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Summary

Suppose we are interested in the effect of a binary treatment on an outcome where that
relationship is confounded by an ordinal confounder. We assume that the true confounder is not
observed, rather we observe a nondifferentially mismeasured version of it. We show that under
certain monotonicity assumptions about its effect on the treatment and on the outcome, an effect
measure controlling for the mismeasured confounder will fall between its corresponding crude and
the true effect measures. We present results for coarsened, and, under further assumptions, for
multiple misclassified confounders.
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1. Introduction

Accurately measuring and adjusting for confounders is a crucial step in every observational
study. Confounder measurement error is a pervasive problem that plagues such studies and
has been studied extensively (Ahlbom & Steineck, 1992; Carroll et al., 2006; Greenland,
1996, 2004, 2005; Gustafson, 2004; Kelsey, 1996; Lash & Fink, 2003; Rothman et al., 2008;
Stefanski & Carroll, 1985; Willett, 1989). In this paper we focus on the nondifferential
misclassification of polytomous confounders in studies of the effect of a binary treatment.
Greenland (1980) argued that adjustment by a binary nondifferentially misclassified
confounder gives a partially adjusted measure of effect, reducing but not eliminating the bias
due to the confounder and therefore producing a partially adjusted effect measure that falls
between the crude, unadjusted measure and the true measure, which is adjusted by the true
confounder. We hereafter refer to this as the partial control result. Ogburn & VanderWeele
(2012) gave a counterexample to the partial control result for binary confounders and proved
that the result holds under certain conditions. Brenner (1993) proved by counterexample that
adjustment by a nondifferentially misclassified polytomous confounder may induce greater
bias than failing to adjust for the confounder at all, or it may change the direction of the bias.

To our knowledge, no analytic results exist in the literature characterizing the bias due to
adjustment by a polytomous confounder subject to nondifferential misclassification. We
present assumptions under which the partial control result holds for polytomous confounders
for both the average treatment effect and the treatment effect among the treated. Our
remarks and results apply equally to effects on the mean difference, mean ratio and odds
ratio scales.
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2. Background and Notation

Let A be an indicator of treatment or exposure and Y an outcome, and suppose that the
effect of A on Y is confounded by an ordinal confounder C with levels 1, …, K. We assume
that C is unobserved and that C′, an imperfect measure of C, is observed instead, where C′
is determined by the misclassification probabilities pij = pr(C′ = i | C = j), i, j ∈ {1, …, K}.

Then . We assume throughout that the misclassification of C is
nondifferential with respect to A and Y. That is, we assume that pr (C′ = c′ | C = c, Y = y, A
= a) = pr (C′ = c′ | C = c, Y = y′, A = a′) for all y, y′ in the support of Y and all a, a′ in the
support of A. If pij ≤ pik and pji ≤ pki for j < k < i, and if pil ≥ pim and pli ≥ pmi for i < l < m,
then we say that that the misclassification probabilities are tapered. Roughly, this means that
the probability of correct classification is at least as big as the probability of
misclassification into any one level, and that for a fixed level i of either C or C′ the
misclassification probabilities are nonincreasing in each direction away from i. Requiring
tapered misclassification probabilities is a weaker condition than requiring pij to be
decreasing in the distance between i and j. We begin by assuming that C is the only
confounder of the effect of A on Y, so that adjustment by C allows for the identification of
the true effect. Figure 1 depicts the relationships among the variables. We discuss
generalizations allowing for multiple confounders and for coarsened confounders further
below.

Let Y1 be the counterfactual outcome under treatment A = 1, that is, the outcome we would
have observed if, possibly contrary to fact, a subject had received treatment A = 1. Let Y′ be
the counterfactual outcome under treatment A = 0. We make the consistency assumption
that Ya = Y whenever A = a. The true effect measures are formulated in terms of the
distributions of these counterfactuals, for example the true risk difference for binary Y is
RDtrue ≡ E (Y1) − E (Y0). For no subject do we observe both Y1 and Y0; we observe only
the counterfactual corresponding to the subject’s actual treatment. But within levels of C
subjects are effectively randomized with respect to treatment, by the assumption that C is the
sole confounder, so E (Y1 | A = 0, C = c) = E (Y1 | A = 1, C = c) = E (Y | A = 1, C = c).
Therefore both E (Y1) and E (Y0) can be calculated by standardizing by C:

(1)

The corresponding expression standardized by C′ instead of C is

(2)

We will call effect measures that adjust for C′ observed adjusted measures (Brenner, 1993),
those that adjust for C true, and those that collapse over C crude. The observed adjusted
measures are formulated in terms of the means standardized by C′, for example the
observed adjusted risk difference is RDobs ≡ EC′ (Y | A = 1) − EC′ (Y | A = 0), and the
crude measures are formulated in terms of the unstandardized conditional means, for
example RDcrude ≡ E (Y | A = 1) − E (Y | A = 0).

We present analytic results comparing observed adjusted effect measures to the
corresponding true and crude measures. Our results hold for any effect measure that can be
written as h[g{E (Y1)} − g{E (Y0)}] where g and h are monotonic functions. For example,
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for the effect on the mean difference scale g and h are the identity function, for the effect on
the mean ratio scale g is the logistic function and h the exponential function, and for the
odds ratio g is the logit function and h the exponential function.

Our results hold also for measures of the treatment effect among the treated, and, by
symmetry, among the untreated, which are defined analogously to the general treatment
effect measures above but restricted to the subpopulation of subjects with A = 1. We will
denote such measures with a superscript T. For example, the true treatment effect among the

treated on the risk difference scale for binary Y is , where, if
C is the only confounder, E (Ya | A = 1) = Σc E (Y | A = a, C = c) pr (C = c | A = 1) is the
mean of Y given A = a standardized by the distribution of C among the treated. We define
the analogous observed adjusted expressions as EC′|A=1 (Y | A = a) ≡ Σc E (Y | A = a, C′ =
c) pr (C′ = c | A = 1), which is the mean of Y given A = a standardized by the distribution of
C′ among the treated. Then the observed adjusted treatment effect among the treated on the

mean difference scale is . The crude correlates of the
mean outcomes among the treated are simply E (Y | A = 1) and E (Y | A = 0), because the
premise of the crude calculations is that the effect of A on Y is unconfounded and therefore
the mean counterfactual outcome for the treated had they not received treatment simply
equals the observed mean outcome among the untreated.

3. Results

3·1. Main Result

If E (Y | A = a, C = i) ≤ E (Y | A = a, C = j) for all i < j and for both a = 0 and a = 1, then we
say that E (Y | A, C) is nondecreasing in C. If E (Y | A = a, C = i) ≥ E (Y | A = a, C = j) for
all i < j and for both a = 0 and a = 1 then we say that E (Y | A, C) is nonincreasing in C. If E
(Y | A, C) is either nonincreasing or nondecreasing in C then it is monotonic in C. Similarly,
if E (A | C) is either nonincreasing or nondecreasing in C then it is monotonic in C.
Monotonicity of E (Y | A, C) in C requires the outcome to exhibit a dose response to the
confounder, or, in the degenerate case of no confounding by C, to be unaffected by it. It also
requires the confounder to affect the outcome in the same direction among the treated and
untreated. If C has a protective effect among one treatment group and a harmful effect
among the other then monotonicity of E (Y | A, C) will be violated.

Our first result says that, under monotonicity, the partial control result holds for an ordinal
confounder of the effect of A on Y. Proofs of all results are given in the Appendix.

Theorem 1—Let A be binary, and let C be ordinal and nondifferentially misclassified with

respect to A and Y and with tapered misclassification probabilities. Suppose that E (Y | A,
C) and E (A | C) are monotonic in C. Then the observed adjusted average treatment effect
and the observed adjusted effect of treatment on the treated will be between the
corresponding true and crude effects for any effect measure that can be written as h[g{E
(Y1)} − g{E (Y0)}] where g and h are monotonic functions.

If C is binary then monotonicity of E (A | C) holds by default and need not be assumed, and
furthermore the assumption of tapered misclassification probabilities is not required for the
partial control result to hold. When C is binary, the partial control result for the average
treatment effect requires the assumption that E (Y | A, C) is monotonic in C, but the result
for the effect of treatment on the treated requires no monotonicity assumptions (Ogburn &
VanderWeele, 2012).
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For C with at least three levels counterexamples are easily constructed to show that for both
the average treatment effect and the treatment effect on the treated, if either E (Y | A, C) or
E (A | C) is not monotonic in C, then the observed adjusted effect need not lie between the
crude and the true effects. Table 1 gives a counterexample for the average treatment effect
and the treatment effect on the treated when E (Y | A, C) is monotonic in C but E (A | C) is
not. The full data is represented by the true 2 × 2 × 3 table in the middle, the crude data are
collapsed over C, and the observed 2 × 2 × 3 table was generated from the true one by the
tapered misclassification probabilities pr (C′ = 1 | C = 1) =1·0, pr (C′ = 2 | C = 1) = pr (C′ =
3 | C = 1) = 0, pr (C′ = 1 | C = 2) = 0, pr (C′ = 2 | C = 2) =0·6, pr (C′ = 3 | C = 2) =0·4, pr (C
′ = 1 | C = 3) = 0, pr (C′ = 2 | C = 3) =0·4, and pr (C′ = 3 | C = 3) =0·6. Monotonicity holds
for E (Y | A, C) because E (Y | A = 1, C = c) and E (Y | A = 0, C = c) are both
nondecreasing in c: E (Y | A = 1, C = 1) =0·83 and E (Y | A = 1, C = 2) = E (Y | A = 1, C =
3) =0·85, while E (Y | A = 0, C = 1) = E (Y | A = 0, C = 2) =0·33 and E (Y | A = 0, C = 3)
=0·83. On the other hand, E (A | C) is not monotonic in C: E (A | C = 1) =0·71, E (A | C = 2)
=0·30, and E (A | C = 3) =0·81. Instead of following the partial control ordering, the
observed adjusted measure is greater than the crude, which is greater than the true measure
on all three scales, for both the average treatment effect and the effect of treatment on the
treated. The observed adjusted effect measures exhibit more bias than do the crude effect
measures.

In the online supplement we provide two additional counterexamples: one in which the
misclassification probabilities are tapered and E (A | C) is monotonic but E (Y | A, C) is not,
and another in which E (A | C) and E (Y | A, C) are both monotonic but the misclassification
probabilities are not tapered.

Suppose that instead of observing C with nondifferential error we observe a coarsening of C.
We have the following analogous result:

Theorem 2—Let A be binary and C ordinal and coarsened such that C′ = j if kj ≤ C ≤ lj for

kj, lj ∈ (1, …, K) and j ∈ (1, …, L) for some L < K. If E (Y | A, C) and E (A | C) are
monotonic in C, then the observed adjusted average treatment effect and the observed
adjusted effect of treatment on the treated will be between the corresponding true and crude
effects for any effect measure that can be written as h[g{E (Y1)} − g{E (Y0)}] where g and
h are monotonic functions.

The full data given in Table 1 serve as a counterexample to Theorem 2 when the
monotonicity assumption is violated if, instead of mismeasuring the true C we dichotomize
it by letting C′ = 1 if C = 1 and C′ = 2 if C > 1. Then the true and crude data and effect
measures will remain the same as in Table 1; the new observed data and effect measures are
given in Table 2. Again the observed adjusted measure is greater than the crude which is
greater than the true measure on all three scales, for both the average treatment effect and
the effect of treatment on the treated.

All our results hold for Y binary, ordinal or continuous, as none of the proofs depend on the
distribution of Y. Because these results are entirely nonparametric, they apply to any
estimators with probability limits given by the analytic expressions in (1) and (2), for
example to regression, propensity score weighting methods, and inverse probability
weighting methods. The results also hold for the ordering of contrasts of E (Y | A = a),
contrasts of the analytic expression given in (1), and contrasts of the analytic expression

given in (2), even when  is not equal to E (Ya), for example if
there are unmeasured confounders of the effect of A on Y in addition to C.
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3·2. Extensions

If C is categorical rather than ordinal, then Theorem 1 will hold if any ordering of C can be
found such that E (Y | A, C) and E (A | C) are monotonic in C and if the misclassification
probabilities are tapered with respect to that ordering. Theorem 2 will hold if C is coarsened
with respect to the monotonic ordering.

All results may be extended to effects conditional on additional covariates X, provided that
the misclassification of C is tapered and nondifferential with respect to A and Y conditional
on X and that E (Y | A, C, X = x) and E (A | C, X = x) are monotonic in C for each value x
in the support of X. This extension is immediate because under these provisions our proofs
hold conditional on X. Furthermore, if E (Y | A, C, X) and E (A | C, X) are monotonic in C,
that is, if E (Y | A = a, C = c, X = x) is nonincreasing in c for all a and for all x or is
nondecreasing in c for all a and for all x, and E (A | C = c, X = x) is either nonincreasing in c
for all x or is nondecreasing in c for all x, then the ordering of the crude, observed adjusted,
and true effects will be the same in each level of X and therefore the results will also hold
standardized over X.

In some settings we may also extend our results to scenarios with multiple misclassified
confounders.

Theorem 3—Let C be a vector of ordinal confounders, C = (C1, …, Cm). If the

components of C are mutually independent; if for each i ∈ {1, …, m} Ci is nondifferentially
misclassified with respect to A, Y, and Cj for j ≠ i with tapered misclassification
probabilities or if Ci is coarsened; and if E (A | C) and E (Y | A, C) are monotonic in each
component of C, then the observed adjusted average treatment effect and the observed
adjusted effect of treatment on the treated will be between the corresponding crude and true
effects for any effect measure that can be written as h[g{E (Y1)} − g{E (Y0)}], where g and
h are monotonic functions.

4. Discussion

The results in this paper imply that when the effects of an ordinal confounder on the
treatment and on the outcome are both monotonic, bias will be reduced by adjusting for a
coarsened or nondifferentially misclassified confounder with tapered misclassification
probabilities. In the absence of monotonicity, adjusting for a misclassified or coarsened
confounder may increase bias. Future work is needed to determine how often the
assumptions of monotonicity will be violated in practice, and how often such violations will
lead to violations of the partial control result. These results are important because the use of
proxy or misclassified confounders is common in practice and because misclassification of
confounders is nearly impossible to rule out.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

In order to prove each result we must show that the conditions of Lemma 1 hold; Lemmas 2
through 5 will help establish this in the various cases. The proofs of all lemmas are given in
the online supplement.

Lemma 1

If E (Y | A = 1) ≥ EC′ (Y | A = 1) ≥ E (Y1) and E (Y | A = 0) ≤ EC′ (Y | A = 0) ≤ E (Y0), or
if E (Y | A = 1) ≤ EC′ (Y | A = 1) ≤ E (Y1) and E (Y | A = 0) ≥ EC′ (Y | A = 0) ≥ E (Y0), then
the observed adjusted effect falls between the crude and true effects for any effect measure
that can be written as h[g{E (Y1)} − g{E (Y0)}] where g and h are monotonic functions.

Lemma 2

If E (Y | A, C) and E (A | C) are either both nonincreasing or both nondecreasing in C, then
E (Y | A = 1) ≥ E (Y1) and E (Y | A = 0) ≤ E (Y0). If one of E (Y | A, C) and E (A | C) is
nonincreasing and the other nondecreasing in C, then E (Y | A = 1) ≤ E (Y1) and E (Y | A =
0) ≥ E (Y0).
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Lemma 3

Suppose C is nondifferentially misclassified with respect to A and Y. If E (Y | A, C) and E
(A | C) are both nondecreasing or both nonincreasing in C, then EC′ (Y | A = 1) ≥ E (Y1) and
EC′ (Y | A = 0) ≤ E (Y0). If one of E (Y | A, C) and E (A | C) is nondecreasing and the other
nonincreasing in C, then EC′ (Y | A = 1) ≤ E (Y1) and EC′ (Y | A = 0) ≥ E (Y0).

Lemma 4

Suppose C is nondifferentially misclassified with respect to A and Y with tapered
misclassification probabilities. If E (Y | A, C) and E (A | C) are both nondecreasing or both
nonincreasing in C, then EC′ (Y | A = 1) ≤ E (Y | A = 1) and EC′ (Y | A = 0) ≥ E (Y | A = 0).
If one of E (Y | A, C) and E (A | C) is nondecreasing and the other nonincreasing in C, then
EC′ (Y | A = 1) ≥ E (Y | A = 1) and EC′ (Y | A = 0) ≤ E (Y | A = 0).

Lemma 5

Suppose that A is binary and C ordinal and coarsened. If E (Y | A, C) and E (A | C) are both
nondecreasing or both nonincreasing in C, then E (Y | A = 1) ≥ EC′ (Y | A = 1) ≥ E (Y1) and
E (Y | A = 0) ≤ EC′ (Y | A = 0) ≤ E (Y0). If one of E (Y | A, C) and E (A | C) is
nonincreasing and the other nondecreasing, then E (Y | A = 1) ≤ EC′ (Y | A = 1) ≤ E (Y1)
and E (Y | A = 0) ≥ EC′ (Y | A = 0) ≥ E (Y0).

Proof of Theorem 1

For the average treatment effect, Lemmas 2–4 establish the conditions of Lemma 1 and the
proof of Theorem 1 follows from that lemma. The condition of tapered misclassification
probabilities is required for Lemma 4, describing the relation between observed adjusted and
the crude expectations, but not for Lemma 3, describing the relation between the observed
adjusted and the true expectations. For the effect of treatment on the treated, we will argue
that, under monotonicity, EC′ |A=1 (Y | A = 0) lies between E (Y0 | A = 1) and E (Y | A = 0).
This, together with the fact that E (Y1 | A = 1) = EC′ |A=1 (Y | A = a) = E (Y | A = 1) when C
is the only confounder of the relationship between A and Y, proves the result.

Because E (Y | A = 0) does not depend on the distribution of C, and because pr (C′ = i | C =
j, A = 1) = pij by the assumption of nondifferential misclassification, we can replace the
marginal distribution of C with the conditional distribution of C given A = 1 in the proof of
Theorem 1 to prove that the same relationships must hold among EC′ |A=1 (Y | A = 0), E (Y0

| A = 1), and E (Y | A = 0) as hold among EC′ (Y | A = 0), E (Y0), and E (Y | A = 0).
Therefore EC′|A=1 (Y | A = 0) lies between E (Y0 | A = 1) and E (Y | A = 0).

Proof of Theorem 2

Lemma 5 establishes the conditions of Lemma 1 and the proof of Theorem 2 for the average
treatment effect follows from that lemma. The proof for the effect of treatment on the treated
is analogous to the proof of Theorem 1 applied to the effect of treatment on the treated.

Proof of Theorem 3

Let  be the vector of observed, misclassified variables. Let  be

the expected value of Y given A standardized by C′, let  be the expected value

of Y given A standardized by the true C1 and the mismeasured  for i = 2, …, m, and let
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 be the expected value of Y given A collapsed over C1 and standardized by 

for i = 2, …, m. Likewise for , etcetera.

Because the components of C are mutually independent, E (Y | A, Ci) is monotonic in Ci for
i = 1, …, m. Then

(A1)

by the monotonicity of E (Y | A, C1) in C1 and because our results hold for C1 standardized

by covariates . In order for the standardized result to hold, the misclassification of

C1 must be tapered and nondifferential with respect to A and Y conditional on ,

and  and  must both be monotonic in C1. These
two conditions hold by the assumptions of mutually independent components of C and
mutually independent misclassification mechanisms. Similarly,

(A2)

by monotonicity and because our results hold standardized by  and marginalized
over C1. Again, the standardized and marginalized results hold by our assumptions of
mutually independent components and errors for C.

By the same argument as above,

(A3)

The result holds for C2 standardized by C1 and . Combining (A1), (A2), and (A3)
gives us

(A4)

where in each line the first inequality follows from (A3) and (A1), the second inequality
follows from (A1), and the third inequality follows from (A2).

Now we need

(A5)

Repeating the argument for (A3) gives us
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(A6)

which, combined with (A4) gives us the first inequalities in (A5). Repeating the argument
for (A2) gives us

(A7)

from which the second inequalities in (A5) follow.

Iterating this argument K − 3 more times, we find that

from which it follows that the observed adjusted effect is between the crude and the true
effects.

The proofs for the effect of treatment on the treated and for coarsened rather than
misclassified C′ are analogous.
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Fig. 1.
Relations among treatment A, outcome Y, confounder C, and an imperfect measure C′ of C
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