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Abstract

Background

Meta-analyses frequently include studies with small sample sizes. Researchers usually fail

to account for sampling error in the reported within-study variances; they model the

observed study-specific effect sizes with the within-study variances and treat these sample

variances as if they were the true variances. However, this sampling error may be influential

when sample sizes are small. This article illustrates that the sampling error may lead to sub-

stantial bias in meta-analysis results.

Methods

We conducted extensive simulation studies to assess the bias caused by sampling error.

Meta-analyses with continuous and binary outcomes were simulated with various ranges of

sample size and extents of heterogeneity. We evaluated the bias and the confidence interval

coverage for five commonly-used effect sizes (i.e., the mean difference, standardized mean

difference, odds ratio, risk ratio, and risk difference).

Results

Sampling error did not cause noticeable bias when the effect size was the mean difference,

but the standardized mean difference, odds ratio, risk ratio, and risk difference suffered from

this bias to different extents. The bias in the estimated overall odds ratio and risk ratio was

noticeable even when each individual study had more than 50 samples under some set-

tings. Also, Hedges’ g, which is a bias-corrected estimate of the standardized mean differ-

ence within studies, might lead to larger bias than Cohen’s d in meta-analysis results.

Conclusions

Cautions are needed to perform meta-analyses with small sample sizes. The reported

within-study variances may not be simply treated as the true variances, and their sampling

error should be fully considered in such meta-analyses.
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Introduction

Systematic reviews and meta-analyses have become important tools to synthesize results from

various studies in a wide range of areas, especially in clinical and epidemiological research [1–

3]. Sampling error is a critical issue in meta-analyses. On the one hand, it impacts the evalua-

tion of heterogeneity between studies. For example, the popular heterogeneity measure I2 sta-

tistic is supposed to quantify the proportion of variation due to heterogeneity rather than

sampling error [4–6]; if sampling error increases, the I2 tends to decrease, leading to a conclu-

sion of more homogeneous studies. More troublesome, within-study sampling error may

affect the derivation underlying I2 to such an extent that the interpretation of I2 is challenged

[7]. On the other hand, sampling error may threaten the validity of a meta-analysis. The most

popular meta-analysis method usually models the observed effect size in each study as a nor-

mally distributed random variable and treats the observed sample variance as if it was the true

variance [8, 9]. It accounts for sampling error in the point estimate of the treatment effect

within each study, but it ignores sampling error in the observed variance. This method is gen-

erally valid when the number of samples within each collected study is large: the large-sample

statistical properties, such as the central limit theory and the delta method, guarantee that the

distribution approximation performs well. However, ignoring sampling error in within-study

variances has caused some misunderstandings about basic quantities in meta-analyses, espe-

cially when some studies have few samples. For example, the famous Q test for homogeneity

does not exactly follow the chi-squared distribution due to such sampling error [10], and this

problem may subvert I2 [7].

One important purpose of performing meta-analyses is to increase precision as well as to

reduce bias for the conclusions of systematic reviews [11]. For this reason, the PRISMA

statement [12] recommends researchers to report both the risks of bias within individual

studies and also between studies. The bias within individual studies often relates to the stud-

ies’ quality [13]. Also, certain measures have been designed to reduce bias in study-level

estimates. For example, Hedges’ g is considered less biased than Cohen’s d within studies

when the effect size is the standardized mean difference (page 81 in Hedges and Olkin [14]).

The bias between studies is usually introduced by publication bias or selective reporting

[15–20]. Besides the bias in point estimates of treatment effects, sampling error also pro-

duces bias in the variance of the overall weighted mean estimate under the fixed-effect set-

ting [21, 22]. Under the random-effects setting, the well-known DerSimonian–Laird

estimator of the between-study variance may also have considerable bias, especially when

sample sizes are small [23, 24]. Moreover, the between-study bias in the treatment effect

estimates, such as publication bias, may implicate other parameters in a meta-analysis,

including the between-study variance [25]. The bias in variance estimates can seriously

impact the precision of the meta-analysis results.

This article focuses on the performance of meta-analyses with small sample sizes, where

the sampling error in the observed within-study variances may not be ignored. Throughout

this article, we refer to sample size as the number of participants in an individual study,

instead of the number of studies in a meta-analysis. Studies with small or moderate sample

sizes are fairly common in meta-analyses [26], especially when the treatments are expensive

and the enrollments of participants are limited by studies’ budgets. We demonstrate a type

of bias in meta-analysis results that is completely due to sampling error; it has received rela-

tively less attention in the existing literature compared with other types of bias [27–30].

Such bias is mainly caused by the association between the observed study-specific effect

sizes yi and their within-study variances s2i . This association may exist even in the absence of

publication bias or selective reporting [31, 32]. When one uses the true variances instead of
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the estimated variances, the association may still be present for certain effect sizes, e.g., the

(log) odds ratio.

If each study’s result is unbiased and its marginal expectation equals to some overall treat-

ment effect θ, then a naïve argument for the unbiasedness of the overall effect estimate in a

meta-analysis, ŷ ¼
P

wiyiP
wi
, is that E ŷ

h i
¼

P
wiE½yi�P
wi

¼ y, where wi is the weight of each study.

The weight is usually the inverse of the within-study variance or the marginal variance incor-

porating heterogeneity between studies. However, this equation treats the weights wi as fixed

values, while in practice they are estimates subject to sampling error. The association between

the observed effect sizes and their estimated within-study variances may be strong when the

sample sizes are small, so the expectation of the overall estimate in the meta-analysis may not

be directly derived without the information about such association, and its unbiasedness is

largely unclear [33]. In addition, when the sample sizes are small, the sampling error in the

observed within-study variances and the estimated between-study variance may be large, so

the confidence interval (CI) of the overall estimate may be poor with coverage probability

much lower than the nominal level.

In the following sections, we will review five common effect sizes for continuous and binary

outcomes, explain how small sample sizes may introduce bias in meta-analyses, and evaluate

such bias using extensive simulation studies.

Methods

Meta-analyses with continuous outcomes

Suppose that a meta-analysis contains N studies, and each study compares a treatment group

with a control group. Denote ni0 and ni1 as the sample sizes in the control and treatment

groups in study i. The continuous outcome measures of the participants in each group are

assumed to follow normal distributions. The population means of the two groups in study i are

μi0 and μi1, and the sample means are denoted as �y i0 and �y i1 accordingly. The variances of the

samples in the two groups are frequently assumed to be equal, denoted as s2

i ; see, e.g., page 76

in Hedges and Olkin [14] and page 224 in Cooper et al. [34]. The s2

i is estimated as the pooled

sample variance s2iP ¼
ðni0�1ÞS2

i0
þðni1�1ÞS2

i1

ni0þni1�2
, where s2i0 and s

2

i1 are the sample variances in the control

and treatment groups, respectively.

If the outcome measures have a meaningful scale and all studies in the meta-analysis are

reported on the same scale, the mean difference (MD) between the two groups, i.e., Δi = μi1 −
μi0, is often used as the effect size to measure treatment effect (page 224 in Cooper et al. [34]).

We can obtain an estimate of the MD from each study, denoted as yi ¼ �y i1 � �y i0, and its esti-

mated within-study variance is s2i ¼ 1

ni0
þ 1

ni1

� �
s2iP. Traditional meta-analysis methods usually

account for sampling error in the sample means yi but ignore such error in the sample vari-

ances s2i ; the within-study variances have been customarily treated as the true variances, which

should be 1

ni0
þ 1

ni1

� �
s2

i [10]. However, accurate estimates of variances may require very large

sample sizes; the sample variances s2i may be far away from their true values when sample sizes

are small. In the following context, we will treat the sample variances as random variables like

the sample means, instead of the true variances.

Because the outcome measures are assumed to be normal, the sample means �y i0 and �y i1 are

independent of the sample variances s2i0 and s
2

i1 (see page 218 in Casella and Berger [35]). Thus,

the yi and s
2

i are independent in each study. Given that the observed MDs yi are unbiased, such

independence guarantees that the overall effect size estimate is unbiased in a fixed-effect meta-
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analysis (which assumes that the underlying true effect sizes Δi in all studies equal to a com-

mon value Δ), because E
P

yi=s
2

iP
1=s2

j

� �
¼ P

E½yi�E
1=s2

iP
1=s2

j

� �
¼ D

P
E

1=s2
iP
1=s2

j

� �
¼ D. However, in a

random-effects meta-analysis, each study’s weight is updated as 1=ðs2i þ t̂2Þ by incorporating
an estimate of the between-study variance t̂2. The between-study variance τ2 can be estimated

using many different methods [36], and its estimate depends on both yi and s
2

i ; therefore, yi
and the updated weight 1=ðs2i þ t̂2Þmay be correlated to some extents. The expectation of the

weighted average cannot be split in the foregoing way, so the unbiasedness of the overall MD

estimate is not guaranteed in a random-effects meta-analysis.

A more commonly-used effect size for continuous outcomes is the standardized mean dif-

ference (SMD), because this unit-free measure permits different scales in the collected studies

and is deemed more comparable across studies (see Normand [8] and Chapter 3 in Grissom

and Kim [37]). The true SMD in study i is yi ¼ mi1�mi0
si

. It is usually estimated as yi ¼ �y i1��y i0
siP

by

plugging in the sample means and the pooled variance, and is often referred to as Cohen’s d

(see page 66 in Cohen [38]). If we define a constant qi = ni0ni1/(ni0 + ni1), multiply Cohen’s d

by
ffiffiffiffi
qi

p
, and express it as

ffiffiffiffi
qi

p
yi ¼

ffiffiffi
qi

p ð�y i1��y i0Þ=si
siP=si

, then the numerator follows a normal distribution

with variance 1, and the denominator is the square root of a chi-squared random variable

ðni0 þ ni1 � 2Þs2ip=s2

i divided by its degrees of freedom ni0 + ni1 − 2 [35]. Also, the numerator

and denominator are independent. Therefore, strictly speaking, Cohen’s d (multiplied by the

constant
ffiffiffiffi
qi

p
) follows a t-distribution, although it is approximated as a normal distribution in

nearly all applications. If the true effect size is non-zero, the t-distribution is noncentral. The

exact within-study variance of Cohen’s d can be derived as a complicated form of gamma func-

tions [39], but researchers usually use some simpler forms to approximate it. Different approx-

imation forms for the within-study variance of Cohen’s d are given in several books on meta-

analyses; see, e.g., page 80 in Hedges and Olkin [14], page 226 in Cooper et al. [34], and page

290 in Egger et al. [40]. This article approximates it as s2i ¼ 1

ni0
þ 1

ni1
þ y2

i

2ðni0þni1�2Þ. As s
2

i depends

on yi, they are correlated. The correlation may increase as the sample size decreases, because

the coefficient of y2i in the formula of s2i ;
1

2ðni0þni1�2Þ, increases.

Furthermore, it is well-known that Cohen’s d is a biased estimate of the SMD. The bias is

around 3yi
4ðni0þni1Þ�9

(page 80 in Hedges and Olkin [14]); and it reduces toward zero as the sample

sizes increase. When the sample sizes are small, a bias-corrected estimate, called Hedges’ g, is

usually adopted [41]. It is calculated as yi ¼ 1� 3

4ðni0þni1Þ�9

h i
� �y i1��y i0

siP
with an estimated variance

s2i ¼ 1

ni0
þ 1

ni1
þ y2

i

2ðni0þni1Þ
(page 86 in Hedges and Olkin [14]). Like Cohen’s d, the observed data yi

and s2i are also correlated when using Hedges’ g as the effect size. Therefore, even if Hedges’ g is

(nearly) unbiased within each individual study, the overall SMD estimate in the meta-analysis

may be still biased due to the correlation between yi and s
2

i .

Meta-analyses with binary outcomes

Suppose a 2 × 2 table is available from each collected study in a meta-analysis with a binary

outcome. Denote ni00 and ni01 as the numbers of participants without and with an event in the

control group, respectively; ni10 and ni11 are the data cells in the treatment group. The sample

sizes in the control and treatment groups are ni0 = ni00 + ni01 and ni1 = ni10 + ni11. Also, denote

pi0 and pi1 as the population event rates in the two groups.

The odds ratio (OR) is frequently used to measure treatment effect for a binary outcome

[42]; its true value in study i isORi ¼ pi1=ð1�pi1Þ
pi0=ð1�pi0Þ

. Using the four data cells in the 2×2 table, the
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OR is estimated as cOR i ¼ ni00ni11
ni01ni10

. The ORs are usually combined on a logarithmic scale in

meta-analyses, because the distribution of the estimated log OR, yi ¼ log cOR i is better approxi-

mated by a normal distribution. The within-study variance of yi is estimated as s2i ¼ 1

ni00
þ 1

ni01
þ

1

ni10
þ 1

ni11
. Besides the OR, the risk ratio (RR) and risk difference (RD) are also popular effect

sizes. The underlying true RR in study i is RRi = pi1/pi0, and it is also combined on the log scale

in meta-analyses like the OR. The log RR is estimated as yi ¼ log ni11=ni1
ni01=ni0

, and its within-study

variance is estimated as s2i ¼ 1

ni01
þ 1

ni11
� 1

ni0
� 1

ni1
. Moreover, the underlying true RD in study

i is RDi = pi1 − pi0, estimated as yi ¼ ni11
ni1

� ni01
ni0

with an estimated within-study variance s2i ¼
ni00ni01
n3
i0

þ ni10ni11
n3
i1

. When the sample sizes are small, some data cells may be zero even if the event is

not rare. If a 2 × 2 table contains zero cells, a fixed value of 0.5 is often added to each data cell

to reduce bias and avoid computational error (see page 521 in the Cochrane Handbook for Sys-

tematic Reviews of Interventions [43] and many other papers [44–46]), although this continuity

correction may not be optimal in some cases [47–50].

Like the SMD for continuous outcomes, the distributions of the sample log OR, log RR, and

RD are approximated as normal distributions in conventional meta-analysis methods. Also,

because both yi and s
2

i depend on the four cells of 2 × 2 tables for all three effect sizes, they are

intrinsically correlated.

Simulation studies

We conducted simulation studies to investigate the impact of sampling error on meta-analyses

with small sample sizes. The number of studies in a simulated meta-analysis was set to N = 5,

10, 20, and 50. We first generated the sample size within each study ni from a uniform distribu-

tion U(5, 10), then we gradually increased it by sampling it from U(10, 20), U(20, 30), U(30,

50), U(50, 100), U(100, 500), and U(500, 1000). These sample sizes ni were generated anew for

each simulated meta-analysis. The control/treatment allocation ratio was set to 1:1 in all stud-

ies, which is common in real-world applications. Specifically, ni0 ¼ dni
2
e participants were

assigned to the control group and ni1 ¼ ni � dni
2
e participants were assigned to the treatment

group, where dxe represents an integer that is greater than or equal to x.

When the outcome was continuous, we simulated meta-analyses based on the MD and the

SMD. For the MD, each participant’s outcome measure was sampled from Nðmi0; s2

i Þ in the

control group or Nðmi0 þ Di; s
2

i Þ in the treatment group. Without loss of generality, the base-

line effect μi0 of study i was generated from N(0,1). The study-specific standard deviation σi
was sampled from U(1,5), and it was generated anew for each simulated meta-analysis. The

mean difference Δi was sampled from N(Δ,τ2). The overall MD Δ was set to 0, 0.5, 1, 2, and 5,

and the between-study standard deviation τ was set to 0, 0.5, and 1. For the SMD, each partici-

pant’s outcome measure was also generated using the foregoing setting within each study, but

the SMD θi = Δi/σi, not the mean difference Δi, was sampled from the normal distribution: θi ~

N(θ,τ2). The overall SMD θwas set to 0, 0.2, 0.5, 0.8, and 1 to represent different magnitudes of

effect size. The between-study standard deviation τ was 0, 0.2, and 0.5. Both Cohen’s d and

Hedges’ g were used to estimate the SMD.

When the outcome was binary, we first simulated meta-analyses based on the OR. The

event numbers ni01 and ni11 in the control and treatment groups were sampled from Binomial

(ni0,pi0) and Binomial(ni1,pi1), respectively. The event rate in the control group pi0 was sampled

from U(0.3, 0.7) representing a fairly common event [32], and it was generated anew for each

meta-analysis. The event rate in the treatment group pi1 was calculated using pi0 and the study-

specific log OR θi; specifically, pi1 ¼ ½1þ e�yi ð1� pi0Þ=pi0�
�1
. The study-specific log OR θi was
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sampled from N(θ,τ2), where the overall log OR θ was set to 0, 0.2, 0.4, 1, and 1.5, and the

between-study standard deviation τ was 0, 0.2, and 0.5. In addition to the OR, we also gener-

ated meta-analyses based on the RR and RD. The event numbers were similarly sampled from

binomial distributions and the pi0 was from U(0.3,0.7). However, for the log RR and the RD,

we considered only the fixed-effect setting with all study-specific effect sizes θi equal to a com-

mon value θ. Specifically, if the effect size was the log RR, the event rate in the treatment group

was pi1 = e
θpi0, where the true log RR θ was set to 0 and 0.3 to guarantee that pi1 was between 0

and 1. If the effect size was the RD, pi1 = pi0 +θ, where the true RD θ was set to 0 and 0.2 to

guarantee that pi1 was between 0 and 1. The random-effects setting was not considered for the

log RR and RD because it may lead to improper pi1’s beyond the [0, 1] range. We could suc-

cessfully generate meta-analyses by truncating such improper pi1’s and constraining them to

be between 0 and 1; however, this constraint would produce bias, which cannot be distin-

guished from the bias caused by sampling error that is of primary interest in this article.

For each simulation setting above, 10,000 meta-analyses were generated. The random-effects

model was applied to each simulated meta-analysis [51], even if some meta-analyses were gener-

ated under the fixed-effect setting with τ = 0. Thus, the produced CIs might be conservative. Also,

the between-study variance was estimated using the popular method of moments by DerSimo-

nian and Laird [24]. The restricted maximum likelihood method may be a better choice [8, 52,

53], but it is more computationally difficult and its solution did not converge in a noticeable num-

ber of our simulated meta-analyses. Also, there are many other alternatives for estimating the

between-study variance, such as the Paule–Mandel estimator, whichmay be recommended in cer-

tain situations [54, 55], while they have been used less frequently compared with the DerSimo-

nian–Laird estimator so far. Therefore, we considered only the DerSimonian–Laird estimator for

the between-study variance, which was sufficient to achieve this article’s purpose.

S2–S7 Files present the R code and results for the simulation studies.

Results

Fig 1–5 present the boxplots of the estimated overall effect sizes in the 10,000 simulated meta-

analyses for the MD, SMD (estimated by both Cohen’s d and Hedges’ g), log OR, log RR, and

Fig 1. Boxplots of the estimatedmean differences in 10,000 simulated meta-analyses. The true between-study standard deviation τ increased from 0 (panels a and b) to 1
(panel c). The number of studies in eachmeta-analysisN increased from 5 (panel a) to 50 (panels b and c). The true mean difference Δ (horizontal dotted line) was 0.

https://doi.org/10.1371/journal.pone.0204056.g001
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Fig 2. Boxplots of the estimated standardized mean differences in 10,000 simulated meta-analyses. For each sample size range on the horizontal axis, the left gray
box was obtained using Cohen’s d, and the right black box was obtained using Hedges’ g. The true between-study standard deviation τ increased from 0 (upper and
middle panels) to 0.5 (lower panels). The number of studies in each meta-analysis N increased from 5 (upper panels) to 50 (middle and lower panels). The true
standardized mean difference θ (horizontal dotted line) increased from 0 (left panels) to 1 (right panels).

https://doi.org/10.1371/journal.pone.0204056.g002
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Fig 3. Boxplots of the estimated log odds ratios in 10,000 simulated meta-analyses. The true between-study standard deviation τ increased from 0 (upper and middle
panels) to 0.5 (lower panels). The number of studies in each meta-analysis N increased from 5 (upper panels) to 50 (middle and lower panels). The true log odds ratio θ
(horizontal dotted line) increased from 0 (left panels) to 1.5 (right panels).

https://doi.org/10.1371/journal.pone.0204056.g003
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Fig 4. Boxplots of the estimated log risk ratios in 10,000 simulated meta-analyses. The true between-study standard deviation τwas 0 (i.e., the simulated studies were
homogeneous). The number of studies in each meta-analysis N increased from 5 (upper panels) to 50 (lower panels). The true log risk ratio θ (horizontal dotted line)
increased from 0 (left panels) to 0.3 (right panels).

https://doi.org/10.1371/journal.pone.0204056.g004
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Fig 5. Boxplots of the estimated risk differences in 10,000 simulated meta-analyses. The true between-study standard deviation τwas 0 (i.e., the simulated studies
were homogeneous). The number of studies in each meta-analysis N increased from 5 (upper panels) to 50 (lower panels). The true risk difference θ (horizontal dotted
line) increased from 0 (left panels) to 0.2 (right panels).

https://doi.org/10.1371/journal.pone.0204056.g005
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Table 1. Bias of the estimated overall effect size in the simulation studies.

Setting Sample size

5–10 10–20 20–30 30–50 50–100 100–500 500–1000

Mean difference:

τ = 0, N = 5, Δ = 0 −0.01 −0.01 0.01 0.00 0.00 0.00 0.00

τ = 0, N = 50, Δ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 1, N = 50, Δ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Standardized mean difference (Cohen’s d):

τ = 0, N = 5, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 5, θ = 0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 5, θ = 1 0.01 0.00 0.01 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 0.5 −0.02 −0.01 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 1 −0.05 −0.02 −0.01 0.00 0.00 0.00 0.00

τ = 0.5, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0.5, N = 50, θ = 0.5 −0.03 −0.01 −0.01 0.00 0.00 0.00 0.00

τ = 0.5, N = 50, θ = 1 −0.06 −0.02 −0.01 −0.01 0.00 0.00 0.00

Standardized mean difference (Hedges’ g):

τ = 0, N = 5, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 5, θ = 0.5 −0.05 −0.03 −0.01 −0.01 0.00 0.00 0.00

τ = 0, N = 5, θ = 1 −0.10 −0.05 −0.02 −0.02 −0.01 0.00 0.00

τ = 0, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 0.5 −0.07 −0.03 −0.02 −0.01 −0.01 0.00 0.00

τ = 0, N = 50, θ = 1 −0.13 −0.06 −0.04 −0.02 −0.01 0.00 0.00

τ = 0.5, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0.5, N = 50, θ = 0.5 −0.08 −0.04 −0.02 −0.01 −0.01 0.00 0.00

τ = 0.5, N = 50, θ = 1 −0.15 −0.07 −0.04 −0.03 −0.01 0.00 0.00

Log odds ratio:

τ = 0, N = 5, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 5, θ = 1 −0.15 −0.03 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 5, θ = 1.5 −0.30 −0.09 −0.02 −0.01 0.00 0.00 0.00

τ = 0, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 1 −0.15 −0.06 −0.04 −0.02 −0.01 0.00 0.00

τ = 0, N = 50, θ = 1.5 −0.30 −0.13 −0.07 −0.04 −0.02 0.00 0.00

τ = 0.5, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0.5, N = 50, θ = 1 −0.19 −0.11 −0.08 −0.06 −0.03 −0.01 0.00

τ = 0.5, N = 50, θ = 1.5 −0.35 −0.19 −0.14 −0.10 −0.06 −0.02 −0.01

Log risk ratio:

τ = 0, N = 5, θ = 0 0.30 0.18 0.11 0.07 0.03 0.01 0.00

τ = 0, N = 5, θ = 0.3 0.26 0.17 0.11 0.07 0.04 0.01 0.00

τ = 0, N = 50, θ = 0 0.42 0.24 0.15 0.09 0.05 0.01 0.01

τ = 0, N = 50, θ = 0.3 0.35 0.22 0.14 0.09 0.05 0.01 0.01

Risk difference:

τ = 0, N = 5, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 5, θ = 0.2 −0.02 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

τ = 0, N = 50, θ = 0.2 −0.02 0.01 0.01 0.01 0.00 0.00 0.00

https://doi.org/10.1371/journal.pone.0204056.t001
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Table 2. Coverage probability (in percentage, %) of the estimated overall effect size’s 95% confidence interval in the simulation studies.

Setting Sample size

5–10 10–20 20–30 30–50 50–100 100–500 500–1000

Mean difference:

τ = 0, N = 5, Δ = 0 92.0 94.7 95.4 96.0 95.9 96.1 96.6

τ = 0, N = 50, Δ = 0 92.9 94.3 95.0 95.2 95.8 96.2 96.0

τ = 1, N = 50, Δ = 0 93.8 93.6 93.8 94.5 94.2 94.1 94.2

Standardized mean difference (Cohen’s d):

τ = 0, N = 5, θ = 0 97.1 96.4 96.4 96.6 96.2 96.2 96.2

τ = 0, N = 5, θ = 0.5 97.2 96.6 96.3 96.4 96.3 96.2 96.3

τ = 0, N = 5, θ = 1 97.2 96.7 96.4 96.4 96.2 96.1 96.4

τ = 0, N = 50, θ = 0 97.1 96.2 96.2 95.9 96.1 95.8 95.8

τ = 0, N = 50, θ = 0.5 96.5 96.2 95.9 95.7 96.1 96.0 95.9

τ = 0, N = 50, θ = 1 94.9 95.7 95.7 95.6 96.0 95.9 96.0

τ = 0.5, N = 50, θ = 0 96.0 94.9 94.0 94.8 93.9 94.2 94.0

τ = 0.5, N = 50, θ = 0.5 95.5 94.6 93.8 94.6 94.2 94.1 94.1

τ = 0.5, N = 50, θ = 1 93.0 94.0 93.8 94.5 94.3 94.2 94.3

Standardized mean difference (Hedges’ g):

τ = 0, N = 5, θ = 0 98.0 97.0 96.7 96.8 96.4 96.2 96.2

τ = 0, N = 5, θ = 0.5 97.7 96.8 96.6 96.6 96.4 96.2 96.4

τ = 0, N = 5, θ = 1 96.9 96.3 96.2 96.4 96.1 96.0 96.3

τ = 0, N = 50, θ = 0 97.6 96.7 96.5 96.1 96.2 95.8 95.8

τ = 0, N = 50, θ = 0.5 94.0 94.8 95.1 95.1 95.7 95.9 96.0

τ = 0, N = 50, θ = 1 81.2 89.0 92.1 93.4 94.9 95.6 95.9

τ = 0.5, N = 50, θ = 0 96.1 94.9 94.0 94.9 94.0 94.2 94.0

τ = 0.5, N = 50, θ = 0.5 91.6 93.1 93.3 94.4 94.2 94.1 94.1

τ = 0.5, N = 50, θ = 1 76.6 88.3 91.2 93.1 93.9 94.2 94.3

Log odds ratio:

τ = 0, N = 5, θ = 0 98.2 97.3 97.0 96.9 96.5 96.4 95.9

τ = 0, N = 5, θ = 1 98.2 97.5 96.9 96.6 96.4 96.1 96.4

τ = 0, N = 5, θ = 1.5 97.8 97.8 97.2 96.9 96.4 96.5 96.2

τ = 0, N = 50, θ = 0 98.0 97.1 96.6 96.0 95.7 95.7 95.7

τ = 0, N = 50, θ = 1 94.9 96.1 95.9 96.0 95.7 95.8 95.7

τ = 0, N = 50, θ = 1.5 82.5 91.7 93.6 94.6 95.4 96.0 95.6

τ = 0.5, N = 50, θ = 0 97.7 96.5 95.7 95.2 94.6 94.2 94.3

τ = 0.5, N = 50, θ = 1 91.7 92.7 92.5 92.9 93.5 93.9 94.3

τ = 0.5, N = 50, θ = 1.5 75.0 83.5 84.7 86.7 90.4 93.7 94.1

Log risk ratio:

τ = 0, N = 5, θ = 0 84.0 90.2 93.1 94.4 95.3 96.2 96.0

τ = 0, N = 5, θ = 0.3 86.2 89.9 92.0 93.0 94.8 95.8 96.1

τ = 0, N = 50, θ = 0 7.4 25.6 41.6 56.2 73.0 90.3 93.5

τ = 0, N = 50, θ = 0.3 9.7 25.1 38.2 49.9 66.5 87.6 92.4

Risk difference:

τ = 0, N = 5, θ = 0 94.0 94.2 94.9 95.6 95.9 96.3 95.8

τ = 0, N = 5, θ = 0.2 94.4 94.5 94.7 95.0 95.6 96.0 96.0

τ = 0, N = 50, θ = 0 92.7 93.5 93.9 94.5 94.9 95.7 95.6

τ = 0, N = 50, θ = 0.2 92.4 93.3 93.2 93.9 94.5 95.6 95.7

https://doi.org/10.1371/journal.pone.0204056.t002
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RD, respectively. In addition, Table 1 shows the bias of the estimates and Table 2 shows their

95% CIs’ coverage probabilities. When the number of studies in a meta-analysis increased

from 5 to 50, the range of the estimated overall effect size shrank because their variances

decreased. When the between-study heterogeneity increased in Fig 1–3, the middle and lower

panels indicate that the box of the estimated overall effect sizes expanded vertically due to

more heterogeneity in the meta-analyses.

Fig 1 and Table 1 indicate that the estimated MD was almost unbiased in all situations with

different numbers of studies and different extents of heterogeneity, even if the studies had very

small sample sizes. As the trends in the plots for Δ = 0.5, 1, 2, and 5 were fairly similar to those

for Δ = 0, they were not displayed in Fig 1 due to space limit. Table 2 shows that the CI cover-

age probability of the MD was fairly close to the nominal confidence level 95% in most cases.

The coverage was slightly below 95% when the number of studies was small (N = 5) and the

sample sizes were also very small (between 5 and 10) within studies.

When the true SMD was zero in the left panels of Fig 2, both Cohen’s d and Hedges’ g were

almost unbiased. The box of Cohen’s d was slightly larger vertically than that of Hedges’ g

when the sample sizes within studies were small, so the point estimates of Hedges’ g were more

concentrated around the true SMD. The CI coverage was also close to the nominal 95% level.

However, as the true SMD increased from 0 to 0.5 and to 1, both Cohen’s d and Hedges’g

began to have bias, and the bias increased as the sample sizes decreased within studies. Cohen’s

d generally produced less bias in the estimated overall SMD than Hedges’ g, as shown in

Table 1. The CI coverage of Cohen’s d was still close to 95% when the true SMD increased, but

that of Hedges’ g dropped below 80% when the sample size was fairly small (between 5 and

10), the true SMD was fairly large (θ = 1), and the number of studies was large (N = 50).

The patterns in Fig 3 of the ORs for binary outcomes were similar to those in Fig 2. The esti-

mated overall log ORs were almost unbiased when the true log OR was zero. As the true log

OR increased to 1 and to 1.5 and the sample sizes within studies decreased, the bias in the esti-

mated overall log OR tended to be larger in the negative direction. Also, the CI coverage

dropped dramatically when the number of studies and the between-study variance were large

in Table 2. For example, when τ = 0, N = 5, θ = 1.5, and the sample size of each study was

between 5 and 10, the bias of the estimated overall log OR was −0.30 and the CI coverage was

97.8%. The log OR underestimated the true value θ. Among the simulated meta-analyses

whose CIs did not cover θ, 2.2% had CIs entirely below θ, while only one meta-analysis

(0.01%) had a CI entirely above θ. As the number of studies increased to N = 50 and other

parameters unchanged, the bias was still −0.30, but the CI coverage decreased to 82.5%. The

CIs of the meta-analyses not covering θ were all below θ. Therefore, the low CI coverage was

likely because the CI became shorter as the number of studies N increased while the bias

remained.

Compared with the log OR, the log RR in Fig 4 was more sensitive to the sample sizes

within studies. The estimated overall log RR had tiny bias and its CI coverage was close to 95%

when the sample sizes within studies were large (more than 500). However, the bias was sub-

stantial and the CI coverage was fairly low even when the sample sizes were moderate (between

50 and 100). Like the situation for the log OR, the poor CI coverage for the log RR related to

the bias. For example, when τ = 0, N = 5, θ = 0.3, and the sample size of each study was between

5 and 10, the bias of the estimated overall log RR was 0.26 and the CI coverage was 86.2%. The

log RR overestimated the true value θ. The CIs of the simulated meta-analyses not covering θ

were all above θ. When N increased to 50 and other parameters unchanged, the bias was 0.35

and the CI coverage dropped dramatically to 9.7%. The CIs of the simulated meta-analyses not

covering θ were also all above θ.
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Fig 5 shows that the estimated overall RD was almost unbiased when the true RD was zero

and had small bias when the true RD was 0.2. The bias was relatively large when the sample

sizes within studies were fairly small. The CI coverages were between 92% and 96% in all

situations.

In addition, Figures A–F in S1 File present scatter plots of the sample effect sizes against

their precisions (i.e., the inverse of their sample variances) in ten selected simulated meta-anal-

yses with small sample sizes for the MD, SMD (including both Cohen’s d and Hedges’ g), log

OR, log RR, and RD. They are plotted using the same idea of the funnel plot for assessing pub-

lication bias [56], and they roughly illustrate the association between the sample effect sizes yi
and their within-study variances s2i . Figure A in S1 File indicates that this association seemed

tiny for the MD, which was consistent with our conclusion that the MD yi and its variance s2i
are independent in theory. The other figures show different extents of association for the

SMD, log OR, log RR, and RD. For example, the estimated SMDs that were closer to zero

tended to have larger precisions (i.e., smaller variances) in Figures B and C in S1 File.

Discussion

This article has shown that the bias in the overall estimates of the SMD, log OR, log RR, and

RDmay be substantial in meta-analyses with small sample sizes. The estimated overall MD

was almost unbiased in nearly all simulation settings, mainly because its point estimate and

within-study variance were independent. However, for the other four effect sizes except the

MD, the intrinsic association between their point estimates and estimated variances within

studies may be strong, so the meta-analysis results were biased in many simulation settings.

Therefore, when the collected studies have small sample sizes, researchers need to choose a

proper effect size and perform the meta-analysis with great cautions.

Surprisingly, to estimate the overall SMD, using Cohen’s d led to noticeably less bias than

using Hedges’ g in our simulation studies, although Hedges’ g was designed as a bias-corrected

estimate of the SMD within individual studies. For example, in one of our simulated fixed-

effect meta-analyses with 50 studies and 5 to 10 samples in each study (the true SMD was 1),

the average of Cohen’s d in the 50 studies was around 1.29, while the average of Hedges’ g 1.07

was closer to the true value 1. This was consistent with the fact that Hedges’ g was generally

less biased within individual studies. However, the meta-analytic overall Cohen’s d was 0.98,

which was much closer to 1 compared with the meta-analytic overall Hedges’ g 0.89, because

of the sampling error in these effect sizes’ variances that caused the association between the

effect sizes and the variances. Note that, instead of advocating that Cohen’s d is always pre-

ferred than Hedges’ g in meta-analyses, this article only reminds researchers that Cohen’s d

may be less biased in at least some meta-analytic results, and the argument for the use of

Hedges’ g in the presence of small sample sizes needs to be carefully examined.

In addition, there are alternative methods to estimate the within-study variance of Hedges’

g besides the one used in our article. Specifically, our simulation studies used s2gi ¼ 1

ni0
þ 1

ni1
þ

g2
i

2ðni0þni1Þ
, where gi is the point estimate of Hedges’ g in study i; this calculation was introduced

on page 86 in Hedges and Olkin [14]. Recall that Hedges’ g is calculated by multiplying

Cohen’s d by a bias-correction coefficient; that is, gi = Jidi, where Ji ¼ 1� 3

4ðni0þni1Þ�9
and di is

the point estimate of Cohen’s in study i. Therefore, the variance of Hedges’ g can be alterna-

tively estimated as s2gi ¼ J2i s
2

di, where s
2

di is the within-study variance of Cohen’s d; see, e.g., page

226 in Cooper et al. [34]. Using this alternative calculation for the within-study variances of

Hedges’ g, the combined SMDmay remain biased. For example, consider a special case that all

N studies in a meta-analysis have the same sample size n, so the bias-correction coefficients in
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all studies are equal: Ji = J. Using the fixed-effect model, the expectation of the combined

Cohen’s d is

md ¼ E

P
di=s

2

diP
1=s2di

� �
;

and the expectation of the combined Hedges’ g is

mg ¼ E

P
gi=s

2

giP
1=s2gi

" #
¼ E

P
ðJdiÞ=ðJ2s2diÞP
1=ðJ2s2diÞ

� �
¼ Jmd:

Because J is a coefficient always less than 1, we have μg< μd if assuming μd is positive. If the

true overall SMD θ is also positive and the combined Cohen’s d underestimates it (as in our

simulation studies), then μg< μd< θ, indicating that the combined Hedges’ g is more biased.

However, if the combined Cohen’s d overestimates the overall SMD (i.e., μd> θ), then the

combined Hedges’ gmight be less biased.

This article helps explain the phenomenon of the inflated type I error rates for testing for

publication bias. To detect potential publication bias in meta-analyses, it has been popular to

check for the association between the study-specific effect sizes and their standard errors using

the funnel plot or Egger’s regression test [15]. However, it is well known that such association

may be intrinsic for binary outcomes even if no publication bias appears, so Egger’s test may

have an inflated type I error rate [31, 32]. In addition to the intrinsic association for binary out-

comes, this article indicates that such a problem also exists when using the SMD for continu-

ous outcomes. Although the meta-analyses with false positive results do not truly have

publication bias, they may still suffer from bias due to sampling error.

Moreover, our findings imply that the magnitude of sample size may not be viewed as an

absolute concept in meta-analyses; we may not determine whether a sample size is small or

large without taking other parameters into account. For example, using the log OR as the effect

size, Fig 3(A), 3(D) and 3(G) show that a sample size of 10 to 20 may be large enough to pro-

duce desirable meta-analysis results when the true log OR is zero. However, when the hetero-

geneity, the number of studies, and the true log OR are large, Fig 3(I) shows that a sample size

of 50 to 100 may not be adequate.

The bias of the estimated overall log RR was particularly substantial in Fig 4; this may be

related to the effect of the weighting bias for binary outcomes [57]. However, unlike the pur-

pose of Tang [57], this article focused on the bias completely due to sample error which exists

for both continuous and binary outcomes.

This article performed the simulated meta-analyses using the popular inverse-of-variance

method in a frequentist way. Alternatively, several exact models have been proposed for binary

outcomes; they do not require the normal approximation to estimate the study-specific effect

sizes and their within-study variances [58–62]. The event numbers in the compared groups

can be directly modeled as binomial distributions, thus accounting for sampling error in both

point estimates of effect sizes and their variances. Similar exact models are also needed for con-

tinuous outcomes to avoid treating the within-study variances as if they were the true vari-

ances; we leave them as future work.

Supporting information

S1 File. Scatter plots of the sample effect sizes against their precisions (i.e., the inverse of

their sample variances) in some simulated meta-analyses with small sample sizes.

(PDF)
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S2 File. R code for the simulation studies.
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S3 File. Simulation results for the mean difference.

(ZIP)

S4 File. Simulation results for the standardized mean difference.

(ZIP)

S5 File. Simulation results for the log odds ratio.
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S6 File. Simulation results for the log risk ratio.
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S7 File. Simulation results for the risk difference.
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