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Abstract—In metamaterials, electric (magnetic) dipoles can be
excited by the electric (magnetic) component of the incident light
field. Moreover, in the description of bianisotropic metamaterials,
cross terms occur, i.e., magnetic dipoles can also be excited by the
electric-field component of the incident light and vice versa. For
the cross terms, in the general bianisotropic case, the exciting field
and dipole vectors include an arbitrary angle. For the special case
of chirality, the angle is zero. In the spirit of a brief tutorial, a very
simple electric-circuit description of the split-ring resonator is used
to give a basic introduction to the cross terms. Mathematical details
of the effective parameter retrieval are presented. Furthermore, we
briefly review recent experiments on bianisotropic metamaterials
operating at optical frequencies.

Index Terms—Bianisotropy, metamaterial, split-ring resonator.

I. INTRODUCTION

O PTICS has traditionally mainly dealt with dielectric ma-
terials. Here, the incident electric-field vector of the light

excites microscopic electric dipoles that re-emit electromag-
netic waves just like a dipole radio antenna. Other dipoles are
excited by this re-emission and so on. This successive excitation
and re-emission clearly modifies the phase velocity of light and
determines the optical properties of the material, in particular
its electric permittivity ε (or dielectric function).

One of the little revolutions in optics that the concept of
artificial effective materials (“metamaterials”) has brought about
is the fact that, similarly, magnetic dipoles can be excited by the
magnetic-field component of the light, which can be cast into
the effective magnetic permeability µ of the material [1]–[8]
(or, alternatively, into spatial dispersion). The interplay of ε and
µ has given rise to interesting new aspects of electromagnetism
that have been reviewed several times [9]–[13], and will not
be repeated here. In general, both ε and µ are tensors, i.e., the
dipole direction is not necessarily identical to the exciting vector
direction.

A further set of new possibilities originates from the “cross
terms.” This means that, in general, magnetic dipoles can not
only be excited by the magnetic field but also by the electric
field. Similarly, electric dipoles can not only be excited by the
electric field but also by the magnetic field. These cross terms
are subject of the present review or brief tutorial. We focus on the
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special case that the dipole vectors are oriented perpendicular to
the exciting fields. If the dipole vectors are oriented parallel to
the exciting fields, another special case arises, namely chirality.

Bianisotropy and chirality are very well-established parts of
electromagnetism and a bulk of corresponding theoretical liter-
ature does exist [14]–[31]. Yet, based on our own experience,
some of that literature is somewhat difficult to digest for an ex-
perimentalist. Thus, we start with a simple and intuitive tutorial
based on an example, namely on split-ring resonators (SRRs).
The discussion aims at giving an understanding and explaining
the physics rather than a complete and/or a quantitative de-
scription. Next, we derive in detail the formulae required for
retrieving the effective parameters of bianisotropic metamateri-
als from transmittance and reflectance data. Finally, we briefly
review recent experiments on bianisotropic metamaterials oper-
ating at optical frequencies.

II. BIANISOTROPY

A. Split-Ring Resonators

An SRR is a metallic ring with one or several slits [1]–[8],
[32]–[34] (see Fig. 1). The incident light field can induce a cir-
culating and oscillating electric current in the metallic wire that
gives rise to a local magnetic field (magnetic dipole) normal to
the SRR plane. The resonance of the SRR can be thought of as
arising from the inductance of an almost closed loop (inductance
L) and the capacitor formed by the two ends of the wire (capaci-
tance C). This leads to an LC eigenfrequency ωLC = 1/

√
LC.

For small SRR, the kinetic inductance can add to L [35], [36].
Also, a more detailed modeling would have to account for addi-
tional surface contributions to the SRR capacitance C [37], [38].
Furthermore, energy can either be dissipated by Ohmic losses
or can be radiated into free space, leading to the radiation re-
sistance [39]–[41]. The effect of both can be lumped into an
effective resistance R of the circuit.

Using Kirchhoff’s voltage law, the equation of motion of the
electric current I in this simple circuit results as

UC + UR + UL =
1
C

∫
Idt + RI + L

dI

dt
= Uind . (1)

The incident light field induces the source voltage Uind .
The SRR generally has both an electric and a magnetic dipole

moment. As usual, the electric dipole moment is given by the
charges separated on the capacitor plates,

∫
Idt, times their

distance d. The macroscopic electric polarization P is the prod-
uct of the individual electric dipole moment times the number
density of the dipoles NLC /V = 1/(a2

xy az ), where axy and az

are the in-plane and out-of-plane lattice constants of the crystal
composed of SRR—provided that we neglect interaction effects
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Fig. 1. Illustration of a split-ring resonator and the parameters used in the
calculations. The excitation geometry considered in this section is also depicted.

among the SRR in the crystal. This leads to

Px(t) =
1

a2
xy az

d

∫
Idt . (2)

Similarly, the magnetic dipole density M is the product of
the SRR number density and the individual magnetic dipole
moment. Within the quasi-static limit (no retardation), the latter
is given by the current I times the area of the loop. This leads to

My (t) =
1

a2
xy az

I(t) l2 . (3)

Note that we have tacitly neglected the displacement current at
this point. Hence, our reasoning is only strictly valid provided
that the Ohmic current dominates over the displacement current
(i.e., the slit in the SRR must not be too large).

1) Let us start by discussing a current that is solely in-
duced by Faraday’s induction law. In this case, we
have Uind(t) = − ∂φ

∂ t with the magnetic flux φ(t) given
by φ(t) = µ0Hy (t)l2 . Assuming a harmonically varying
magnetic field Hy (t) = Hy exp(−iωt) + c.c., we obtain
My (t) = My exp(−iωt) + c.c. with

My =
F ω2

ω2
LC − ω2 − iγω

Hy . (4)

Here, we have employed the inductance of a long coil
L = µ0 l

2/h and have introduced two abbreviations: the
damping γ = R/L and the SRR volume filling fraction
0 ≤ F ≤ 1 with

F =
l2 h

(a2
xy az )

. (5)

Notably, induction via Faraday’s law also leads to a polar-
ization Px(t) = Px exp(−iωt) + c.c. with

Px =
d

l2
iF ω

ω2
LC − ω2 − iγω

Hy . (6)

Here, we have employed the capacitance C = ε0wh/d

for a plate capacitor with large plates. Note that �P is
phase delayed by 90◦ with respect to the exciting H-field.
Otherwise it reveals the same resonance behavior around
the LC eigenfrequency as the magnetization �M . Also note
that the induced polarization goes to zero as the slit width
d of the SRR is made smaller and smaller.

2) Next, we discuss a current that is induced by a voltage
drop over the plate capacitor that arises from the electric-
field component, Ex(t), of the light field. In this case, we
have Uind(t) = Ex(t) d. Assuming a harmonically vary-
ing electric field Ex(t) = Ex exp(−iωt) + c.c., we obtain

My =
1
µ0

d

l2
−iF ω

ω2
LC − ω2 − iγω

Ex (7)

and

Px =
1
µ0

(
d

l2

)2 F
ω2

LC − ω2 − iγω
Ex . (8)

In this case, the 90◦ phase delay (see imaginary unit in
numerator) occurs for the magnetization My .

Provided the displacement current is negligible [27] (which is
usually fulfilled in the vicinity of the resonance), we can identify
the macroscopic magnetization with the magnetic dipole density
�M discussed above. Hence, we get the macroscopic material

equations

�D = ε0 �E + �P (9)

and

�B = µ0( �H + �M) . (10)

We can summarize our findings in 1) and 2) for the SRR by(
Dx

By

)
=

(
ε0ε −ic−1

0 ξ

+ic−1
0 ξ µ0µ

) (
Ex

Hy

)
. (11)

Here, we have introduced the (dimensionless) electric permit-
tivity

ε(ω) = 1 +
(

d c0

l2

)2 F
ω2

LC − ω2 − iγω
(12)

the (dimensionless) magnetic permeability

µ(ω) = 1 +
F ω2

ω2
LC − ω2 − iγω

(13)

the (dimensionless) bianisotropy parameter

ξ(ω) = − d c0

l2
F ω

ω2
LC − ω2 − iγω

(14)

and the vacuum speed of light c0 = 1/
√

ε0µ0 . ε describes the
excitation of electric dipoles by the electric field of the light, µ
the excitation of magnetic dipoles by the magnetic field, and ξ
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Fig. 2. (a) Electric permittivity ε, (b) magnetic permeability µ, (c) bianisotropy
parameter ξ, and (d) refractive index n with n2 = εµ − ξ2 versus normalized
angular frequency ω/ωLC for the split-ring resonator model described in this
section (for geometry see Fig. 1). Real (imaginary) parts of these complex
quantities are solid (dashed). Parameters are γ/ωLC = 0.05, F = 0.3, and
dc0 /l2 = 0.75 × ωLC . Note that the combination of Re(ε) < 0 and Re(µ) <
0 does not lead to Re(n) < 0 (not even if γ/ωLC = 0). (e) Normal-incidence
intensity transmittance T = T+ = T− and reflectances R+ (light impinging
from the left) and R− (light impinging from the right) for a slab of material
with parameters as in (a)–(d). Slab thickness is c0 π/ωLC (half of a free-space
LC eigenwavelength).

the excitation of magnetic dipoles by the electric field and vice
versa. Fig. 2(a)–(d) illustrates these quantities.

If the slit in the SRR in Fig. 1 is at the lower part rather
than at the top, the current induced by the electric field flows
into the other direction and +ξ → −ξ (whereas +ε → +ε and
+µ → +µ).

Clearly, for the excitation geometry considered in Fig. 1, the
single-slit SRR has no center of inversion along the propagation
direction of light. If we introduce a second slit at the bottom
of the SRR (i.e., opposite to the first slit), inversion symmetry
is recovered. Provided we neglect retardation effects, the volt-
age drop over the second slit induced by the electric field is
opposite in sign to that of the first slit, i.e., I = 0. Thus, nei-
ther magnetization nor polarization is induced by the electric
field. A magnetic field component normal to the SRR plane
can still induce a circulating and oscillating current, leading
to a magnetic dipole moment. However, the electric dipole
moment of the second slit is opposite to that of the first slit.
Hence, no electric polarization results from the magnetic field
of the incident light. Indeed, it is straightforward to show within
our model that—under these conditions—the bianisotropy pa-
rameter ξ is strictly zero and ε = 1, while µ �= 1. This find-
ing, i.e., that a nonzero bianisotropy parameter requires break-
ing of inversion symmetry, is also valid beyond our simple
SRR example.

B. Bianisotropic Parameter Retrieval

Light impinging under normal incidence onto such a slab of
effective bianisotropic material will be partially reflected and
partially transmitted according to the generalized version of the
Fresnel equations. Owing to the lack of inversion symmetry, the
reflectance does depend on from which side of the slab light
impinges. In contrast, due to reciprocity, the transmittance does
not depend on from which side light impinges. The dependence
of the complex field transmittance and the two complex field
reflectances on ε, µ, and ξ can be inverted, which forms an
important ingredient for retrieving these effective parameters
from numerical calculations and/or from experimental data. We
have previously published the closed formulae for this retrieval
for normal incidence of light in [42] (also see [19], [23]). In
this section, we present the (somewhat lengthy) derivation that
we have not published previously. These formulae are important
when actually working with bianisotropy.

We consider a monochromatic, linearly polarized field �Ei =
Ei

xei(k1 z−ωt) �ex and �H i = H i
y ei(k1 z−ωt) �ey , which impinges un-

der normal incidence from an isotropic material of relative
impedance z1 (e.g., air or vacuum) onto a bianisotropic metama-
terial slab of thickness ds and which is transmitted into another
isotropic material of relative impedance z2 (e.g., a glass sub-
strate). The geometry and the nomenclature used are illustrated
in Fig. 3.

Considering the constitutive relations of the bianisotropic ma-
terial (11) and introducing the following plane-wave ansatz
�E± = E±ei(k±z−ωt) �ex and �H± = H±ei(k±z−ωt) �ey for both
propagation directions (±) into Maxwell’s equations imme-
diately leads to eigensolutions. This means that no cross-
polarization is excited as long as the wave propagates along this
axis. A change in polarization could occur for oblique incidence
of light onto the slab and/or for chiral media (see Section III).
The corresponding dispersion relation reads k± = ±nk0 , where
k0 = ωc−1

0 is the vacuum wave vector. The refractive index n is
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Fig. 3. Illustration of field components for the generalized version of
Fresnel’s equations for retrieving effective parameters including bianisotropy.
The metamaterial of interest is clad between an isotropic material #1 (e.g., air)
and another isotropic material #2 (e.g., a glass substrate). A substrate occurs in
most metamaterial experiments at optical frequencies.

given by

n2 = εµ − ξ2 . (15)

For a passive material, the root has to be chosen such that
Im(n) ≥ 0. Otherwise, exponentially growing solutions occur,
violating energy conservation.

The bulk impedance of the bianisotropic material is Z+ for
propagation in the (+)-direction and −Z− for propagation in
the (−)-direction. These quantities are given by Z+ = E+/H+

and Z− = E−/H−. We derive from Maxwell’s equations

z± ≡ Z±/Z0 = µ (±n − iξ)−1 (16)

where Z0 =
√

µ0/ε0 is the vacuum impedance. We note that
z+ �= −z−.

Using the boundary condition that the tangential components
E and H are continuous and the fact that HZ0 = E/zi and
writing the complex reflectance and transmittance for a wave
incident in the (+)-direction as r+ = Er/Ei and t+ = Et/Ei ,
we get the following equations at z = 0:

(1 + r+)Ei = E+ + E− (17)

(1 − r+)Ei/z1 = E+/z+ + E−/z− (18)

and at z = ds :

E+eink0 ds + E−e−ink0 ds = t+Ei (19)

E+eink0 ds /z+ + E−e−ink0 ds /z− = t+Ei/z2 . (20)

With (17) and (18) [respectively, (19) and (20)] we express
E+/Ei and E−/Ei as linear functions of r+ (respectively t+ ):

E+/Ei = a+ + b+r+ and E+/Ei = c+ + d+ t+

E−/Ei = a− + b−r+ and E−/Ei = c− + d−t+ .

This yields two linear relationships between r+ and t+

t+ = α + βr+ and (21)

t+ = γ + δr+ (22)

where

α = eink0 ds (1 − z−/z1) (1 − z−/z2)
−1

β = eink0 ds (1 + z−/z1) (1 − z−/z2)
−1

γ = e−ink0 ds (1 − z+/z1) (1 − z+/z2)
−1

δ = e−ink0 ds (1 + z+/z1) (1 − z+/z2)
−1 .

We want to deduce the three complex parameters ε, µ, and
ξ, which depend directly on n, z+ , and z−, from the complex
transmittance and reflectance of the material. Therefore, (21)
and (22) alone are not sufficient to solve the problem and we
need to consider the case of propagation in the (−)-direction,
too. In this case, (17)−(20) take the same form as previously,
except that we have to make the following substitutions (see
Fig. 3)

(+)-direction: z1 z2 z+ z−

⇓ ⇓ ⇓ ⇓
(−)-direction: −z2 −z1 z− z+ .

As a consequence, we obtain the following equations, corre-
sponding to (21) and (22), for the (−)-direction

t− = α′ + β′r− and (23)

t− = γ′ + δ′r− (24)

where

α′ = eink0 ds (1 + z+/z2) (1 + z+/z1)
−1

β′ = eink0 ds (1 − z+/z2) (1 + z+/z1)
−1

γ′ = e−ink0 ds (1 + z−/z2) (1 + z−/z1)
−1

δ′ = e−ink0 ds (1 − z−/z2) (1 + z−/z1)
−1 .

We note that t+/z2 = t−/z1 (calculation not detailed here),
which results in T = T+ = T−, i.e., the intensity transmittance
T does not depend on from which side of the slab light impinges
onto the slab.

We now need to invert (21)−(24) in order to calculate z+ , z−,
and n for known t+ , r+ , t−, and r−. Multiplying (21) by (24)
and (22) by (23) yields

t+ t− = αγ′ + βγ′r+ + αδ′r− + βδ′r+r− and (25)

t+ t− = γα′ + δα′r+ + γβ′r− + δβ′r+r− (26)

with

αγ′ =
(1 − z−/z1) (1 + z−/z2)
(1 + z−/z1) (1 − z−/z2)

γα′ =
(1 − z+/z1) (1 + z+/z2)
(1 + z+/z1) (1 − z+/z2)

βγ′ = (1 + z−/z2) (1 − z−/z2)
−1

δα′ = (1 + z+/z2) (1 − z+/z2)
−1

αδ′ = (1 − z−/z1) (1 + z−/z1)
−1

γβ′ = (1 − z+/z1) (1 + z+/z1)
−1

βδ′ = 1

δβ′ = 1 .
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It follows that (25) and (26) are the same equation for z+ and
z−. It can be rewritten as a second-degree polynomial equation
for z±: az2

± + bz± + c = 0, which means that

z± = (−b ∓
√

b2 − 4ac)/(2a) (27)

with

a = t+ t− − (1 − r+) (1 − r−)

b = (z1 − z2) (t+ t− + 1 − r+r−) + (z1 + z2) (r+ − r−)

c = z1z2 [−t+ t− + (1 + r+) (1 + r−)] .

Again assuming a passive medium, the sign in (27) must be cho-
sen in order to have a positive real part of the medium impedance.
We have already noted that z+ is the relative impedance of the
bianisotropic medium in the (+)-direction and z− is the oppo-
site of the relative impedance in the (−)-direction, which yields
Re(z+) > 0 and Re(−z−) > 0.

To find the refractive index, we can rewrite (21) and (22) as

t+ = eink0 ds [1 + r+ − (1 − r+)z−/z1 ] (1 − z−/z2)
−1

t+ = e−ink0 ds [1 + r+ − (1 − r+)z+/z1 ] (1 − z+/z2)
−1 .

Finally, we get an implicit expression for the (complex) refrac-
tive index n

cos (nk0ds) =
t+
2

[
1 − z−/z2

1 + r+ − (1 − r+)z−/z1

+
1 − z+/z2

1 + r+ − (1 − r+)z+/z1

]
. (28)

As usual, (28) has infinitely many solutions for n due to the dif-
ferent branches of the inverse cosine. To choose the correct one,
we proceed as previously described for the parameter retrieval
for structures with inversion symmetry [13].

Once z± and n are at hand, we deduce ε, µ, and ξ from (27)
and (28) via

ε = (n + i ξ) /z+ (29)

µ = (n − i ξ) z+ and (30)

ξ = in (z− + z+) (z− − z+)−1 . (31)

Let us illustrate this retrieval by the simple example shown in
Fig. 4. The three dielectric layers shown there can be viewed as
one (N = 1) unit cell of a periodic structure that has no center
of inversion along the propagation direction of light (just like
the SRR depicted in Fig. 1). Due to the broken inversion sym-
metry, the field reflectance clearly depends on from which side
light impinges onto the stack under normal incidence. Applying
the aforementioned bianisotropic retrieval to this case at, e.g.,
λ = 1µm (� d1 = d2 = d3 = 10 nm) wavelength leads to the
effective parameters ε = 6.72, µ = 1.00, and ξ = −0.21 that
refer to a fictitious single homogeneous effective slab with total
thickness ds = d1 + d2 + d3 = 30 nm. We have explicitly veri-
fied that the same parameters are retrieved if N = 2, 3, 4, . . . , 20
unit cells of the identical three-layer structure are considered
(i.e., the total slab thickness is N × 30 nm). Thus, the retrieved

Fig. 4. Stack of three purely dielectric materials with (real) dielectric con-
stants ε1 = 2, ε2 = 6, and ε3 = 12 and thicknesses d1 = d2 = d3 = 10 nm
embedded in vacuum breaks inversion symmetry. For example, at 1 µm free-
space wavelength (300 THz frequency) and for normal-incidence of light, the
physics can equivalently be described by a single effective 30-nm thin slab
with permittivity ε = 6.72, magnetic permeability µ = 1.00, and bianisotropy
parameter ξ = −0.21.

quantities ε, µ, and ξ can indeed be interpreted as effective mate-
rial parameters. As the damping is strictly zero in this example,
no absorption occurs. Hence, the sum of transmittance and re-
flectance is unity—for each propagation direction. Thus, the two
intensity reflectances R+ and R− are identical in this case and
differences occur only in the phases of the field reflectances r+
and r−.

This simple example clearly shows that one should be some-
what cautious with using the well-known Maxwell–Garnett ap-
proximation at this point, as it would cast the effective behavior
of the three subwavelength dielectric layers in Fig. 4 into just
an effective dielectric function

ε = 1 +
(ε1 − 1)d1 + (ε2 − 1)d2 + (ε3 − 1)d3

d1 + d2 + d3
= 6.67 (32)

assuming µ = 1 and ξ = 0, leading to a single impedance Z =√
µ/ε × Z0 . The Maxwell–Garnett approximation obviously

ignores that the field reflectance depends on from which side
of the slab it is measured. This may or may not be important,
depending on the problem.

C. Experiments

Experiments on bianisotropic metamaterials—including re-
trieval of the bianisotropy parameter—have been published for
microwave [19], [23], [43], far-infrared [44], and optical fre-
quencies [42], [45], [46]. Related structures have been fabri-
cated previously [47], [48] but bianisotropy has not been men-
tioned. Fig. 5 shows electron micrographs of three different
optical-regime samples that have been fabricated in our group
by direct laser writing (see, e.g., review in [13]) of a polymeric
template and subsequent metallization. Metallization is accom-
plished either by chemical vapor deposition of silver [42], [45]
[Fig. 5(a), (c), and (d)] or by high-vacuum shadow evaporation
of silver [46] [Fig. 5(b)]. The structures in Fig. 5(c) and (d) are
derived from (a) via post-processing using focused-ion-beam
(FIB) milling [45]. The structures in (a) and (b) have also been
FIB cut to reveal their interior. Obviously, all four samples in
Fig. 5 are variations of the SRR geometry shown in Fig. 1. In
Fig. 5(a), the SRRs are connected in two directions, in (b) they
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Fig. 5. Oblique-view electron micrographs of three different, though re-
lated, recently experimentally fabricated bianisotropic photonic metamaterials.
(a) Taken from [45] (sample similar to but different from that in [42]), (b) taken
from [46], and (c) as well as (d) taken from [45]. The dark parts correspond to
the polymeric templates, light gray parts to the silver films.

are connected along one direction only and an additional or-
thogonal set of intentionally elevated metallic wires has been
introduced. The corresponding increased design freedom has
led to a negative phase velocity [46] (i.e., to Re(n) < 0). In (c),
the SRRs are also only connected along one direction, whereas
(d) is a 2-D array of disconnected SRR similar to Fig. 1.

Fig. 6. Measured normal-incidence intensity transmittance (T ) and re-
flectances (R+ , R−) corresponding to the calculated spectrum shown in
Fig. 7(e). The polarization of the incident electromagnetic field is illustrated
on the upper left-hand-side corner of Fig. 5(a). The rapid oscillations of R− are
due to Fabry-Perot interferences in the 170-µm-thick glass substrate. Artifacts
at around 70 THz are caused by absorption lines of CO2 .

As an example, Fig. 7(a)–(d) shows the results of the pa-
rameter retrieval (see previous section) for the structure corre-
sponding to Fig. 5(a), the measured intensity transmittance and
reflectance spectra of which are depicted in Fig. 6. For computa-
tional details see [45]. This structure is an improved version [45]
of the one published in [42]. Again [compare Fig. 2(a)], the real
part of the refractive index is positive (Re(n) > 0) despite the
fact that both Re(ε) < 0 and, at the same time, Re(µ) < 0 due
to the very significant influence of the bianisotropy parameter
ξ. The fact that ξ �= 0 in Fig. 7(c) is intimately connected to
R+ �= R− in Fig. 7(e).

III. CHIRALITY

In Section II and in particular in (11), we have used a scalar
formulation for ξ and the other quantities (ε and µ). Equation
(11) has been a special example of the more general form for
reciprocal media(

�D

�B

)
=

(
ε0ε −ic−1

0 ξ

+ic−1
0 ξt µ0µ

) (
�E

�H

)
(33)

where ε, µ, and ξ are tensors. ξt is the transposed of ξ. In
this general bianisotropic case, regarding the cross terms, the
electric polarization is no longer necessarily perpendicular to the
exciting magnetic-field vector and, similarly, the magnetization
is no longer necessarily perpendicular to the exciting electric-
field vector.

Another special example of the general bianisotropic case
(33) is (

�D

�B

)
=

(
ε0ε −ic−1

0 ξ

+ic−1
0 ξ µ0µ

) (
�E

�H

)
(34)

where ε, µ, and ξ are again scalars. Note that (34) looks rather
similar to (11) at first sight. However, it has a totally different
meaning and leads to completely different behavior, namely to
chirality. Chiral metamaterials are a subclass of bianisotropic
metamaterials. Let us briefly elaborate on the differences with
respect to the previous section.

For a plane wave propagating through a medium, the incident
electric and magnetic vector components are perpendicular to
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Fig. 7. (a)–(d) Retrieved effective parameters from numerical calculation of
the complex transmittance and reflectances of the structure shown in Fig. 5 (a).
(e) Calculated normal-incidence intensity transmittance (T ) and reflectances
(R+ , R−) of this structure.

each other. If, as the wave passes through the chiral medium
following (34), the magnetic component induces an electric
dipole parallel to the magnetic field vector, the resulting net
local electric field vector will clearly be rotated a bit. Likewise,
magnetic dipoles are excited by the electric vector component.
Hence, the magnetic field vector rotates as well—regardless of
the incident polarization of light. Thus, the eigenstates no longer
correspond to linear polarization of light (as in the preceding
section) but rather to circular polarization of light. On the basis
of this, the refractive index can be expressed [49] via

n± =
√

εµ ∓ ξ. (35)

As usual, the sign of the complex root has to be chosen appropri-
ately. The other signs in (35) refer to right-handed (+) and left-
handed (−) circular polarization of light, respectively. The dif-
ference of the two refractive indices becomes n+ − n− = −2ξ.
The behavior of (35) is very different from that for the other
special case of bianisotropy in (15). For example, in principle,
(35) allows for a negative index of refraction (precisely, a nega-
tive phase velocity of light) for one handedness of light if both ε
and µ are mainly real and positive—if only the modulus of ξ is
sufficiently large. In this sense, a large real value of ξ is helpful
for pure chirality, whereas a large real value of ξ works against a
negative phase velocity of light for pure bianisotropy, because a
large ξ2 in (15) leads to a negative n2 , i.e., to evanescent waves.

Retrieval of the effective parameters of purely chiral meta-
materials (the analogue of our discussion in Sect. II.B.) has
been published [49]. First chiral negative-index metamateri-
als [50] have recently been realized at microwave [51] and far-
infrared [52] frequencies.

IV. SUMMARY AND OUTLOOK

The advance of man-made metamaterials has significantly in-
creased our possibilities regarding manipulating light via optical
materials. Light is an electromagnetic wave with an electric and
a magnetic vector component. Either of them can excite both
electric and magnetic dipoles inside the material. These dipoles
can be parallel or orthogonal to the exciting field component—
leading to a rich variety of cases. If, for example, the magnetic
(electric) dipoles excited by the electric (magnetic) field vector
are perpendicular to each other, the reflectance of a slab of such
material becomes asymmetric. A negative phase velocity of lin-
early polarized light (“negative-index metamaterials”) can still
be achieved in this case, however bianisotropy is not usually
helpful. In particular, the phase velocity of light can be posi-
tive even if both electric permittivity and magnetic permeability
are negative. In contrast, if, for example, the magnetic (electric)
dipoles excited by the electric (magnetic) field vector are parallel
to each other, the medium becomes chiral. Chirality tends to en-
able negative phase velocities. In particular, for strong chirality,
the phase velocity of circularly polarized light can be negative
even if both permittivity and permeability are positive. At opti-
cal frequencies, special bianisotropic negative-index structures
have been realized experimentally, while chiral negative-index
structures have not. However, interesting and encouraging re-
sults have recently been published at Gigahertz (microwave) and
Terahertz (far-infrared) frequencies. Results on chiral photonic
metamaterials exhibiting a positive phase velocity of light have
been published previously [53]–[58].

It is rather likely that chiral negative-index metamaterials op-
erating at optical frequencies will be realized experimentally
in the near future. However, all chiral photonic metamaterials
presented so far are uniaxial and, hence, highly anisotropic.
The design and experimental realization of isotropic chiral ar-
tificial materials operating at optical frequencies pose a major
future challenge, especially regarding 3-D nanofabrication. For
such materials, negative reflection of light has been predicted
theoretically [30]. Finally, further possibilities arise if Faraday
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active ingredients are incorporated into the metamaterial. In this
case, not only the reflectance but also the transmittance can be-
come asymmetric [22], [31], which might, e.g., give rise to very
compact optical isolators.
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by the Université de Bourgogne (Dijon, France).

REFERENCES

[1] J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from
conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw.
Theory Tech., vol. 47, no. 11, pp. 2075–2084, Nov. 1999.

[2] D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, “Compos-
ite medium with simultaneously negative permeability and permittivity,”
Phys. Rev. Lett., vol. 84, no. 18, pp. 4184–4187, 2000.

[3] R. Shelby, D. Smith, and S. Schultz, “Experimental verification of a
negative index of refraction,” Science, vol. 292, pp. 77–79, 2001.

[4] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian,
“Experimental verification and simulation of negative index of refraction
using Snell’s law,” Phys. Rev. Lett., vol. 90, no. 10, pp. 107401-1–107401-
4, 2003.

[5] J. D. Baena, R. Marqués, F. Medina, and J. Martel, “Artificial magnetic
metamaterial design by using spiral resonators,” Phys. Rev. B, vol. 69,
no. 1, pp. 014402-1–014402-5, 2004.

[6] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry,
D. N. Basov, and X. Zhang, “Terahertz magnetic response from artificial
materials,” Science, vol. 303, no. 5663, pp. 1494–1496, 2004.

[7] S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M.
Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Sci-
ence, vol. 306, pp. 1351–1353, 2004.

[8] W. Xu, L. W. Li, H. Y. Yao, T. S. Yeo, and Q. Wu, “Extraction of constitu-
tive relation tensor parameters of SRR structures using transmission line
theory,” J. Electromagn. Waves Appl., vol. 20, no. 1, pp. 13–25, 2006.

[9] D. R. Smith, J. B. Pendry, and M. Wiltshire, “Metamaterials and negative
refractive index,” Science, vol. 305, pp. 788–792, 2004.

[10] N. Engheta and R. W. Ziolkowski, Eds., Metamaterials: Physics and
Engineering Explorations. New York: Wiley–Interscience, 2006.

[11] V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon.,
vol. 1, pp. 41–48, 2007.

[12] C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index
at optical wavelengths,” Science, vol. 315, pp. 47–49, 2007.

[13] K. Busch, G. von Freymann, S. Linden, S. Mingalaeev, L. Tkeshelashvili,
and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep.,
vol. 444, no. 1, pp. 101–202, 2007.

[14] L. Vegni and A. Toscano, “Radiation of an electric point-source in a homo-
geneous omega medium,” J. Franklin Inst.: Eng. Appl. Math., vol. 332B,
no. 5, pp. 579–594, 1995.

[15] A. Bungay, Y. Svirko, and N. Zheludev, “Equivalency of the Casimir and
the Landau–Lifshitz approaches to continuous-media electrodynamics and
optical activity on reflection,” Phys. Rev. B, vol. 47, no. 18, pp. 11 730–11
735, 1993.

[16] W. S. Weiglhofer, “On anomalous propagation in axially uniaxial bian-
isotropic mediums,” Int. J. Infrared Millim. Waves, vol. 20, no. 7,
pp. 1277–1286, 1999.

[17] W. S. Weiglhofer, “On anomalous propagation in transversely uniaxial
bianisotropic mediums,” Int. J. Infrared Millim. Waves, vol. 21, no. 6,
pp. 895–904, 2000.

[18] A. Serdyukov, I. V. Semchenko, S. A. Tretyakov, and A. Sihvola, Electro-
magnetics of Bi-Anisotropic Materials: Theory and Applications. New
York: Gordon and Breach, 2001.

[19] R. Marqués, F. Medina, and R. Rafii-El Idrissi, “Role of bianisotropy
in negative permeability and left-handed metamaterials,” Phys. Rev. B,
vol. 65, no. 14, pp. 144440-1–144440-6, 2002.

[20] S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski,
“Waves and energy in chiral nihility,” J. Electromagn. Waves Appl.,
vol. 17, no. 5, pp. 695–706, 2003.

[21] J. B. Pendry, “A chiral route to negative refraction,” Science, vol. 306,
pp. 1353–1355, 2004.

[22] T. G. Mackay and A. Lakhtakia, “Plane waves with negative phase velocity
in Faraday chiral mediums,” Phys. Rev. E, vol. 69, no. 2, pp. 026602-1–
026602-9, 2004.

[23] X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the
effective constitutive parameters of bianisotropic metamaterials,” Phys.
Rev. E, vol. 71, no. 4, pp. 046610-1–046610-9, 2005.

[24] Z. F. Li, K. Aydin, and E. Ozbay, “Determination of the effective con-
stitutive parameters of bianisotropic metamaterials from reflection and
transmission coefficients,” Phys. Rev. E, vol. 79, no. 2, pp. 026610-1–
026610-7, 2009.

[25] T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B. I. Wu, and J. A. Kong,
“Reflection coefficients and Goos–Hänchen shifts in anisotropic and bian-
isotropic left-handed metamaterials,” Prog. Electromagn. Res., PIER,
vol. 51, pp. 83–113, 2005.

[26] S. Tretyakov, A. Sihvola, and L. Jylhä, “Backward-wave regime and nega-
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