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Abstract

Face Recognition (FR) is increasingly influencing our lives: we use it to unlock our phones; police uses it to identify sus-
pects. Two main concerns are associated with this increase in facial recognition: (1) the fact that these systems are typically 
less accurate for marginalized groups, which can be described as “bias”, and (2) the increased surveillance through these 
systems. Our paper is concerned with the first issue. Specifically, we explore an intuitive technique for reducing this bias, 
namely “blinding” models to sensitive features, such as gender or race, and show why this cannot be equated with reducing 
bias. Even when not designed for this task, facial recognition models can deduce sensitive features, such as gender or race, 
from pictures of faces—simply because they are trained to determine the “similarity” of pictures. This means that people 
with similar skin tones, similar hair length, etc. will be seen as similar by facial recognition models. When confronted with 
biased decision-making by humans, one approach taken in job application screening is to “blind” the human decision-makers 
to sensitive attributes such as gender and race by not showing pictures of the applicants. Based on a similar idea, one might 
think that if facial recognition models were less aware of these sensitive features, the difference in accuracy between groups 
would decrease. We evaluate this assumption—which has already penetrated into the scientific literature as a valid de-biasing 
method—by measuring how “aware” models are of sensitive features and correlating this with differences in accuracy. In 
particular, we blind pre-trained models to make them less aware of sensitive attributes. We find that awareness and accuracy 
do not positively correlate, i.e., that bias ≠ awareness. In fact, blinding barely affects accuracy in our experiments. The seem-
ingly simple solution of decreasing bias in facial recognition rates by reducing awareness of sensitive features does thus not 
work in practice: trying to ignore sensitive attributes is not a viable concept for less biased FR.
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1 Introduction

FR has improved considerably and constantly over the last 
decade [1–4], giving rise to numerous applications ranging 
from services on mobile consumer devices to the use by law 
enforcement agencies [5–7]. The increased deployment has 
triggered an intense debate on the dangers of the pervasive 
use of biometrics [8–11] up to the point where regulation 
[12] and bans on the technology are discussed [13] and par-
tially enforced [14, 15]. Several civil rights groups oppose 
facial recognition tools as they can easily be used for mass 
surveillance [13].

Besides these fears of surveillance, another critical issue 
is that facial recognition tools have been shown to perform 
at different levels of accuracy depending on which socio-
demographic group a subject belongs to. In a seminal study 
of commercial face recognition software, Buolamwini and 
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Gebru [16] showed that these tools tend to misclassify 
darker-skinned women more often than lighter-skinned 
men. As face recognition is increasingly relied on to grant 
individuals access to services and locations, and to predict 
people’s behavior, bias against certain socio-demographic 
groups easily results in these groups being more likely to be 
excluded from such services and locations. Bias becomes 
even more problematic when FR is used to identify suspects 
in a crime. When the FR algorithm misidentifies a person, 
this can have severe consequences: the misidentified person 
might unjustly be investigated or even charged with a crime 
they did not commit (as in the case of an American univer-
sity student who was wrongly accused of terrorism by Sri 
Lankan police [17] or in the case of a black man who was 
wrongfully arrested in Michigan [18]).

Hence, the different levels of accuracy can be understood 
as an issue of bias: we expect FR to show approximately 
equal levels of accuracy for all socio-demographic groups 
and call it “biased” if it does not. One reason for the unequal 
levels of accuracy in FR is that the huge diversity in the 
appearance of human faces is not properly represent in the 
data used to train such models. Existing datasets tend to 
overrepresent lighter-skinned male faces, while other socio-
demographic groups are underrepresented [16]. While bias 
also occurs when humans are the ones responsible for rec-
ognizing faces, the issue is more severe when conducted by 
machines as algorithmic decisions scale in speed, extent, 
and scope.

When one wants to avoid biased decisions made by 
humans, a standard approach is to make sensitive attrib-
utes unavailable. An every-day example are resumes: in 
the US, age and gender information as well as images 
are omitted in resumes. If the recruiters in charge are 
not aware of ethnicity, gender, and age—so the thinking 
goes—then decisions made by them cannot be biased by 
these sensitive features. Such biases could lead to strong 
candidates being wrongfully omitted. Ignorance of sensi-
tive attributes is thus seen as a way of finding better can-
didates while mitigating discrimination. The methodology 
of being blind toward sensitive features is not new: As the 
“veil of ignorance,” it is part of John Rawls’s influential 
book “A Theory of Justice” (1971) [19] which deals with 
the political philosophy of just distribution and fairness. 
Behind this “veil of ignorance,” people do not know their 
own identity and circumstances of life (gender, job, health, 
etc.). Rawls uses this concept as part of a thought experi-
ment to find the principles based on which society and 
its institutions should be designed. Because people are 
biased by their situation in life (e.g., by knowing that they 
are born as a cisgendered white man), asking people for 
their ideas for such principles would most likely lead to 
biased principles. Therefore, Rawls asks people to imagine 

themselves behind this “veil of ignorance” in this newly 
constructed world. John Rawls demands ignorance of our 
own identity when imagining the “ideal” society and its 
institutions—with the goal of reducing bias and creating 
better results.

With both recruiting and the “veil of ignorance,” the 
assumption is that humans’ awareness of sensitive features 
leads them to make biased decisions, which harms margin-
alized groups. As Nyarko et al. [20] show, people are quick 
to apply this concept of removing sensitive attributes to 
machine learning models—despite the potentially harm-
ful consequences for the disadvantaged group (see, e.g., 
[21–23]). The underlying assumption of those people is 
that removing sensitive attributes would reduce bias and 
thus help the disadvantaged group.

Considering the case of FR, this would mean that to 
reduce bias, “awareness” of sensitive features has to be 
removed. As stated above, we define bias as notably differ-
ent level of accuracy between socio-demographic groups. 
We will refer to “awareness” as the extent to which a 
machine (e.g., a FR model) is aware of the presence of 
sensitive features (e.g., gender or ethnicity). In the litera-
ture, awareness is often equated with bias in FR: the idea 
is that removing awareness (i.e., decorrelating facial repre-
sentations and sensitive attributes) simultaneously reduces 
bias—similar to how it is assumed that hiding sensitive 
features removes humans’ tendency to make prejudiced 
decisions [24–28].

In this paper, we explore what this removal of aware-
ness means on a technical level and demonstrate why it 
cannot be equated with reducing bias. We thus argue that 
bias ≠ awareness with the important consequence that 
dealing with awareness in FR models does not necessar-
ily reduce bias in any desired way. The rest of the paper 
is organized as follows: Sect. 2 describes how this work 
relates to other studies in this field. Section 3 explains the 
methods and data as well as the existing face recognition 
models that we use to experimentally examine the relation-
ship of awareness and bias in face recognition. We then 
present and discuss the results of these experiments in 
Sects. 4 and 5 and draw conclusions in Sect. 6.

2  Related work

Racial biases are an issue across different sub-domains 
of computer vision: besides the field of FR, image clas-
sification models have, for example, been criticized for 
mis-labeling black men as “primates” [29]. Through the 
work of Joy Buolamwini and Timnit Gebru [16], FR’s bias 
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problem became a topic of public debate [30]. A follow-
up study of their work revealed that Microsoft, IBM, and 
Face++ released new versions of their API that improved 
the audited metrics [31]. IBM also removed the facial 
detection from its API in September 2019.1 In the pub-
lic sector, San Francisco was the first US city to ban the 
usage of FR technology in 2019 [32] as a consequence 
of discovering biases in FR [33]. Several other cities fol-
lowed. Since then, a tremendous amount of research has 
measured [25] and reduced [34] biases in FR technologies. 
The remainder of this section presents recent works on 
measuring racial biases and methods for removing biases. 
To reduce the racial bias, researchers followed these main 
directions: 1) balancing datasets, 2) model selection and 
loss design, and 3) removing the sensitive feature in the 
representations of faces used for identification. This paper 
relates to the third category and investigates the effect of 
a blinding method to remove sensitive features from face 
matching techniques. Systematic reviews of the recent 
attempts to tackle biases in machine learning and FR are 
represented in [35, 36].

Identifying and quantifying the amount of bias in FR 
technology are the initial step toward less-biased FR. Garcia 
et al. showed that face matching confidence of FR models 
correlates with gender and ethnicity, thus revealing demo-
graphic bias [37]. Cavazos et al. demonstrated that different 
thresholds are needed to equalize false accept rates (FARs) 
and the recognition accuracy [38]. Serna et al. quantified FR 
bias using normalized overall activation of the models for 
various races [39].

The first direction to overcome racial bias in FR is 
addressing the bias in the data: e.g., measurement error (sys-
tematic errors in the measurements of variables for specific 
groups) or representation bias (not everyone has the same 
probability of being in the dataset, meaning that the train-
ing data do not represent the real world’s diversity) [35]. To 
suppress the effects of imbalance in datasets, Kortylewski 
et al. proposed using synthetic data [40]. Robinson et al. 
introduce a racially balanced dataset [34]. With that, they 
were able to show how the performance gaps in FR for vari-
ous races decrease when adapting the decision thresholds 
for each race.

Modifying the model choices, e.g., the training process 
and the target, is the second venue researchers explored to 
remove racial bias in FR [41]. Yu et al. adapted the selection 
of face samples for training based on the data distribution 
and model bias [42], while Wang et al. attempted to transfer 
knowledge from the source domain (Caucasian) to target 

domains (other races) through learning facial features with 
adequate generalizing across different races [43].

The last approach is removing sensitive information 
related to races [24]. Generative Adversarial Networks 
(GANs) inspired several researchers to blind models and/or 
reduce the correlation between sensitive features and facial 
attributes for face recognition [26, 27, 44, 45]. Adeli et al. 
proposed an adversarial loss to minimize the correlation 
between model representations and sensitive information 
(races) and statistical dependency of the learned features 
and source of bias (racial group) [46]. In this paper, we use 
a blinding technique that applies to every trained model to 
remove sensitive information from model representations 
and demonstrate that removing awareness does not necessar-
ily remove the racial bias in several FR technologies.

3  Materials and methods

We start this section with a short recapitulation of the funda-
mentals of deep FR models. Afterwards we introduce the FR 
models and the evaluation dataset we chose for the present 
work. Finally, we detail the methods we used to quantify/
measure the awareness of deep FR models regarding specific 
socio-demographic groups and to remove information in the 
models’ embeddings with respect to these groups.

3.1  Basics of deep face recognition models

Wang et al. [47] provide a comprehensive survey on deep 
FR methods, including algorithms, databases, training pro-
tocols, and applications. In this section, we limit ourselves 
to a short review of the basic algorithm that yields a compact 
representation of a face in a feature space, a.k.a. embedding.

In image processing, deep learning methods, such as 
Convolutional Neural Network (CNN), use a cascade of 
multiple layers of processing units for feature extraction 
and transformation. It was shown that each layer learns 
multiple levels of representations which correspond to dif-
ferent levels of abstraction depending on the task at hand. 
Regarding face recognition, a major advantage of this hier-
archy of concepts is a strong invariance to changes in face 
pose, lighting, and expression changes. Figure 1 shows the 
general structure of a CNN on the task of face identifica-
tion, together with the features learned on different levels 
of the network hierarchy. Contrastive and triplet loss func-
tions are use to train the CNNs of deep FR models [2]. They 
optimize the CNN, such that embeddings (i.e., features) of 
positive image pairs (same identity) are close to each other, 
whereas embeddings of negative pairs (different identity) 
are pushed apart.

To summarize, every face image I ( 160 × 160 pixel corre-
sponding to 25,600 features) is processed in a deep CNN that 

1 https:// cloud. ibm. com/ docs/ visual- recog nition? topic= visual- recog 
nition- relea se- notes.

https://cloud.ibm.com/docs/visual-recognition?topic=visual-recognition-release-notes
https://cloud.ibm.com/docs/visual-recognition?topic=visual-recognition-release-notes
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learned a hierarchy of features ranging from basic concepts 
like edges up to complex concepts like eyes. On top of these 
features, a compact vector representation x (typical length of 

128) is learned. In general, we refer to these compact repre-
sentation as embedding. Furthermore, the model is trained 
to generate embeddings, such that x

i
 , xj are close together 

Fig. 1  Simplified example illustrating a hierarchical CNN architec-
ture trained to convert pixels of the input faces into compact face rep-
resentations at the last fully connected (FC) layer. The model consists 
of multiple layers that convolute and pool the input (CONV3 layers). 
Each block of convolutions works on a differently sized part of the 
input image, a.k.a. receptive field. To promote the learning of basic 

features at the bottom layers and more complex features (eyes, mouth 
etc.) at the top, the receptive field is enlarged every block further up 
the hierarchy. The output is a compressed representation of the face 
which can directly be used to make a prediction about the identity of 
the person

Fig. 2  General sketch of a deep 
FR model with triplet loss2 . 
Each image is processed in the 
CNN model and further mapped 
into the embedding space, such 
that similar faces are close 
together
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if the input images I
i
 , Ij belong to the same person. Figure 2 

depicts this concept.2

3.2  Face recognition models

As described above, we are operating on the embedding 
space of FR models. This allows us to easily compare dif-
ferent readily-trained models. For our comparison, we chose 
two different openly available FR models/architectures: first, 
a model from the popular Visual Geometry Group (VGG) 
[48] family and second, FaceNet [2].

Together with the VGGFace2 dataset [48], the authors 
provide trained models3 that we applied in our study. The 
models were pre-trained on the MS-Celeb-1M [49] dataset 
and then fine-tuned on VGGFace2. These SE-ResNet-50 
models follow the architectural configuration in [50]. 
Besides the architecture, the models differ in the lower 
dimensional embedding layer (128D/256D) which is stacked 
on top of the original final feature layer (2048D) adjacent 
to the classifier. All models were trained with standard soft-
max loss. In our experiments, we did not see any significant 
difference regarding different sizes of the embedding layer. 
Hence, we show the results for the VGG128 with an embed-
ding layer of size 128.

FaceNet is a face recognition system that was described 
by Florian Schroff, et al. at Google [2]. In our experiments, 
we use a model that is based on the GoogLeNet style Incep-
tion models [51] with approximately 23M trainable param-
eters. The trained model is freely available4 and was pre-
trained on the MS-Celeb-1M [49] dataset. The embedding 
layer is also of size 128.

3.3  Evaluation dataset to study racial bias

In the following, we look at the sensitive attributes ethnicity 
and gender. The Racial Faces in-the-Wild (RFW) dataset 
was designed to study racial bias in FR systems [43]. Images 
are annotated with one of four labels, namely Caucasian, 
Asian, Indian, and African, which form four ethnic clusters. 
Each subset contains about 10k images of 3k individuals for 
face verification. According to [43], the labels for Caucasian 
and African ethnicity were assigned by the Face++ API 
[52] and those for Asians and Indians from the nationality 
attribute in FreeBase celebrities [53]. To avoid the nega-
tive effects caused by the biased Face++ tool, the authors 
manually checked some images with low confidence scores 
from Face++.

In addition to ethnicity, we added a gender label to each 
image using a Wide Residual Network trained on the UTK-
Face [54] and IMDB-WIKI [55] datasets.5 The model’s per-
formance is reported to be around 88% accuracy [56, 57]. 
The gender prediction is accessed in terms of a continuous 
score sgender between 0 and 1, where lower values indicate 
male and higher values indicate female. To create fixed clus-
ters of samples, the gender score was split at sgender < 0.5 
for male and sgender > 0.5 for female. As we have multiple 
face images for each person in the dataset, each person was 
labeled to be male/female based on their mean score. Table 1 
gives an overview of the resulting number of samples per 
cluster with respect to ethnicity and gender.

3.4  Awareness of sensitive features

We investigate how well machine learning models can pre-
dict the sensitive features, such as ethnicity and gender, 
based on the face embedding. The intuition is that an FR 
model is “aware” of a sensitive feature if it can be predicted 
from the embedding vectors produced by the FR model. 
This inference is a classification task and the performance 
depends on the classification model at hand. If simple mod-
els, more precisely models with a low number of parameters, 
can properly infer the sensitive features, awareness is high. 
If models with a high number of parameters are required, 
then awareness is lower. There is no awareness if the features 
cannot be better predicted than random guessing.

3.5  Blinding

As stated above, deep FR models map images of faces into 
an embedding vectors x

i
 . Given a data set with labels for 

sensitive attributes such as ethnicity and gender, the images 
can be grouped into clusters based on these labels. To inves-
tigate the influence of this clustering on the face recogni-
tion rates, we propose a blinding procedure to remove the 
information related to the separation of these clusters in the 

Table 1  Number of samples per cluster regarding different facial 
characteristics in the RFW dataset that are associated with bias

The dataset is balanced with respect to ethnicity but skewed with 
respect to gender (75% male, 25% female). African women are 
strongly underrepresented and constitute less than 1% of all samples

Caucasian Indian Asian African Total

Male 6921 7419 5647 10,053 30,040

Female 3178 2802 3955 344 10,279

Total 10,099 10,221 9,602 10,397 40,319

3 https://github.com/ox-vgg/vgg_face2.
4 https://github.com/nyoki-mtl/keras-facenet. 5 https://github.com/yu4u/age-gender-estimation.

2 Attribution: https://www.pinterest.ch/pin/663999538792168278/, 
CC BY-SA 4.0, via Wikimedia Commons.
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embedding space. The procedure is a linear operation and 
uses the following steps: 

1. Compute the centroids of the clusters defined by the sen-
sitive attributes in the embedding space.

2. Use a one-vs-rest (OvR) approach to calculate the 
“directions of discrimination” given by the centroids of 
each cluster relative to the other centroids.

3. Apply singular value decomposition (SVD) on the 
“directions of discrimination” to find an orthonormal 
basis spanning the “discriminatory subspace.”

4. Remove projections onto the “discriminatory sub-
space” from the embedding vectors. This results in new 
embedding vectors whose centroids fall on top of each 
other, i.e., the separation due to sensitive attributes is 
removed—hence the term “blinding”.

The procedure outlined above operates on the embedding 
vectors x

i
 where i denotes the sample. Associated with each 

sample is a cluster label k ∈ {1,… , K} . As a first step, we 
define the centroids of each cluster by the average

where C
k
 is the set of embedding vectors associated with 

cluster k and n
k
 is the corresponding size. Following an OvR 

approach, the normalized direction of discrimination of each 
cluster k to the other clusters is given by the vectors

where K is the number of clusters. By construction, the vec-
tors u

k
 are not linearly independent, but span a subspace of 

rank K − 1 . This can by verified by applying a SVD on the 
matrix U = [u

1
…u

K
] . SVD also provides an orthonormal 

basis B = [e
1
… e

K−1
] of the corresponding subspace. The 

final step is to remove the projections onto this subspace by

where (xi ⋅ ej) is the dot (or scalar) product. Equation (3) 
yields new embedding vectors xb

i
 with the same shape as 

the original ones. The upper index b stands for “blinded” 
inspired by the fact that information with regard to the dis-
criminatory dimension has been removed.

3.6  Experimental setup

We extract the embeddings of the approximately 40k face 
images from the RFW testset for the VGG and FaceNet mod-
els. Face detection and alignment is done using the MTCNN 

(1)x̄
k
=

1

n
k

∑

i∈Ck

x
i
,

(2)u
k
=

v
k

‖v
k
‖

with v
k
= x̄

k
−

1

K − 1

�

k�≠k

x̄
k�

,

(3)x
b
i
= xi −

K−1
∑

j=1

(xi ⋅ ej) ej,

approach6 proposed by Zhang et  al. [58]. Based on the 
embeddings, we analyze the models’ awareness regarding 
sensitive attributes ethnicity and gender using the classi-
fier performance within the embedding space (cf. Sect. 3.4). 
Furthermore, we report the bias of the models based on the 
actual FR rates. In a second step, we apply the proposed 
blinding procedure (cf. Sect. 3.5) to the embedding spaces 
and again report the models’ awareness and bias.

4  Results

In this section, we present the results of our experiments. 
Specifically, we compare the model’s awareness of sensitive 
features as well as bias with respect to ethnicity and gender 
before and after the blinding procedures.

4.1  Awareness of sensitive attributes

To visualize the structure of the embedding space (128 
dimensions), we use t-distributed Stochastic Neighbor 
Embedding (t-SNE) [59] as an unsupervised way to reduce 
the dimensionality to a 2D representation. t-SNE maps 
points from a high-dimensional space to a lower dimen-
sional space, preserving local distances. Points which are 
close to each other in the high-dimensional space remain 
close to each other in the low-dimensional space. This prop-
erty is particularly suitable for the FR task where images are 
mapped to the embedding space and decisions are based on 
distances in this space. Figure 3 shows the 2D visualization 
of the embeddings of the RFW test set. As one can see, 
the dimensionality reduction reveals well-separated clusters 
defined by ethnicity and gender. The fact that the data are 
skewed with respect to gender is reflected in the figures, in 
agreement with the sample counts shown in Table 1. The 
t-SNE visualizations for the VGG128 and FaceNet models 
are surprisingly similar: Caucasian men lie in the center, 
surrounded by the remaining groups in similar positions. 
As stated, t-SNE is an unsupervised clustering method and 
groups embedding vectors solely based on their respective 
distances without any direct information about the sensi-
tive features. Nonetheless, the clusters appear very nicely 
separated, suggesting that the embedding space is separated 
into different sectors corresponding to different ethnicities 
and genders and that the models under considerations are 
therefore highly “aware” of the sensitive features.

To associate this vague intuition of “awareness” with 
a more formal approach, we investigate how well differ-
ent classifiers predict the sensitive features based on the 
face embeddings. The intuition is that “awareness” toward 

6 https://github.com/YYuanAnyVision/mxnet_mtcnn_face_detection.



515AI and Ethics (2022) 2:509–522 

1 3

sensitive features is high if simple models (low number of 
parameters) can accurately predict these features. The ability 
to predict sensitive features based on the embedding vector 
is evaluated for different classifiers. In the case of ethnic-
ity, it is a multi-class classification task (4 classes). There-
fore, we use macro-averaged F1-scores as a performance 
measure, which is the unweighted mean of the F1-scores 
of each label, as shown in Fig. 4. The upper bound of this 
score is 1. A lower baseline is given by random guessing 
and is the inverse of the number of clusters for a given sensi-
tive feature, i.e., 0.25 for ethnicity and 0.5 for gender. Fig-
ure 4 shows that the classification scores on the original 

embeddings are close to 1. Moreover, simple linear clas-
sifiers such as nearest centroid classification and logistic 
regression (both with a low number of parameters) show 
the same performance as the more advanced neural network 
classifiers. This confirms the hypothesis made above that 
the embedding space is structured into sectors given by the 
sensitive features. The fact that centroid classifiers work well 
means that these sectors are linearly separable and well-rep-
resented by their centroids. Therefore, we conclude that the 
models are indeed “highly aware” of ethnicity and gender.

Previous work [25] investigated this structure by means 
of various clustering scores such as the Silhoutte coefficient. 

Fig. 3  t-SNE visualization (2D) of the embedding space of the RFW test set samples. The coloring is based on different labels corresponding to 
the sensitive features ethnicity (color) and gender (light versus dark). Left: VGG128 model. Right: FaceNet model (color figure online)

Fig. 4  “Awareness” as represented by the macro-averaged F1-scores 
for various classifiers, predicting sensitive features based on the face 
embeddings for the VGG128 model (upper panel) and the FaceNet 
model (lower panel). The following classifiers from scikit-learn were 
used: (Random) theoretical value of random guessing; (Centroid) 
nearest centroid classifier; (Logit) logistic regression; (NN-1,2) neu-

ral network with one or two hidden layers (100 nodes) and relu acti-
vation. A train/test split of two-thirds/one-third was used. The upper 
rows represent the scores using the original embeddings. The lower 
rows show the scores for the blinded embeddings. The scores are 
colored, ranging from red for random guessing to green for a perfect 
score of 1 (color figure online)
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These scores suggested negligible structuring in contrast to 
present findings. The discrepancy is due to the high dimen-
sionality of the embedding space: In order for the linear clas-
sifiers to work, it is enough if the sectors related to ethnicity 
and gender are separated by a few dimensions out of many 
(128 in the models under considerations). In contrast, clus-
tering scores give an average clustering for all dimensions 
and yield low scores if only a few dimensions contributed to 
the separation, which explains the discrepancy.

The fact that the cluster centroids are representative for 
the whole cluster lends itself for further analysis. The posi-
tions of the centroids in the high-dimensional space can 
obviously not be visualized. It is however interesting to look 
at the radii (norm) from the origin of the embedding space 
to the centroids. This is depicted on the left side of Fig. 5 for 
the ethnic clusters. The embedding vectors for different faces 
all have a radius 1, because they are the output of a soft-max 
layer. The centroids, which are averages of embedding vec-
tors, therefore have radii < 1 as can be seen in the figure. 
Interestingly, the radius of the Caucasian cluster is roughly 
half of the other radii, confirming that Caucasians are indeed 
closer to the origin which is inline with the t-SNE visualiza-
tion shown in Fig. 3. The centroid classifier can also be used 
to generate a measure of the relative “size” of the different 
sectors by randomly generating embedding vectors (with 
radius 1) and classifying them with the centroid classifier. 
The result is shown on the right side of Fig. 5 for ethnicity. 
It turns out that the Caucasian sector covers roughly 90% 
of the embedding space in this metric. This is a clear and 
remarkable result which shows that different ethnic groups 
are treated differently in the models under consideration. To 
put it dramatically: In the models under consideration, 90% 
of the embedding space serves the purpose of Caucasian 
face recognition.

The differences in centroid radii and the embedding 
space coverage may be related to the bias in face recogni-
tion discussed below. The relation can either be causal (the 

difference in radii causes the bias) or rather indicative (the 
difference is due to the same root cause as the bias). To 
differentiate between the scenarios, we propose the blind-
ing procedure described above which removes the dimen-
sions separating the centroids (cf. Sect. 3.5). In the case of 
ethnicity, there are 4 centroids which span a 3D subspace 
(similar to the well-known fact that three points span a 2D 
plane). By blinding, i.e., projecting out this 3D subspace, 
the centroids fall on top of each other. As a consequence, the 
sectors corresponding to different ethnicities will be shifted 
together and the clusters are no longer represented by their 
centroids. We apply this blinding procedure to both ethnicity 
and gender. Figure 4 shows that the performance of the lin-
ear classifiers drops to random guessing as expected. Hence, 
the clusters are no longer linearly separable. The more com-
plex neural network classifiers are still able to predict the 
sensitive features. Therefore, after blinding, more complex 
models with a higher number of parameters are needed to 
predict the sensitive features. This means, in our terminol-
ogy, that the “blinded” embeddings are indeed less “aware” 
of the sensitive features.

4.2  Bias with respect to sensitive attributes

Face recognition rates and bias are evaluated with the RFW 
dataset. The RFW dataset provides image (i.e., embedding) 
pairs. These pairs can either be two pictures of the same per-
son (positive pair) or of two different people (negative pair). 
The resulting task is a binary classification of the pairs into 
positive and negative pairs. Note that all pairs have the same 
ethnicity label (only people with the same ethnicity label are 
compared). The recognition rate is the accuracy of the cor-
responding classification. Here, we investigate the error rate

(4)

Error rate = 1 − recognition rate

= share of false positives + share of false negatives,

Fig. 5  Left side: radii of the 
origin of the embedding space 
to centroids of the clusters 
related to ethnicity. Right side: 
coverage of the embedding 
space associated with ethnicity. 
This is calculated by classifying 
(centroid classifier) randomly 
generated embedding vectors. 
The fractions add up to 1



517AI and Ethics (2022) 2:509–522 

1 3

which has two contributions due to the two types of 
misclassification

– false negatives: same identity predicted as different ones 
(red in the figures);

– false positives: different identities predicted as the same 
one (blue in the figures).

The classification itself is done by calculating the (Euclid-
ean) intra-pair distance d between the embedding vectors 
of the images of the pair and comparing it to a threshold d

c
 . 

A positive (same) pair is predicted for d < d
c
 . Otherwise, a 

negative (different) pair is predicted. The error rates of these 
classifications are shown in Fig. 6 for both the original and 
the blinded embeddings. A substantial difference is appar-
ent between the different ethnic groups and to a marginal 
extent for the gender groups. The error rate is lowest for the 
label “Caucasian” ( ≈ 10% ), whereas the error rate is highest 
for the label “African” ( ≈ 15% ). Moreover, for people with 
the label “Caucasian”, false negatives are the most common 
error type. For people with the label “African”, however, 
false positives are the most common error type. Apparently, 
we observe two types of bias 

1. difference in the total error (or recognition) rate;
2. difference in ratio between false-positive and false-neg-

ative error rates.

As can be seen, removal of the separation of the sectors 
associated with different sensitive features (i.e., blinding) 
affects the error rates and bias only marginally. We conclude 
that the concept of awareness introduced above is different 
from bias. In addition, the difference in the centroid radii 
mentioned above does not cause the bias, as removing it 
by blinding does not affect it. t-SNE allows us to visualize 
where the misclassifications are located in the embedding 
space. Figure 7 shows that the misclassifications are ran-
domly scattered. It is therefore not surprising that moving 
the different clusters on top of each other by blinding has 
only marginal effects on the recognition rate and bias.

5  Discussion

The results show that putting FR behind a “veil of igno-
rance”—where predicting people’s assigned gender and 
ethnicity label becomes harder—does not have any nota-
ble influence on the accuracy of the FR model. In this way, 
dealing with biases in machines is strikingly different from 
dealing with human biases in, e.g., job application screening 
where ignorance is often deemed to be a necessary condition 
for unbiased decision-making. We argue that this is because 
the task of screening job applicants is fundamentally dif-
ferent from the task of FR technology, which is to decide 
whether two pictures show the same person. If humans take 
biased decisions when looking at CVs (e.g., accepting more 

Fig. 6  Relative face recognition error rates for the VGG128 and Face-
Net models. The error rates are given for all image pairs, for the dif-
ferent ethnic groups (Caucasian, Indian, Asian, and African) as well 
as for gender (male, female). The horizontal line helps to indicate 
whether a specific group performs better or worse than the overall 
average. The colors distinguish the two types of errors: False posi-

tives (blue) are pairs of different identities which are mistakenly pre-
dicted as identical, whereas false negatives (red) are identical faces 
mistakenly predicted as different. The brightness indicates the type 
of embedding. Light: original embeddings. Dark: blinded embedding 
(color figure online)
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men than women without any reasonable justification), we 
assume that this is caused by implicit or explicit prejudices. 
When humans have to match faces, biases in the form of 
lower performance in recognizing members of certain 
groups might not be caused by prejudices, but by a lack of 
exposure to these faces—the so-called “cross-race effect” 
[60]. The same likely applies to the FR models in our experi-
ments: the reason for their different performance levels is not 
awareness of groups’ race or gender. Rather, it is because 
they have not “seen” as many people from that group before. 
We thus caution machine learning experts against trying to 
solve the issue of bias in FR by applying their intuition of 
fairness to FR. Simply ignoring sensitive attributes does 
not seem to be a proper mediator of unbiased FR. Instead, 
FR developers noticing biases in the performance rates of 
their models should avoid trying to “blind” their model, but 
should rather improve the training data of their model as 
suggested in previous work [16, 43].

However, the experiments also demonstrated how easy it 
is to predict the assigned gender and ethnicity label from the 
existing models, such as FaceNet. This is particularly wor-
risome considering recent reports of Russia deploying tools 
that detect people’s ethnicity [61] and China using tools that 
detect Uighur faces [62]. One might therefore want to con-
sider if such open-source models should be “blinded” before 
their release. While it does not improve the accuracy rates 
for any groups, it also does not harm the accuracy, but might 

potentially protect from such tools being used to assign eth-
nicity labels to people.

We also found that there is an imbalance in the type of 
errors that the models make. We assume that the aforemen-
tioned imbalance in the training data is what leads to this 
difference in the types of errors that the model makes for 
the different ethnic groups. Assuming that the training data 
consisted of a disproportionately high number of Caucasian 
faces, the trained model would essentially provide more 
“space” in the embedding space for Caucasian faces. As 
noted in Sect. 4.1, the Caucasian sector indeed covers a large 
part of the embedding space, namely about 90%. This means 
that two Caucasian faces will on average have a greater dis-
tance to each other than two pictures from another group. 
When we now use the same threshold to determine at which 
distance two pictures are classified as “identical” instead of 
“different”, Caucasian faces—being generally more spread 
out—are more likely to be classified as “different”. This 
explains the high false-negative rate for the Caucasian group. 
Pictures from other groups are generally closer to each other, 
which makes a classification of two pictures as showing the 
same person more likely and explains the comparatively 
higher false-positive rate. As suggested by Robinson et al. 
[34], a way to deal with these different levels of error types 
is to create ethnicity-specific thresholds for when two faces 
are classified as “identical”. The distance up to which Cau-
casian faces are classified as “identical” would have to be 
higher than that of other groups. However, this requires a 

Fig. 7  This figure is derived from the t-SNE coordinates shown in 
Fig.  3. Each point in the plot represents the average coordinates of 
a pair, either positive with the same identity or negative with differ-
ent identity. The grey points represent correct predictions of posi-
tive (same identity) or negative (different identity) pairs by the face 

recognition algorithm. Red points are the cases where positive pairs 
are mistakenly classified as negative pair. Blue points are the cases 
where negative pairs are mistakenly classified as positive pair. Left: 
VGG128 model. Right: FaceNet model (color figure online)
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classification of individuals into ethnic groups before check-
ing potential matches, which is a at least questionable prac-
tice considering how the results of such an analysis could 
be misused. Therefore, while this solution makes sense on 
a technical level, we question if its benefits (equalization of 
error types across groups) outweigh the potentially harmful 
consequences (misuse of ethnicity classifications). Insofar, it 
once again appears to be the better option to address the root 
cause of the issue of the differing error rates: the training set.

The reason why the differences in error types can have 
dire consequences becomes evident when we think about a 
common application of facial recognition: policing. False 
negatives in the context of policing might mean not rec-
ognizing a suspect as the camera footage of them is not 
matched with their picture in the database. False positives 
are cases where camera footage of an innocent person is 
confused with pictures of the wanted person. As false nega-
tives are far more common for Caucasian faces than false 
positives, the FR system errs on the side of not flagging Cau-
casian people as potential suspects. The situation is reversed 
for faces labeled as “African”: here, the system is more likely 
to flag an innocent person as a suspect than it is to acciden-
tally let a suspect pass by without being flagged. This is 
particularly problematic considering the discrimination that 
people of color face in many regions and, on the other hand, 
the privilege that white people have. Anna Lauren Hoff-
mann points out “the different real-world consequences false 

results might have for different groups” [63, p. 907] in the 
context of AI applications. “A person of relative socioeco-

nomic advantage is more likely to have the time or resources 

necessary to contest an unfair decision—an imbalance that 

persists regardless of the fact that differently-situated groups 

stood an equal chance of being falsely flagged within the 

system” [63, p. 907]. When we are looking at error types 
for marginalized groups, we thus also have to consider how 
these groups deal with the different error types.

Finally, we want to emphasize that this paper only consid-
ered one of the two main issues of FR technology: its biases, 
i.e., different levels of accuracy and different error types. 
While we showed that a seemingly easy solution to this 
problem (“blinding” the model) does not work in practice, 
even a method that mitigates this issue would not address the 
second and arguably more pressing issue of FR: its potential 
usage for mass surveillance. Simply advocating for better 
performance rates might be dangerous as long as there are no 
policies that guide what FR can legally be used for. Moreo-
ver, we have to keep in mind that mass surveillance, just like 
other harmful technologies, disproportionately affects mar-
ginalized groups. Mohamed et al. [64], for example, describe 
several cases in which problematic AI applications are beta-
tested in poorer communities as less resistance is expected 
due to their limited resources. An example of this is the 
case of a facial recognition systems that has been proposed 

to be used in a Brooklyn apartment complex whose tenants 
are mostly black. The tenants worry that the technology is 
not implemented for a safer environment for the tenants, but 
rather for their surveillance as such data could be abused 
[65]. Considering the potentially harmful consequences of 
FR technology as well as the systemic disadvantages mar-
ginalized communities face, simply advocating for equal 
accuracy rates is thus not enough. Instead, we need to think 
further about how such technologies are being used. This 
includes policy as the previously mentioned bans on facial 
recognition (see, e.g., [32]) and the EU’s current attempt of 
regulating AI [66, 67].

6  Conclusion

In this paper, we operationalized “awareness” as a measure 
of how well different classifiers predict the sensitive features 
based on the face embeddings. The intuition is that “aware-
ness” toward sensitive features is high if simple models 
(with a low number of parameters) are sufficient for accu-
rately predicting the sensitive features based on the face rep-
resentations learned by an FR neural network. For example, 
we would say that a model’s “awareness” of gender is high 
if a simple linear model can accurately predict the gender of 
a test subject from its picture when trained on face embed-
dings and gender labels.

Inspired by the example of human job application screen-
ing and its early adoption in the FR literature, we introduced 
a blinding procedure to reduce awareness. We showed that 
this procedure allows us to reduce awareness in a controlled 
and selective way. Applying this procedure enabled us to 
answer the question of whether removing information about 
sensitive features helps to reduce bias as it is assumed to do 
in the human example. For this, we compared the models’ 
awareness and bias before and after blinding. We came to 
the conclusion that indeed bias ≠ awareness.

We further found that the models make different kinds of 
errors for different ethnic groups. For the Caucasian group, 
the models are more likely to identify two pictures of the 
same person as different people. The opposite is the case 
for faces labeled as “African.” Again, blinding the models 
did little to change that. Instead, improving the training data 
seems to be the method that is more reliable when it comes 
to reducing bias in FR.

6.1  Limitations

Our study comes with certain limitations. The main limi-
tation is the data used for our experiments. We tried to 
use a well-balanced dataset in terms of ethnic groups and 
gender groups. We picked the RFW dataset as it consists 
of approximately equally sized ethnic groups. However, 
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the dataset does not contain labels for other attributes 
such as “gender.” We therefore had to annotate the dataset 
ourselves, for which we used a pre-trained classifier. We 
found that faces labeled as “female,” and in particular such 
that are also labeled as “African,” are underrepresented in 
the RFW dataset. It is thus unclear if our results are rep-
resentative of these underrepresented groups (e.g., faces 
labeled as “female” and “African”).

Regarding the calculated error rates, we only compared 
pairs of faces with equal labels, e.g., “female” to “female” 
and “Indian” to “Indian”. We have not tested how likely 
the models are to make false-positive errors when given 
two faces with different labels. However, the false-pos-
itive rates of confusing faces from group A with faces 
from group B would be the same as the other way around. 
Therefore, such an analysis would be unlikely to give us 
new insights. The interesting analysis is thus mainly the 
in-group comparison that we focused on.

6.2  Future work

Importantly, considering the potentially harmful conse-
quences of FR, future work should ask in what situations 
FR technology is inappropriate to use and the question 
of how misuse of these systems can be prevented, e.g., 
through policies. Only once these questions have been 
addressed can advocacy for less-biased FR be beneficial 
to marginalized communities.

As discussed, the easiest and least problematic way to 
improve error rates seems to be to improve the data that 
are used to train the FR models. This means ensuring that 
sensitive attributes and their intersections are more equally 
represented. Respective research would then need to con-
firm that this is actually sufficient. Existing work by, e.g., 
Buolamwini and Gebru [16], already created a dataset that 
is diverse in terms of skin color and gender. Future work 
could continue on this path and ensure diversity along 
other axes.
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