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Abstract We discuss the problem of constructing information criteria by applying
the bootstrap methods. Various bias and variance reduction methods are presented for
improving the bootstrap bias correction term in computing the bootstrap information
criterion. The properties of these methods are investigated both in theoretical and
numerical aspects, for which we use a statistical functional approach. It is shown that
the bootstrap method automatically achieves the second-order bias correction if the
bias of the first-order bias correction term is properly removed. We also show that the
variance associated with bootstrapping can be considerably reduced for various model
estimation procedures without any analytical argument. Monte Carlo experiments are
conducted to investigate the performance of the bootstrap bias and variance reduction
techniques.

Keywords Kullback–Leibler information · AIC · Information criteria ·
Bootstrapping · Statistical functional · Variance reduction · Higher-order
bias correction

1 Introduction

Akaike information criterion (AIC), was introduced for the evaluation of various types
of statistical models (Akaike 1973, 1974). It facilitated to evaluate and compare various
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statistical models quite freely, and promoted the development of statistical models in
various fields of statistics (e.g., Bozdogan 1994).

Although direct application of AIC is limited to the models with parameters esti-
mated by the maximum likelihood methods, Akaike’s basic idea of bias correction
for the log-likelihood can be applied to a wider class of models defined by statisti-
cal functionals (Konishi and Kitagawa 1996, 2003, 2008). Another direction of the
extension is based on the bootstrapping. In Ishiguro et al. (1997), the bias of the
log-likelihood was estimated by using the bootstrap method (Efron 1979). By this
method, we can apply the information criterion to various types of statistical models.
This bootstrap approach can be trace back to Wong (1983) and Efron (1983) where
they use the bootstrap bias correction for the log-likelihood in determining the kernel
width. Bootstrapping log-likelihood is also considered in Cavanaugh and Shumway
(1997), Davison and Hinkley (1992), and Shibata (1997).

The bootstrap information criteria have a significant merit that it can be applied to
almost any type of models and estimation procedures under very weak assumption.
Beside this merit, unlike other analytic information criteria such as TIC and GIC, it is
not necessary to derive the bias correction term analytically for each specific model
and estimation procedure. It should be emphasized here that the AIC is free from
troublesome analytic derivation of the bias correction term in actual modeling and, in
some sense, the EIC inherits this nice property.

On the other hand, the bias correction term of EIC inevitably suffers from the boot-
strap sampling fluctuation. In its simplest definition, it can be shown that the variance
of this fluctuation is proportional to the sample size. Therefore, unlike the usual esti-
mation problems, the accuracy of the bias correction term gets worse as the sample size
increases. Therefore, to make the bootstrap information criterion practical, it is indis-
pensable to develop a computationally efficient methods for estimating the bootstrap
bias correction term.

In this paper we first consider methods of increasing the accuracy of the bootstrap
bias correction term from two different approaches. The first is concerned with the
reduction of the bias of the correction term in estimating the expected log-likelihood.
It will be shown that the bootstrap method automatically performs higher-order bias
correction but the bias of the first-order correction term remains. It means that by
removing the bias of the first-order bias correction term, bootstrap method automat-
ically achieve second-order bias correction. This can be realized by bootstrapping
first-order bias corrected log-likelihood or double bootstrapping. By numerical exam-
ples, we show that bootstrap method has less bias than the analytic method, although
it suffers from the increase of variance due to bootstrapping.

The second approach is the reduction of the variance of the bootstrap estimate of
the bias term. This is achieved by the decomposition of the bias correction term and
by omitting a term which has zero mean and the largest variance. The decomposition
method yields a significant variance reduction in bootstrap bias estimation. This clearly
shows the advantage of the use of the variance reduction method in bootstrapping.

This paper is organized as follows. In Sect. 2 we give a brief review of constructing
information criteria. Section 3 discusses the theoretical evaluation of the asymptotic
accuracy of various information criteria as an estimator of the expected log-likelihood,
using a statistical functional approach. Section 4 introduces the bootstrap bias corrected
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version of a log-likelihood with theoretical justification. In Sect. 5 we present the var-
iance reduction method for bootstrap simulation with theoretical improvement. In
Sect. 6 we conduct Monte Carlo simulations to illustrate the efficiency of our variance
reduction technique. Some concluding remarks are given in Sect. 7.

2 Preliminaries: A brief review of information criteria

Suppose that the data xn = {x1, x2, . . . , xn} are generated from an unknown true
distribution function G(x) with probability density g(x). We regard g(x) as a true
probability mechanism generating the data. The objective of statistical modeling is
to build a reasonable model based on the observed data. In practical situations it is
difficult to estimate the true density g(x) precisely from a finite number of observa-
tions. Hence we usually make use of an approximating model which consists of a
family of probability densities { f (x |θ); θ ∈ �}, where θ = (θ1, θ2, . . . , θp)

T is the
p-dimensional vector of unknown parameters and � is an open subset of R p. The
parametric model is estimated by finding suitable estimate, θ̂ , of unknown parameter
vector θ and replacing θ in f (x |θ) by the estimate θ̂ . We call this probability density
f (x |θ̂) a statistical model.

The problem here is how to evaluate the goodness of the statistical model when it
is used to predict a future observation z from the true density g(z).

In order to assess the closeness of f (z|θ̂) to the true density g(z), we use the
Kullback–Leibler information (Kullback and Leibler 1951)

I {g(z); f (z|θ̂)} = EG(z)

[
log

g(Z)

f (Z |θ̂)

]

= EG(z)[log g(Z)] − EG(z)[log f (Z |θ̂)], (1)

where expectation is taken over the distribution of z, conditional on the observed
data xn . The KL-information I {g(z); f (z|θ̂)} always takes a positive value, unless
f (z|θ̂) = g(z) holds almost everywhere. We choose the model that minimizes
I {g(z); f (z|θ̂)} among candidate statistical models. We note that it is sufficient to
consider only the second term on the right-hand side in Eq. (1), since the first term,
EG(z)[log g(Z)], is a constant that depends solely on the true distribution g(z). The
term

η(G; θ̂) ≡ EG(z)[log f (Z |θ̂)] =
∫

log f (z|θ̂)dG(z) (2)

is conditional on the observed data xn through the estimator, θ̂ = θ̂(xn), and depends
on the unknown true distribution G. It is called the expected log-likelihood. The larger
this value is for a statistical model, the smaller its Kullback–Leibler information is
and hence the better the model is.
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The expected log-likelihood still contains the unknown true distribution g(z).
Therefore, we cannot directly evaluate the expected log-likelihood but it can be esti-
mated from the observations. It is known that an obvious estimator of η(G; θ̂) is (1/n
of) the log-likelihood

η(Ĝ; θ̂) =
∫

log f (z|θ̂)dĜ(z) = 1

n

n∑
α=1

log f (xα|θ̂) ≡ �n(xn|θ̂), (3)

obtained by replacing the unknown distribution G in η(G; θ̂) by the empirical dis-
tribution, Ĝ, defined by putting mass 1/n on each observation xα . Throughout this
paper, because of the order of the expansion formula, we refer to the above equation
divided by n as the log-likelihood.

In general, the log-likelihood provides an optimistic assessment (over-estimation)
of the expected log-likelihood η(G; θ̂), that is, η(G; θ̂) < �n(xn|θ̂) always holds,
because the same data are used both to estimate the parameters of the model and
to evaluate η(G; θ̂). We therefore consider the bias correction of the log-likelihood
�n(xn|θ̂).

The bias of the log-likelihood in estimating the expected log-likelihood is defined
by

b(G) = EG(x)

[
�n(Xn|θ̂) −

∫
log f (z|θ̂)dG(z)

]
, (4)

where expectation is taken over the joint distribution of xn , that is,
∏n

α=1 dG(xα). If
the bias can be estimated by an appropriate procedure, then an information criterion
is defined as a bias corrected log-likelihood

IC(xn; θ̂ ) = −2n
{
�n(xn|θ̂) − b̂(G)

}
= −2

n∑
α=1

log f (xα|θ̂) + 2nb̂(G), (5)

where b̂(G) is an estimator of the bias b(G) in Eq. (4).
The bias correction term b̂(G) is usually given as an asymptotic bias in (4). Accord-

ing to the assumptions made on model estimation and the relationship between the
specified model and the true density, the asymptotic bias takes a different form, and
consequently we obtain various information criteria proposed previously including
AIC.

The objective of constructing information criteria is to estimate the quantity (2)
from observed data as accurately as possible. If there exists an estimator η̄(Ĝ; θ̂) such
that

EG(x)

[
η̄(Ĝ; θ̂) − η(G; θ̂)

]
= 0, (6)

123



Bootstrap Information Criteria 213

then η̄(Ĝ; θ̂) is an unbiased estimator of the expected log-likelihood η(G; θ̂). In fact,
Sugiura (1978) and Hurvich and Tsai (1989) gave such an unbiased estimator for a
Gaussian regression model under the assumptions that (i) the parametric model is esti-
mated by the method of maximum likelihood and (ii) the specified parametric family
of probability distributions contains the true density, that is, g(z) = f (z|θ0); (i.e.,
G = Fθ 0

) for some θ0 in �.
In a general framework, it is however difficult to obtain an information criterion as

an unbiased estimator of the expected log-likelihood. Hence, it is desirable to obtain
an estimator ηIC(Ĝ; θ̂) of η(G; θ̂) that satisfies the condition

EG(x)

[
ηIC(Ĝ; θ̂) − η(G; θ̂)

] = O(n− j ) (7)

for j as large as possible. For example, if j = 2, (7) indicates that the estimator agrees
up to a term of order 1/n in the target quantity EG(x)[η(G; θ̂)].

We recall that a random sample xn is drawn from an unknown true distribution
G(x) with density g(x) and that the true density g(x) is in the neighborhood of the
specified parametric family of probability densities { f (x |θ); θ ∈ � ⊂ R p}. Then
the p-dimensional parameter vector θ is estimated based on data from G(x), not
f (x |θ). Hence we employ a p-dimensional functional estimator θ̂ = T (Ĝ), where
T (·) = (T1(·), . . . , Tp(·))T ∈ R p is a functional vector on the space of distribu-
tion functions and Ĝ is the empirical distribution function. For example, the sample
mean xn = ∑n

α=1 xα/n can be written as xn = T (Ĝ) for the functional given by
T (G) = ∫

xdG(x).
Within the framework of regular functional, Konishi and Kitagawa (1996) showed

that the asymptotic bias of the log-likelihood in the estimation of the expected
log-likelihood is given by

b(G) = EG(x)

[
�n(xn|θ̂) − η(G; θ̂)

]

= 1

n
tr

{∫
T (1)(z; G)

∂ log f (z|θ)
∂θT

∣∣∣∣
T (G)

dG(z)

}
+ O(n−2), (8)

where T (1)(z; G) = (T (1)
1 (z; G), . . . , T (1)

p (z; G))T and T (1)
i (z; G) is the influence

function defined by

T (1)
i (z; G) = lim

ε→0

Ti ((1 − ε)G + εδz) − Ti (G)

ε
, (9)

with δz being a point mass at z. By replacing the unknown true probability distribution
G with the empirical distribution function Ĝ, we estimate the asymptotic bias, and
then an information criterion based on the bias-corrected version of the log-likelihood
is given by

GIC = −2 log f (xn|θ̂) + 2

n

n∑
α=1

tr

{
T (1)(Xα; Ĝ)

∂ log f (xα|θ)

∂θT

∣∣∣∣
θ̂

}
. (10)
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Now we consider a statistical model f (x |θ̂ M L) estimated by the maximum like-
lihood methods, where θ̂ M L is a p-dimensional maximum likelihood estimator based
on data generated from the true distribution G(x). The maximum likelihood estimator,
θ̂ML, given as the solution of the likelihood equation can be written as θ̂ML = TML(Ĝ),
where TML is the p-dimensional functional implicitly defined by

∫
∂ log f (z|θ)

∂θ

∣∣∣∣
TML(G)

dG(z) = 0. (11)

Replacing G in (11) by Gε = (1 − ε)G + ε δz and differentiating with respect to ε

yield the p-dimensional influence function of the maximum likelihood estimator in
the form

T (1)
ML(z; G) = J (G)−1 ∂ log f (z|θ)

∂θ

∣∣∣∣
T ML(G)

, (12)

where J (G) is given by

J (G) = −
∫

∂2 log f (z|θ)

∂θ∂θT

∣∣∣∣
T (G)

dG(z). (13)

Substituting the influence function (12) into the Eq. (8), we have the asymptotic
bias of the log-likelihood �n(xn|θ̂ M L) in the form

b(G) = 1

n
tr{J (G)−1 I (G)} + O(n−2), (14)

where

I (G) =
∫

∂ log f (Z |θ)

∂θ

∂ log f (Z |θ)

∂θT

∣∣∣∣
T M L (G)

dG(z). (15)

By correcting the asymptotic bias estimate, an information criterion for evaluating a
statistical model estimated by the maximum likelihood method is given by

TIC = −2 log f (xn|θ̂ML) + 2tr{J (Ĝ)−1 I (Ĝ)}. (16)

This criterion was originally introduced by Takeuchi (1976) (see also Stone 1977).
If the parametric model is estimated by the maximum likelihood methods and the

true distribution belongs to the parametric family of densities { f (x |θ); θ ∈ θ}, we
have the well-known result I (Fθ ) = J (Fθ ), where Fθ is the distribution function of
f (x |θ). Then the asymptotic bias is given by tr

{
J (Fθ )−1 I (Fθ )

} = p, and conse-
quently we have Akaike (1973, 1974) information criterion, known as AIC, in the form:

AIC = −2 log f (xn|θ̂ML) + 2p, (17)
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where p is the number of estimated parameters within the model.
It is worth pointing out that the asymptotic bias correction term in AIC does not

depend on any unknown parameters and has no variability. Also AIC may be applied in
an automatic way in various situations for the evaluation of statistical models estimated
by the maximum likelihood methods.

3 Asymptotic accuracy of information criteria

Information criteria were constructed as approximately unbiased estimators of the
expected log-likelihood η(G; θ̂) = EG(z)[log f (Z |θ̂)] or, equivalently, the Kullback–
Leibler information discrepancy between the true distribution g(z) and a statistical
model f (z|θ̂) from a predictive point of view. In this section we discuss, in a general
framework, the theoretical evaluation of the asymptotic accuracy of various types of
information criteria as an estimator of the expected log-likelihood, based on the func-
tional approach developed by Konishi and Kitagawa (1996), Konishi and Kitagawa
(2003), and Konishi and Kitagawa (2008).

The expected log-likelihood is conditional on the observed data xn through θ̂ =
θ̂(xn) and also depends on the unknown true distribution G(z) generating the data. It
can be shown (see Konishi and Kitagawa 2008, Chapter 7) that under certain regular-
ity conditions, the expectation of η(G; θ̂) over the sampling distribution G of Xn is
expanded in the form

EG(x)

[
η(G; θ̂)

]
= EG(x)

[
EG(z)

[
log f (Z |θ̂)

]]

=
∫

log f (z|T (G))dG(z) + 1

n
η1(G) + 1

n2 η2(G) + O(n−3),

(18)

where

η1(G) = s(G)T
∫

∂ log f (z|θ)

∂θ

∣∣∣∣
T (G)

dG(z) − 1

2
tr {J (G)	(G)}. (19)

Here, s(G) and 	(G) are, respectively, the asymptotic bias and variance-covariance
matrix of the p dimensional estimator θ̂ given by

EG(x)

[
θ̂ − T (G)

]
= 1

n
s(G) + O(n−2),

(20)

EG(x)

[
(θ̂ − T (G))(θ̂ − T (G))T

]
= 1

n
	(G) + O(n−2)

and J(G) is defined by Eq. (13).
On the other hand, since the log-likelihood �n(xn|θ̂) in Eq. (3) being an estimator

of the expected log-likelihood η(G; θ̂), the expectation of the log-likelihood gives a
valid expansion of the following form:
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EG(x)

[
�n(Xn|θ̂)

]
=

∫
log f (z|T (G))dG(z) + 1

n
L1(G)

+ 1

n2 L2(G) + O(n−3), (21)

where

L1(G) = tr

{∫
T (1)(z; G)

∂ log f (z|θ)

∂θT

∣∣∣∣
T (G)

dG(z)

}
+ η1(G), (22)

with η1(G) given by (19). Hence, comparing the Eq. (18) with Eq. (21), the log-like-
lihood as an estimator of the expected log-likelihood only agrees in the first term, and
the term of order 1/n remains as a bias. This implies that the bias of the log-likelihood
in the estimation of the expected log-likelihood can be expanded as

b(G) = EG(x)

[
�n(Xn|θ̂) − η(G; θ̂)

]
= 1

n
b1(G) + 1

n2 b2(G) + O(n−3), (23)

where

b1(G) = L1(G) − η1(G) = tr

{∫
T (1)(z; G)

∂ log f (z|θ)

∂θT

∣∣∣∣
T (G)

dG(z)

}
,

(24)
b2(G) = L2(G) − η2(G).

By replacing the unknown true probability distribution G with the empirical distribu-
tion function Ĝ, we estimate the asymptotic bias, and then an information criterion
based on the asymptotic bias-corrected version of the log-likelihood is given by

ηGIC(Ĝ; θ̂) = �n(xn|θ̂) − 1

n
b1(Ĝ). (25)

Noting that the difference between EG [b1(Ĝ)] and b1(G) is usually of order n−1,
that is,

EG(x)[b1(Ĝ)] = b1(G) + 1

n

b1(G) + O(n−2)

= L1(G) − η1(G) + 1

n

b1(G) + O(n−2), (26)

we have

EG(x)

[
ηGIC(Ĝ; θ̂)

]
=

∫
log f (z|T (G))dG(z)

+1

n
η1(G) + 1

n2 {L2(G) − 
b1(G)} + O(n−3), (27)
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and

EG(x)

[
ηGIC(Ĝ; θ̂) − η(G; θ̂)

]
= 1

n2
{b2(G) − 
b1(G)} + O(n−3). (28)

Hence the bias corrected log-likelihood ηGIC(Ĝ; θ̂) is second-order correct or accu-
rate for the expected log-likelihood η(G; θ̂) in the sense that the expectations of two
quantities are in agreement up to and including the term of order n−1, and that the
order of the remainder is n−2. It also implies that ηGIC2(Ĝ; θ̂) defined by

ηGIC2(Ĝ; θ̂) = �n(xn|θ̂) − 1

n
b1(Ĝ) − 1

n2

{
b2(Ĝ) − 
b1(Ĝ)

}
(29)

is third-order correct.
If the specified parametric family of densities includes the true distribution and

the maximum likelihood method is used to estimate the underlying density, then the
asymptotic bias of the log-likelihood is the number of estimated parameters, giving
AIC = −2n{ηAIC(F̂; θ̂ML) −p/n} with second-order accuracy for η(F; θ̂ML). More-
over the bias-corrected version of the log-likelihood defined by

ηAIC2(F̂; θ̂ML) = η(F̂; θ̂ML) − 1

n
p − 1

n2 b2(F̂) (30)

is third-order correct for η(F; θ̂ M L), since it can be readily checked that

EF(x)

[
ηAIC2(F̂; θ̂ML) − η(F; θ̂ML)

]
= O(n−3). (31)

4 Bootstrap information criterion

In practice, we need to derive the bias correction terms analytically for each estimator.
The bootstrap method offers an alternative approach to estimate the biases numerically.

In the bootstrap methods, the true distribution G(x) is first estimated by an empirical
distribution function Ĝ(x). A random sample from the empirical distribution function
Ĝ(x) is referred to as a bootstrap sample and is denoted as x∗

n = {x∗
1 , x∗

2 , . . . , x∗
n }.

Then a statistical model f (x |θ̂∗
) is constructed based on the bootstrap sample x∗

n ,

with θ̂
∗ = θ̂(x∗

n).

The expected log-likelihood of the statistical model f (x |θ̂∗
) when the empirical

distribution function Ĝ(x) is considered as the true distribution is given by

EĜ(z)

[
log f (Z |θ̂∗

)
]

=
∫

log f (z|θ̂∗
)dĜ(z)

= 1

n

n∑
α=1

log f (xα|θ̂∗
) ≡ �n(xn|θ̂∗

). (32)
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On the other hand, the log-likelihood, which is an estimator of the expected log-
likelihood, is defined by re-using the bootstrap sample x∗

n as follows:

EĜ∗(z)

[
log f (Z |θ̂∗

)
]

=
∫

log f (z|θ̂∗
)dĜ∗(z)

= 1

n

n∑
α=1

log f (x∗
α|θ̂∗

) ≡ �n(x∗
n|θ̂

∗
), (33)

where Ĝ∗(z) is an empirical distribution function based on the bootstrap sample x∗
n .

Consequently, the bootstrap estimate of the bias of the log-likelihood in estimating
the expected log-likelihood is

b∗(Ĝ) = EĜ(x∗)

[
�n(x∗

n|θ̂∗
) − �n(xn|θ̂∗

)
]

=
∫

· · ·
∫ {

�n(x∗
n|θ̂∗

) − �n(xn|θ̂∗
)
} n∏

α=1

dĜ(x∗
α). (34)

Then the bootstrap bias corrected version of the log-likelihood is defined by

ηEIC(Ĝ; θ̂) = �n(xn|θ̂) − b∗(Ĝ). (35)

It follows from (23) that the bootstrap bias estimate of the log-likelihood in the
estimation of the expected log-likelihood can be expanded as

b∗(Ĝ) = EĜ(x∗)

[
�n(x∗

n|θ̂∗
)−�n(xn|θ̂∗

)
]

= 1

n
b1(Ĝ)+ 1

n2 b2(Ĝ)+O(n−3), (36)

where

b1(Ĝ) = L1(Ĝ) − η1(Ĝ), b2(Ĝ) = L2(Ĝ) − η2(Ĝ). (37)

Taking expectation of ηEIC(Ĝ; θ̂) over the sampling distribution of xn , and using
EG(x)[b∗(Ĝ)] = EG(x)[b(Ĝ)], we have

EG(x)

[
ηEIC(Ĝ; θ̂)

]
=

∫
log f (z|T (G))dG(z)

+1

n
η1(G) + 1

n2
{η2(G)−
b1(G)} + O(n−3), (38)

and thus

EG(x)

[
ηEIC(Ĝ; θ̂) − η(G; θ̂)

]
= − 1

n2 
b1(G) + O(n−3). (39)
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On the other hand, as shown in the previous section, the information criterion GIC,
correcting the asymptotic bias b1(Ĝ), yields the corresponding result

EG(x)

[
ηGIC(Ĝ; θ̂)

]
=

∫
log f (z|T (G))dG(z)

+1

n
η1(G) + 1

n2
{L2(G)−
b1(G)} + O(n−3). (40)

Therefore, we have

EG(x)

[
ηGIC(Ĝ; θ̂) − η(G; θ̂)

]
= 1

n2
{b2(G) − 
b1(G)} + O(n−3). (41)

By comparing the target quantity, that is, the expectation of the expected log-like-
lihood η(G; θ̂) given by Eq. (18), we know that GIC and the bootstrap bias corrected
log-likelihood are both second-order accurate for the expected log-likelihood. It is,
however, noticed from (39) and (41) that the term of order n−2 in EIC seems to be
smaller than that of GIC, if |
b1(G)| < |b2(G)−
b1(G)|. We investigate this finding
through Monte Carlo simulation study in Sect. 6.

The most significant feature of the use of the bootstrap method is that the inte-
gral in Eq. (34) can be approximated numerically by the Monte Carlo method. Let
us extract B sets of bootstrap samples of size n and write the i th bootstrap sample as
x∗

n(i) = {x∗
1 (i), x∗

2 (i), . . . , x∗
n (i)}. We denote the difference between (32) and (33)

with respect to the sample x∗
n(i) as

D∗(i) = �n(x∗
n(i)|θ̂∗

(i)) − �n(xn|θ̂∗
(i)), (42)

where θ̂
∗
(i) is an estimate of θ obtained from the i th bootstrap sample. Then, the

expectation in (34) based on B bootstrap samples can be numerically approximated
as

b∗(Ĝ) ≈ 1

B

B∑
i=1

D∗(i) ≡ bB(Ĝ). (43)

The quantity bB(Ĝ) is the bootstrap estimate of the bias b(G) of the log-likelihood.
Consequently, the bootstrap methods yield an information criterion as follows:

ηEIC(Ĝ; θ̂) = �n(xn|θ̂) − bB(Ĝ). (44)

The information criterion based on the bootstrap method was referred to as the extended
information criterion (EIC) by Ishiguro et al. (1997).

It might be noticed that the EIC suffers from two types of variances. The first
is the variance of the bootstrap estimate b∗(Ĝ) due to the sample or the empirical
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distribution function Ĝ and is common to all other information criteria unless it is
independent from Ĝ like AIC. The second is the bootstrap variance, caused by the
bootstrap simulation,

Var
{

bB(Ĝ)
}

= EĜ(x∗)

[{
(bB(Ĝ) − b∗(Ĝ)

}2
]

, (45)

which is inverse proportional to the number of bootstrap resampling, B, i.e., B−1V∗
where

V∗ = Var
{

D∗(i)
} = 1

B

B∑
i=1

{
D∗(i) − bB(Ĝ)

}2
. (46)

We shall discuss a method of reducing this bootstrap variance in the following sections.

5 Efficient bootstrap simulation

5.1 Variance reduction for bootstrap simulation

The bootstrap method can be applied without analytically cumbersome procedures
under very weak assumptions, that is, the estimator is invariant with respect to the
re-ordering of the sample. In applying the bootstrap method, however, care should be
paid to the magnitude of the fluctuation due to bootstrap simulation and approximation
error, in addition to the sample fluctuation of the bias estimate itself.

For a set of given observations, the bootstrap bias approximation bB(Ĝ) in (43)
converges to the bootstrap bias estimate b∗(Ĝ) in (34), with probability one, when
the number of bootstrap resampling B goes to infinity. However, because simulation
errors occur for finite B, a procedure must be devised to reduce the error. This can be
considered reduction of simulation error for bB(Ĝ) for a given sample. The variance
reduction method described in this section, called the efficient bootstrap simulation
method or the efficient resampling method, provides an effective, yet extremely simple
method of reducing any fluctuation in the bootstrap bias estimation of log-likelihood.
The variance of the bootstrap estimate of the bias defined in (45) can be signifi-
cantly reduced by the decomposition of the bias term (Konishi and Kitagawa 1996,
2008).

Let D(Xn; G) be the difference between the log-likelihood and the expected log-
likelihood of a statistical model. Then D(Xn; G) can be decomposed into three terms
as follows:

D(Xn; G) = �n(Xn|θ̂) −
∫

log f (z|θ̂)dG(z)

= D1(Xn; G) + D2(Xn; G) + D3(Xn; G) (47)
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where

D1(Xn; G) = �n(Xn|θ̂) − �n(Xn|T (G)),

D2(Xn; G) = �n(Xn|T (G)) −
∫

log f (z|T (G))dG(z), (48)

D3(Xn; G) =
∫

log f (z|T (G))dG(z) −
∫

log f (z|θ̂)dG(z)

with θ̂ being the functional estimator such that θ̂ = T (Ĝ).
For a general estimator θ̂ = T (Ĝ) defined by a statistical functional, the means

and the variances of these terms are given by

EG(x) [D1(Xn; G)] = 1

n

[
c + sT ν − 1

2
tr{	(G)J (G)}

]
+ O(n−2)

EG(x) [D3(Xn; G)] = −1

n

[
sT ν − 1

2
tr{	(G)J (G)}

]
+ O(n−2)

(49)
Var {D1(Xn; G)} = Var {D3(Xn; G)} = 1

n
νT 	(G)ν + O(n−2)

EG(x) [D2(Xn; G)] = 0, Var {D2(Xn; G)} = a

n
+ O(n−2),

where s and 	(G) are, respectively, the asymptotic bias and variance-covariance
matrix of the estimator θ̂ given by Eq. (20) and

c = tr

{∫
T (1)(z; G)

∂ log f (z|T (G))

∂θT
dG(z)

}
, ν =

∫
∂ log f (z|T (G))

∂θ
dG(z),

a =
∫

{log f (z|T (G))}2 dG(z) −
{∫

log f (z|T (G))dG(z)

}2

,

(see Appendix).
For the maximum likelihood estimator θ̂ML = TML(Ĝ), noting that ν = 0 and

c = tr{J (G)−1 I (G)}, the corresponding results are given by

EG(x) [D1(Xn; G)] = EG(x) [D3(Xn; G)] = 1

2n
tr {	(G)J (G)} + O(n−2),

Var {D1(Xn; G)} = Var {D3(Xn; G)} = O(n−2), (50)

EG(x) [D2(Xn; G)] = 0, Var {D2(Xn; G)} = a

n
+ O(n−2),

where 	(G) = J (G)−1 I (G)J (G)−1.
We observe that in both cases, the expectation of D2(Xn; G) is zero and that the

bootstrap estimate EĜ(x∗)[D(X∗
n; Ĝ)] is the same as

EĜ(x∗)

[
D1(X∗

n; Ĝ) + D3(X∗
n; Ĝ)

]
, (51)
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where

D1(X∗
n; Ĝ) = �n(X∗

n|θ̂∗
) − �n(X∗

n|θ̂),

D3(X∗
n; Ĝ) = �n(Xn|θ̂) − �n(Xn|θ̂∗

).

It is also worth noting that Var{D(Xn; G)} = O(n−1) and in contrast

Var{D1(Xn; G) + D3(Xn; G)} = O(n−2), (52)

(see (81) and (78) in the Appendix). Therefore, the use of the decomposition in Eq. (51)
yields a significant reduction of the variance not only for the maximum likelihood
estimators but also for any estimators defined by statistical functional.

Therefore, instead of
1

B

∑B
i=1 D(X∗

n(i); Ĝ), we may use

bB(Ĝ) = 1

B

B∑
i=1

{
D1(X∗

n(i); Ĝ) + D3(X∗
n(i); Ĝ)

}

as a bootstrap bias estimate.

5.2 Higher-order bootstrap bias correction

An information criterion that yields more refined results may be obtained by deriving
a second-order bias correction term in Eq. (28). In practical situations the bootstrap
method offers an approach to estimate it numerically. If the asymptotic bias b1(G) is
evaluated analytically, then the bootstrap estimate of the second-order bias correction
term can be obtained by using

1

n
b∗

2(Ĝ) = EĜ(x∗)

[
log f (X∗

n|θ̂∗
) − b1(Ĝ) − nEĜ(z)

[
log f (Z |θ̂∗

)
]]

. (53)

On the other hand, in situations where it is difficult to analytically determine the first-
order correction term b1(G), an estimate of the second-order correction term can be
obtained by employing the following two-step bootstrap methods:

1

n
b∗∗

2 (Ĝ) = EĜ(x∗)

[
f (X∗

n|θ̂∗
) − b∗

B(Ĝ) − nEĜ(z∗) log f (Z∗|θ̂∗
)
]
, (54)

where b∗
B(Ĝ) is the bootstrap estimate of the first-order correction term obtained by

(43). This bias estimate gives the third-order bias corrected information criterion.
Theoretically, we may obtain the higher-order bias corrected information criterion

by using the bootstrap repeatedly. However, care should be paid to the large variability
due to the bootstrap simulations and also the approximation errors.
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It is worth noting that if the AIC gives exact asymptotic bias correction term, we can
automatically attain the second order bias correction by bootstrapping D1(X∗

n; Ĝ) +
D3(X∗

n; Ĝ).

6 Numerical examples

We conducted Monte Carlo simulations to illustrate the effect of the variance reduction
method and the higher order bias correction for the log-likelihood of a statistical model.
As a model we considered a parametric family of normal distributions f (x |µ, σ 2) with
mean µ and variance σ 2. Sample data were generated from the standard normal or
Laplace distributions.

6.1 Variance reduction in bootstrapping

In our Monte Carlo experiments, we consider three situations: (i) the specified model
contains the true distribution, (ii) the specified model does not contain the true dis-
tribution, and (iii) the model parameters are estimated by procedures other than the
maximum likelihood method. In each table, the notations stand for the following:

C∗
1 = nEĜ[D1(X∗

n; Ĝ)], C∗
2 = nEĜ[D2(X∗

n; Ĝ)], C∗
3 = nEĜ[D3(X∗

n; Ĝ)],
C∗

123 = C∗
1 + C∗

2 + C∗
3 , C∗

13 = C∗
1 + C∗

3 .

In Tables 1–3, the values in the first row for each sample size n show the averages
of the bootstrap estimates over S samples for C∗

123, C∗
13, C∗

1 , C∗
2 , C∗

3 . The second row
with parenthesis shows the average of the bootstrap variances with B resamplings,
i.e., B−1 ∑B

i=1(D∗(i) − bB(Ĝ))2 over S repetitions, where D∗(i) and bB(Ĝ) are
defined in (42) and (43), respectively. The variance of bB(Ĝ) as an estimate of b∗(Ĝ)

is inverse proportional to the number of bootstrap resampling, B. Namely, in actual
computation, the bootstrap variance from B resamplings is obtained by dividing these
values by B. On the other hand, the third row with parenthesis shows the variance
of the bootstrap estimate b∗(Ĝ) in S repetitions when B is set to 1,000. Note that
these variances include both the fluctuation caused by bootstrap approximation and
the fluctuation caused by the observed data, namely Ĝ(x).

To reduce the effect of the sample data, random samples Xn were generated for
S = 1,000,000 times and the average of these estimates were computed, for sample
size n = 25, 100, 400 and 1,600.

Example 1 (True distribution: Normal) Random samples were generated from the
standard normal distribution, N (0, 1). This is a typical situation where the specified
model contains the true distribution. Note that in this case, the exact biases can be
easily evaluated analytically and are given by nb(G) = 2n/(n − 3), i.e., 2.273, 2.063,
2.014 and 2.003 for n = 25, 100, 400 and 1,600, respectively.

It can be seen from Table 1 that the means of C∗
123 and C∗

13 accord each other.
However the variances of C∗

123 are significantly larger than those of C∗
13, in particular
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Table 1 Bootstrap estimates of biases for sample sizes n = 25, 100, 400 and 1,600 when the normal
distribution model is fitted to data generated by a standard normal distribution

n C∗
123 C∗

13 C∗
1 C∗

2 C∗
3 tr( ÎĴ−1)

25 2.227 2.227 0.999 0.000 1.228 1.885

(24.5021) (8.6477) (1.1913) (11.0499) (3.6890) –

(0.2891) (0.2573) (0.0405) (0.0111) (0.1044) (0.1337)

100 2.038 2.037 0.996 0.000 1.041 1.970

(56.63) (4.6681) (1.0425) (48.4716) (1.3379) –

(0.1128) (0.0605) (0.0138) (0.0485) (0.0165) (0.0517)

400 2.008 2.008 0.999 0.000 1.009 1.993

(205.63) (4.1491) (1.0108) (198.34) (1.0730) –

(0.2202) (0.0188) (0.0046) (0.1982) (0.0048) (0.0145)

1600 2.002 2.002 1.000 0.000 1.002 1.998

(804.76) (4.0330) (1.0019) (797.69) (1.0168) –

(0.8099) (0.0077) (0.0019) (0.7989) (0.0019) (0.004)

Table 2 Bootstrap estimates of biases for sample sizes n = 25, 100, 400 and 1,600 when the normal
distribution model is fitted to data generated by Laplace distribution

n C∗
123 C∗

13 C∗
1 C∗

2 C∗
3 tr( ÎĴ−1)

25 3.433 3.433 1.413 0.000 2.020 2.594

(70.1861) (33.6816) (2.7615) (19.9007) (18.8737) –

(3.4377) (3.4018) (0.2929) (0.0199) (1.7401) (0.7692)

100 3.330 3.330 1.597 0.000 1.733 3.165

(137.69) (16.4109) (3.2991) (108.07) (5.3728) –

(1.3325) (1.2095) (0.2453) (0.1082) (0.3668) (0.9892)

400 3.430 3.430 1.700 0.000 1.730 3.402

(502.92) (14.9768) (3.6197) (479.90) (3.9659) –

(1.0015) (0.5133) (0.1252) (0.4806) (0.1316) (0.5150)

1600 3.479 3.479 1.736 0.000 1.743 3.474

(1996.68) (14.6785) (3.6472) (1977.28) (3.7145) –

(2.1575) (0.1760) (0.0440) (1.9757) (0.0440) (0.1650)

for large sample size n. This is due to the properties shown in (50) that the variance of
C∗

2 is proportional to the sample size n, and in this case nEG(x)[{log f (Xn|T (G)) −
EG(z) log f (Z |T (G))}2] = n/2, whereas the variance of C∗

13 is of order O(1) and
converges to a constant as n gets large. It can be also seen that, as n becomes larger,
the bootstrap variances of both C∗

1 and C∗
3 converge to one, the asymptotic variances

of C1 and C3. The variance of C∗
2 is close to n/2 and clearly shows the efficiency of

using C∗
13 instead of C∗

123 in the bootstrap bias estimate.
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Table 3 Bootstrap estimates of biases for sample sizes n = 25, 100, 400 and 1,600 when the normal
distribution model is fitted to data generated by a standard normal distribution and the model parameters
are estimated by a robust procedure

n C∗
123 C∗

13 C∗
1 C∗

2 C∗
3 tr( ÎĴ−1)

25 2.275 2.581 −0.162 −0.306 2.743 1.884

(40.1966) (20.2358) (25.4973) (23.8070) (37.1099) –

(0.8571) (0.7607) (8.3050) (1.0766) (6.5114) (0.1334)

100 2.247 2.248 −0.365 −0.002 2.613 1.970

(74.9426) (11.5065) (16.2370) (57.0646) (26.0014) –

(0.9291) (0.2951) (0.9035) (0.5756) (1.5505) (0.0515)

400 2.008 2.008 −0.195 0.000 2.253 1.992

(203.7201) (4.1176) (9.8470) (204.7648) (13.4178) –

(2.0650) (0.0565) (0.4017) (2.0640) (0.6322) (0.0143)

1600 2.007 2.008 −0.156 0.000 2.163 2.00

(812.2547) (6.7168) (8.6334) (805.2575) (11.0462) –

(0.8347) (0.0343) (0.1515) (0.8059) (0.2343) (0.004)

Two variances in the table are suggestive about the selection of the number of
bootstrap resamplings. For small sample size such as n = 25, the bootstrap variance
8.6477/100 is significantly smaller than the variance of C∗

13 = 0.2573. This means
that the bootstrap resampling over 100 times is not so effective compared with its cost
for small n. On the other hand, for n = 1,600, the bootstrap variances with B = 1,000
still contribute a main part of the variances shown in the third row.

Example 2 (True distribution: Laplace) Table 2 shows the case when the same normal
distribution model is fitted to the data generated from the Laplace distribution

g(x) = 1√
2

exp
{
−√

2|x |
}

, (55)

for which σ 2 = 2, µ4 = 6.

The bootstrap estimates of the bias, C∗
123 and C∗

13 are larger than those of Table 1.
However, this simulation result also shows that the means of C∗

2 are zero and the
variances are proportional to the sample size n. Actually, in this case, the variance of
C∗

2 is evaluated as (µ4/σ
4 − 1)n/4 = 5n/4. It can be seen that for small sample such

as n = 25, the variance of C∗
3 is significantly larger than that of C∗

1 . Also comparing
two variances of C∗

13, we understand that at least for n = 25, the number of boot-
strap resampling B = 100 is already sufficiently large. For large sample sizes such as
n = 400 and 1,600, C∗

1 and C∗
3 are very close each other and C∗

13 yields similar values
as tr( ÎĴ−1).

In both Tables 1 and 2, the maximum likelihood estimators are used for the esti-
mation of the parameters of the model. As shown in the previous section, for this
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situation, the variances of C∗
123 and C∗

2 are of order O(n), whereas those of C∗
1 , C∗

2
and C∗

13 are of order O(1).

Example 3 (Robust estimation) Table 3 shows the case when the parameters of the
normal distribution model, µ and σ , are estimated by using a robust procedure. In
this example, the median µ̂m = medi {Xi } and the median absolute deviation σ̂m =
c−1medi {|Xi − med j {X j }|}, where c = �−1(0.75), are used. To reduce computing
time, S = 100,000 was used for the sample size n = 1,600.

The bootstrap method can be applied to even these types of estimates as well. In
this case, Table 3 shows that C∗

1 and C∗
3 take entirely different values. It is noteworthy,

however, that for large sample cases such as n = 400 and larger, the bias correction
term by AIC (=2) provides an appropriate approximation to the bootstrap bias esti-
mates. This is due to the fact that the asymptotic bias may coincide with the number of
parameters (Konishi and Kitagawa 1996, and page 132 of (2008)). As shown in (52),
although the variances of C∗

1 and C∗
3 are large, variance of C∗

13 is of order O(1) and
thus the variance reduction method is effective even for this situation.

6.2 Higher order bias corrections

In this subsection, we consider the effect of higher-order bias correction for bootstrap
information criteria. To fully understand the results of Monte Carlo study, we shall
use the parameters that can be expressed by statistical functionals and utilize explicit
representations of various bias correction terms.

For a normal distribution model with unknown mean µ and the variance σ 2, the
maximum likelihood estimators are explicitly given by statistical functionals (Konishi
and Kitagawa 2008),

Tµ(G) =
∫

xdG(x), Tσ 2(G) =
∫

(x − Tµ(G))2dG(x). (56)

For these estimators, the functional derivatives are given by

T (1)
µ (x : G) = x − µ, T ( j)

µ (x1, . . . , x j : G) = 0 ( j ≥ 2),

T (1)

σ 2 (x : G) = (x − µ)2 − σ 2, (57)

T (2)

σ 2 (x, y : G) = −2(x − µ)(y − µ), T ( j)
σ 2 (x1, . . . , x j : G) = 0 ( j ≥ 3).

Using these results, the second-order bias correction term and the bias of the first
order bias correction term are explicitly given by

b1(G) = 1

2

(
1 + µ4

σ 4

)
, (58)

b2(G) = 3 − µ4

σ 4 − 1

2

µ6

σ 6 + 4
µ2

3

σ 6 + 3

2

µ2
4

σ 8 , (59)
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Table 4 Bias correction terms and their estimates for normal distribution models

Sample size n 25 50 100 200 400 800

True bias b(G) 2.273 2.128 2.061 2.030 2.015 2.008

b1(G) 2.000 2.000 2.000 2.000 2.000 2.000

b1(G) + n−1b2(G) 2.240 2.120 2.060 2.030 2.015 2.008

b1(Ĝ) 1.884 1.941 1.970 1.985 1.992 1.996

b1(Ĝ) + n−1b2(Ĝ) 2.179 2.079 2.035 2.017 2.008 2.004

b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ)) 2.177 2.103 2.056 2.029 2.015 2.008

2 + n−1b2(Ĝ) 2.294 2.138 2.065 2.031 2.015 2.008

B∗
1 2.217 2.087 2.037 2.017 2.008 2.004

B∗
2 2.255 2.119 2.059 2.030 2.015 2.008

B∗∗
2 2.258 2.110 2.055 2.028 2.014 2.008

B∗
3 2.264 2.126 2.061 2.031 2.015 2.008


b1(G) = 3 − 3

2

µ4

σ 4 − µ6

σ 6 + 4
µ2

3

σ 6 + 3

2

µ2
4

σ 8 , (60)

b2(G) − 
b1(G) = µ4

σ 4 + µ6

σ 6 , (61)

where µ j is the j th central moment of the distribution generating the data.
In the following, we consider two cases where the true distribution generating data

is the standard normal distribution and the Laplace distribution.

Example 4 (True distribution: Normal) If the true distribution is the normal N (0, σ 2),
we have that µ3 = 0, µ4 = 3σ 4 and µ6 = 15σ 6. Therefore in this case, we have

b1(G) = 2,
1

n
b2(G) = 6

n
,

(62)


b1(G) = −3

n
,

1

n
(b2(G) − 
b1(G)) = 9

n
.

Table 4 shows the bias correction term obtained by running Monte Carlo trials
S = 1,000,000 times for six sample sizes, n = 25, 50, 100, 200, 400 and 800, when
the true distribution generating the data is the standard normal distribution N (0, 1).
The b(G) represents the exact bias that can be evaluated analytically as 2n/(n − 3).

In this case, since the model contains the true distribution, the asymptotic bias cor-
rection term b1(G) is identical to the bias correction term of AIC, i.e., the number of
parameters (=2). The second order bias correction term b1(G)+ n−1b2(G)= 2 + 6n−1

gives an extremely accurate approximation to the true bias b(G) except for very small
sample size such as n = 25.

However, it should be noted that, in actual use, the true distribution G or the true
moments µ j are unknown, and we have to estimate them from data. The row indicated
by b1(Ĝ) in Table 4 shows the values of the first order (asymptotic) bias correction
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terms obtained by substituting the sample central moments to Eq. (58). It can be
seen that they underestimate the b1(G). This bias of b1(Ĝ) is clearly explained by
the bias of the first-order bias correction term 
b1(G). Note that in this case, it is
given by 
b1(G) = −3/n and are −0.120, −0.030 and −0.008 for n = 25, 100 and
400, respectively. It can be seen from the table, that the corresponding bias b1(Ĝ) +
n−1b2(Ĝ) has a negative bias and b1(Ĝ)+n−1(b2(Ĝ)+
b1(Ĝ)) yields significantly
better estimates of b1(G) + n−1b2(G) at least for n larger than or equals to 100.
Further, as mentioned in the previous section, in this case where the model contains
the true distribution, the bias correction of AIC attains the exact asymptotic bias cor-
rection term and “the number of parameters” + n−1b2(Ĝ) yields a better estimate
of b1(G) + n−1b2(G) than b1(Ĝ) + n−1b2(Ĝ). This can be checked from the row
indicated by 2 + n−1b2(Ĝ) in Table 4.

The last four rows in Table 4 show the results of bootstrap bias correction. The
notations B∗

1 , B∗
2 and B∗∗

2 represent the bootstrap bias corrections terms obtained by
Eqs. (51), (53) and (54), respectively. As pointed out previously, the bootstrap bias
correction automatically achieves higher-order bias correction and actually it yields
close approximations to the (sample) second order correction term b1(Ĝ)+n−1b2(Ĝ).
From the table, it can be seen that B∗

1 is less biased than b1(Ĝ).
The second-order bootstrap bias correction terms, B∗

2 and B∗∗
2 , obtained by Eqs. (53)

and (54) give close values of b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ)) and the true bias b(G).
It is worth noting that for small sample sizes such as n = 25, 50 and 100, they yield
closer values of the true bias b(G) than b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ)) and even
the b1(G) + n−1b2(G) for some case. It is probably because the third order term
n−2b3(G) is automatically estimated by bootstrapping. Finally, B∗

3 shows the esti-
mates obtained by bootstrapping the second-order bias corrected log-likelihood using
b1(Ĝ)+ n−1(b2(Ĝ)−
b1(Ĝ)). We anticipated that it yields an estimate of the third-
order bias correction term. Actually, very good estimates of the true bias are obtained
even for smaller sample sizes.

Example 5 (True distribution: Laplace) We consider the case when the true distribu-
tion is the Laplace distribution (two-sided exponential distribution),

g(x) = 1

2
exp(−|x |). (63)

In this case, the central moments are µ3 = 0, µ4 = 6, µ6 = 90, and the bias correction
terms are given by

b1(G) = 7

2
, b1(G) + 1

n
b2(G) = 7

2
+ 6

n
,

(64)


b1(G) = −42

n
, b1(G) + 1

n
(b2(G) − 
b1(G)) = 7

2n
+ 48

n2 .

Different from the case of normal distribution, the bias of b1(G), 
b1(G), is very
large and is seven times of the second-order bias correction term b2(G). Therefore, in
general, it would be meaningless to correct for only b2(G).
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Table 5 Bias correction terms and their estimates for Laplace distribution models

Sample size n 25 50 100 200 400 800

True bias b(G) 3.875 3.661 3.572 3.533 3.515 3.508

b1(G) 3.500 3.500 3.500 3.500 3.500 3.500

b1(G) + n−1b2(G) 3.740 3.620 3.560 3.530 3.515 3.508

b1(Ĝ) 2.594 2.929 3.166 3.313 3.402 3.449

b1(Ĝ) + n−1b2(Ĝ) 3.296 3.310 3.343 3.386 3.431 3.460

b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ)) 3.283 3.434 3.494 3.507 3.509 3.505

B∗
1 3.433 3.301 3.332 3.383 3.430 3.460

B∗
2 3.650 3.511 3.505 3.505 3.507 3.504

B∗∗
2 3.608 3.513 3.490 3.494 3.501 3.501

B∗
3 3.767 3.596 3.553 3.526 3.515 3.507

Table 5 shows the true bias and various bias correction terms for six sample sizes,
n = 25, 50, 100, 200, 400 and 800. The true biases b(G) are estimated by conducting
S = 100,000,000 Monte Carlo simulations.

The asymptotic correction term is b1(G) = 3.5 and the second-order correction
term b1(G)+n−1b2(G) yields relatively good approximations to b(G). However, their
estimates b1(Ĝ) and b1(Ĝ) + n−1b2(Ĝ) have significant biases because of the large
value of the bias of the asymptotic bias estimate b1(Ĝ), 
b1(G) = −42/n. In fact,
the bias-corrected second-order bias correction term b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ))

yields fairly accurate approximations to the true bias. From the table, we also notice
that while the correction with 
b1(G) significantly improves the estimates for n = 50
or larger, it is virtually useless when n = 25. This is probably due to a poor estimation
accuracy on the first-order corrected bias and seems to indicate a limitation of the
analytic second-order bias correction.

In this case the bootstrap estimate B∗
1 also gives a better approximation to the bias

b(G) than does b(Ĝ) and is actually close to the bias-unadjusted second-order bias
correction term b1(Ĝ) + n−1b2(Ĝ) except for n = 25. B∗

2 and B∗∗
2 are second-order

bootstrap bias correction terms by (53) and (54). They yield fairly good approxi-
mation to the second-order bias b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ)) for sample sizes
larger than or equal to 100. However, for n = 25 and 50, B∗

2 and B∗∗
2 yield rather

better approximations of the true bias b(G) than b1(Ĝ) + n−1(b2(Ĝ) − 
b1(Ĝ)).
Finally, B∗

3 , obtained by bootstrapping the second-order bias corrected log-likelihood,
yields closer estimates of the true bias b(G) than the second order corrected terms B∗

2
and B∗∗

2 .
A comment on the bootstrapping with small sample sizes, such as n = 25 or smaller,

will be in order here. In such cases, there is a positive probability of obtaining boot-
strap samples with variance 0 or very small compared with the original sample that
may cause unexpectedly large bias estimate. Therefore, in obtaining the bootstrap
bias correction term for small sample sizes, we have to set a threshold to exclude such
pathological cases.
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7 Summary and conclusions

Statistical properties of the bootstrap bias correction terms used for defining the boot-
strap information criteria are analyzed based on the statistical functional approach.
Various bias and variance reduction methods for the bias correction terms are consid-
ered in details both theoretically and by simulation study.

It was shown that

(1) The variance reduction method can remove the dominant O(n−1) bootstrap sam-
pling error. This method can be applied to any types of models and estimation
procedures and increases the accuracy of the bootstrap bias correction term, in
particular for large sample size.

(2) In actual estimation, the simple second-order bias correction cannot eliminate the
second-order bias entirely and we need a correction for the bias of the first-order
bias correction term.

(3) Bootstrap bias correction term automatically performs the higher-order bias cor-
rection. However, it also suffers from the bias of the first-order bias correction
term. This bias also can be removed by bootstrapping first-order corrected log-
likelihood or by double bootstrapping. By the Monte Carlo study, it was shown
that the first-order and second-order bootstrap bias corrections outperform the
first and second order analytic bias corrections, respectively.

From these analysis, it can be concluded that the proposed bias and variance reduction
methods are quite effective in computing the bootstrap information criterion.

Acknowledgments We would like to thank the reviewer for careful reading and helpful comments that
improved the quality of this paper considerably.

Appendix: Derivation of the variances of the bias correction terms

In this subsection we briefly review the evaluation of the first order bias term used for
the derivation of GIC. Assume that the estimator θ̂p of θ = (θ1, . . . , θm) is defined by
θ̂p = Tp(Ĝ). Then the Taylor series expansion for θ̂p = Tp(Ĝ) up to order n−1 is,

θ̂p =Tp(G) + 1

n

n∑
α=1

T (1)
p (Xα; G) + 1

2n2

n∑
α=1

n∑
β=1

T (2)
p (Xα, Xβ; G) + o(n−1), (65)

where T ( j)
p is defined as symmetric functions such that, for any arbitrary distribution

H ,

d j

dε j
Tp{(1 −ε)G + εH} =

∫
· · ·

∫
T ( j)

p (x1, . . . , x j ; G)

×
j∏

i=1

d{H(xi )−G(xi )}, (66)
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at ε = 0 and for any i such that 1 ≤ i ≤ j ,∫
T ( j)

p (x1, . . . , x j ; G)dG(xi ) = 0. (67)

Expanding
∫

log f (y|θ̂ )dG(y) in a Taylor series around θ = T (G) = (T1(G), . . . ,

Tm(G)),∫
log f (y|θ̂ )dG(y) =

∫
log f (y|T (G))dG(y)

+
m∑

p=1

(θ̂p − Tp(G))

∫
∂

∂θp
log f (y|T (G))dG(y)

+1

2

m∑
p=1

m∑
q=1

(θ̂p − Tp(G))(θ̂q − Tq(G))

×
∫

∂2

∂θp∂θq
log f (y|T (G))dG(y) + o(n−1). (68)

For simplicity, hereafter we shall use the following notations:

T (1)
pα = T (1)

p (Xα; G), T (2)
pαβ = T (2)

p (Xα, Xβ; G)

S(2)
p =

∫
T (2)

p (x, x; G)dG(x), S(11)
pq =

∫
T (1)

p (x; G)T (1)
q (x; G)dG(x)

f (1)
pα = ∂ log f (Xα; G)

∂θp
, f (2)

pqα = ∂2 log f (Xα; G)

∂θp∂θq
, (69)

F (1)
p =

∫
∂ log f (y; G)

∂θp
dG(y), F (2)

pq =
∫

∂2 log f (y; G)

∂θp∂θq
dG(y).

Note that F (2)
pq = −J (G). Further, in the following expressions, we omit the symbol

of summation and assume that we will always take summation over all subscripts;
from 1 to n for Greek subscripts and from 1 to m for Roman subscripts. For example,
T (1)

pα T (1)
qβ f (2)

pqγ means

m∑
p=1

m∑
q=1

n∑
α=1

n∑
β=1

n∑
γ=1

T (1)
pα T (1)

qβ f (2)
pqγ .

Then substituting (68) into (48), the difference between the expected log-
likelihoods, D3(G) is expressed as follows:

D3(G) =
∫

log f (z|T (G))dG(z) −
∫

log f (z|θ̂ )dG(z)

= −1

n
T (1)

pα F (1)
p − 1

2n2

(
T (2)

pαβ F (1)
p + T (1)

pα T (1)
qβ F (2)

pq

)
+ o

(
n−1

)
, (70)
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Similarly the expansion for the difference between the log-likelihoods is given by

D1(G) = 1

n

n∑
α=1

log f (Xα|θ̂ ) − 1

n

n∑
α=1

log f (Xα|T (G))

= 1

n2 T (1)
pα f (1)

pβ + 1

2n3

(
T (2)

pαβ f (1)
pγ + T (1)

pα T (1)
qβ f (2)

pqγ

)
+ o

(
n−1

)
. (71)

Taking expectation term by term yields

EG[D1(G)] = 1

n

(
1

n

∫
T (1)

pα f (1)
pα dG(z) + 1

2
S(2)

p F (1)
p + 1

2
tr{S(11)

pq F (2)
pq }

)
+ o(n−1),

(72)

EG[D3(G)] = − 1

2n

(
S(2)

p F (1)
p + tr{S(11)

pq F (2)
pq }

)
+ o(n−1), (73)

and we obtain

b1(G) = E[D(G)] = E[D1(G)] + E[D3(G)]

= 1

n2

∫
T (1)

pα f (1)
pα dG(z) + o(n−1). (74)

Since {EG[D1(G)]}2 = O(n−2) and {EG[D3(G)]}2 = O(n−2),

Var(D3(G)) = EG[{D3(G)}2] + O(n−2)

= EG

[{
1

n
T (1)

pα F (1)
p + 1

2n2 T (2)
pαβ F (1)

p + 1

2n2 T (1)
pα T (1)

pβ F (2)
pq

}2
]

+ O(n−2)

= EG

[
1

n2 T (1)
pα T (1)

qβ F (1)
p F (1)

q + 1

4n4 T (2)
pαβ T (2)

qεδ F (1)
p F (1)

q

+ 1

4n4 T (1)
pα T (1)

pβ T (1)
rε T (1)

rδ F (2)
pq F (2)

rs + 1

n3 T (1)
pα T (2)

qεδ F (1)
p F (1)

q

+ 1

n3 T (1)
pα T (1)

qβ T (1)
γ ε F (1)

p F (2)
qr + 1

2n4 T (2)
pαβ T (1)

qε T (1)
qδ F (1)

p F (2)
qr

]
+ O(n−2)

= 1

n

{
F (1)

p S(11)
pq F (1)

q

}
+ O(n−2). (75)
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Hereafter, we shall consider the main terms of the Var(D3(G)), Var(D1(G)) and
Var(D(G)).

Var(D1(G)) = EG[{D1(G)}2] + O(n−2)

= EG

[{
1

n2 T (1)
pα f (1)

pβ + 1

2n3

(
T (2)

pαβ f (1)
pβ +T (1)

pα T (1)
qβ f (2)

pqγ

)}2
]

+ O(n−2)

= EG

[
1

n4 T (1)
pα T (1)

qβ f (1)
pγ f (1)

pδ + 1

4n6 T (2)
pαβ T (2)

qγ δ f (1)
pβ f (1)

qδ

+ 1

4n6 T (1)
pα T (1)

qβ T (1)
rγ T (1)

sδ f (2)
pqε f (2)

rsη + 1

n5
T (1)

pα T (2)
qαγ f (1)

pβ f (1)
pδ

+ 1

n5
T (1)

pα T (1)
qγ T (1)

rδ f (1)
pβ f (2)

qrε + 1

2n6 T (1)
pα T (1)

qβ T (2)
rδε f (1)

rε f (2)
pqγ

]
+ O(n−2)

= 1

n

{
F (1)

p S(11)
pq F (1)

q

}
+ O(n−2). (76)

Therefore, the mean and the variance of D1(G) + D3(G) are given by

E[D1(G)+ D3(G)] = E[D1(G)] + E[D3(G)]
= 1

n

∫
T (1)

pα f (1)
pα dG(x) + o(n−1) (77)

Var{D1(G) + D3(G)} = E

{(
1

n2 T (1)
pα f (1)

pβ − 1

n
T (1)

pα F (1)
p

)

+
(

1

2n3 T (2)
pαβ f (1)

pγ − 1

2n2 T (2)
pαβ F (1)

p

)

+
(

1

2n3 T (1)
pα T (1)

qβ f (2)
pqγ − 1

2n2 T (1)
pα T (1)

qβ F (2)
pq

)}2

+ O(n−2)

= O(n−2). (78)

On the other hand, from

D2(G) = 1

n

∑
α

log f (Xα|T (G)) −
∫

log f (x |T (G))dG(x), (79)

it is obvious that the mean and variance of D2(G) are given by

E[D2] = 0 (80)

Var{D2} = 1

n
Var(log f (X |T (G)))

= 1

n
EG(x)

[{
log f (X |T (G)) − EG(y)[log f (Y |T (G))]}2

]
. (81)
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