead to 

the creation of multiphysics bianisotropic metasurfaces.

Bianisotropy is a first­order spatial dispersion effect 

and the structures considered in this paper are dense 

arrays where the sizes of the unit cells are small in compar­

ison with the wavelength. In the case of less dense arrays 

(still under the diffraction limit), by exploring higher­order 

terms of nonlocal response function expansion, new inter­

esting features and phenomena of wave­matter interaction 

could be potentially discovered. We classify this metasur­

face type as mesoscopic bianisotropic metasurfaces.

Figure  15 illustrates the evolution of the knowl­

edge on bianisotropic metasurfaces and its prospective 

advancements. There is no doubt that new ideas and 

research directions will emerge, and although we cannot 

predict where these unpaved roads will take us, we can 

expect an exciting journey.
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