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Abstract. The ability to monitor and understand natural

and anthropogenic variability in atmospheric carbon diox-

ide (CO2) is a growing need of many stakeholders across the

world. Systems that assimilate satellite observations, given

their short latency and dense spatial coverage, into high-

resolution global models are valuable, if not essential, tools

for addressing this need. A notable drawback of modern as-

similation systems is the long latency of many vital input

datasets; for example, inventories, in situ measurements, and

reprocessed remote-sensing data can trail the current date by

months to years. This paper describes techniques for bias-

correcting surface fluxes derived from satellite observations

of the Earth’s surface to be consistent with constraints from

inventories and in situ CO2 datasets. The techniques are ap-

plicable in both short-term forecasts and retrospective sim-

ulations, thus taking advantage of the coverage and short la-

tency of satellite data while reproducing the major features of

long-term inventory and in situ records. Our approach begins

with a standard collection of diagnostic fluxes which incor-

porate a variety of remote-sensing driver data, viz. vegetation

indices, fire radiative power, and nighttime lights. We then

apply an empirical sink so that global budgets of the diagnos-

tic fluxes match given atmospheric and oceanic growth rates

for each year. This step removes coherent, systematic flux

errors that produce biases in CO2 which mask the signals an

assimilation system hopes to capture. Depending on the sim-

ulation mode, the empirical sink uses different choices of at-

mospheric growth rates: estimates based on observations in

retrospective mode and projections based on seasonal fore-

casts of sea surface temperature in forecasting mode. The

retrospective fluxes, when used in simulations with NASA’s

Goddard Earth Observing System (GEOS), reproduce ma-

rine boundary layer measurements with comparable skill to

those using fluxes from a modern inversion system. The fore-

casted fluxes show promising accuracy in their application to

the analysis of changes in the carbon cycle as they occur.

Copyright statement. The author’s copyright for this publication is

transferred to the National Aeronautics and Space Administration.

1 Introduction

As the number and kind of space-based carbon dioxide

(CO2) measurements continue to grow, so too do the ca-

pabilities of modeling and data assimilation systems which

support carbon monitoring. An eventual goal of these sys-

tems is the verification of international climate agreements

(Ciais et al., 2015; Peters et al., 2017; Pinty et al., 2017,

2019). However, verification would require the additional

ability to distinguish the signal in atmospheric CO2 due to

changes in anthropogenic emissions from that due to inter-

annual variability in biospheric fluxes, transport, and other

natural processes. While this functionality matures, there are

many other applications that do not require attribution but do

require near-real-time (NRT) latencies (i.e., less than a few

days), horizontal resolutions finer than several hundred kilo-

meters, and extensive spatial coverage. These include short-

term forecasts for field campaigns, identification of times and

places of interest for satellite instruments with controllable

pointing (e.g., the Orbiting Carbon Observatory 3), boundary
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conditions for regional models, and the production of a priori

profiles and/or evaluation datasets for retrieval algorithms.

Furthermore, high-resolution, global atmospheric CO2 mon-

itoring systems with forecasting and assimilation capabilities

enable the study of carbon cycle phenomena as they occur,

e.g., the impact of the recent coronavirus pandemic (Weir et

al., 2020), and complement other existing and forthcoming

remote-sensing observations of soil moisture, evapotranspi-

ration, and terrestrial biomass (Stavros et al., 2017).

The modeling and assimilation system under development

at NASA Goddard Space Flight Center (GSFC), coordinated

by the Global Modeling and Assimilation Office (GMAO),

incorporates an extensive array of satellite observations and

Earth system models to estimate carbon fluxes, atmospheric

mixing ratios, and their uncertainties (Ott et al., 2015). The

“baseline” configuration of this system features a collection

of diagnostic surface fluxes derived from remotely sensed

properties, e.g., terrestrial biospheric exchange from vegeta-

tion indices (Randerson et al., 1996), NRT biomass burning

from fire radiative power (Darmenov and da Silva, 2015), and

space–time disaggregations of fossil fuel inventories from

nighttime lights (Oda et al., 2018). High-resolution estimates

of atmospheric CO2 then follow from transport simulations

with the Goddard Earth Observing System (GEOS) gen-

eral circulation model, which can reproduce the meteorol-

ogy of an atmospheric analysis, e.g., the Modern-Era Retro-

spective analysis for Research and Applications, Version 2,

(MERRA-2; Gelaro et al., 2017) with high fidelity (Orbe et

al., 2017).

This system is currently being extended to assimilate a col-

lection of CO2 datasets (Tangborn et al., 2013; Eldering et

al., 2017) including retrievals of column averages from the

Greenhouse Gases Observing Satellite (GOSAT; Kuze et al.,

2009), Orbiting Carbon Observatory 2 (OCO-2; Crisp et al.,

2004), and the ground-based Total Carbon Column Observ-

ing Network (TCCON; Wunch et al., 2011) and in situ data

from the multi-agency collection of data provided in NOAA’s

Observation Package (ObsPack; Masarie et al., 2014). The

assimilation step has the benefit of synthesizing heteroge-

neous measurement types, “gap filling” data when and where

they are unavailable, and drawing model simulations closer

to observed values. In particular, assimilation systems have

the potential to correct for errors in the surface flux inputs as-

sociated with uncertainties in how to (1) reconcile bottom-up

global budgets derived from inventories and biospheric mod-

els with top-down budgets derived from atmospheric mea-

surements (Le Quéré et al., 2018), (2) partition the surface

sink between the tropics and extratropics (Schimel et al.,

2015), and (3) reproduce responses to interannual variability

in meteorology, for example the impact of El Niño on terres-

trial (Liu et al., 2017) and oceanic (Chatterjee et al., 2017)

fluxes and drought on semi-arid ecosystems (Poulter et al.,

2014). A comprehensive description of current and planned

space-based observations of CO2, along with the scientific

questions they hope to address, is available in the report of

Crisp et al. (2018).

As the first step in the development of the NASA GMAO

CO2 assimilation system, we bias-correct the a priori, base-

line diagnostic fluxes to match global budget constraints

from inventories and in situ measurements. This step reduces

the errors of model simulations before assimilating satellite

data, thus increasing the ability of the system to capture other

signals of interest in the observations (Dee, 2005). For ex-

ample, in any given year, estimates of global net biospheric

exchange (NBE) from the TRENDY ensemble of terrestrial

biosphere models (Sitch et al., 2015) have a range of roughly

4 petagrams of carbon (Pg C). Transported through the atmo-

sphere, this produces a 2 ppm spread in global CO2, which is

twice the size of the atmospheric growth rate perturbation

of the 2015–2016 El Niño. An under/overestimation of NBE

can lead to an under/overprediction of the seasonal cycle am-

plitude of simulated CO2 (Yang et al., 2007; Keppel-Aleks et

al., 2012; Zhao et al., 2016) and has the potential for confu-

sion with other covarying error sources (Basu et al., 2011).

Among flux inversion systems that ingest in situ data, e.g.,

those analyzed by Gaubert et al. (2019), the spread in NBE

is usually much smaller, about 0.25 Pg C. Nevertheless, flux

inversions typically achieve this agreement through their re-

liance on long-term data records and transport simulations

and can trail the current date by a year or more. Our goal

is to achieve a similar error reduction without the result-

ing latency, allowing the subsequent assimilation of satellite

CO2 data to focus on regional and seasonal errors rather than

global budgeting errors.

This paper presents a collection of surface fluxes hav-

ing both retrospective and forecasting modes that repro-

duce background CO2 measurements with comparable skill

to a modern flux inversion system. The collection includes

an additional, empirically derived land sink to our baseline

flux collection to ensure that global flux totals are consis-

tent with observed atmospheric CO2 growth rates. Empirical

adjustments of this kind date back at least to the work of

Tans et al. (1990), who showed that their simulations recre-

ated observed north–south gradients of CO2 when they in-

creased terrestrial uptake in the Northern Hemisphere ex-

tratropics. Later, Chevallier et al. (2009) tuned their fluxes

to match observed atmospheric growth rates, Keppel-Aleks

et al. (2012) adjusted Northern Hemisphere midlatitude up-

take to improve their simulated seasonal cycle amplitude, and

Agustí-Panareda et al. (2016) derived an adjustment to fluxes

from their prognostic model (i.e., one which does not ingest

satellite vegetation data) based on comparisons to a flux in-

version system. The method described here is an extension

to that of Chevallier et al. (2009), while sharing some fea-

tures of each of the previously cited works. In retrospective

mode, it applies an atmospheric growth rate based on in situ

observations in the marine boundary layer (MBL; Dlugo-

kencky and Tans, 2016b). In forecasting mode, when many of

the diagnostic flux products and observationally constrained
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growth rates are unavailable, the fluxes use extrapolation and

a method for predicting the growth rate based on sea surface

temperature (SST) forecasts (Jones and Cox, 2005; Betts et

al., 2016). It differs from previous works in its functional

form and its application to fluxes diagnosed from satellite

measurements instead of those from a prognostic model. For

now, we are willing to accept that the empirical sink adds a

biophysical inconsistency into our system but hope to better

address this in the future.

In the work that follows, the construction of the empiri-

cal sink is detailed in Sect. 2. The evaluation of the fluxes

against other products and comparisons of transported mix-

ing ratios to in situ measurements are presented in Sect. 3. In

particular, we show that a GEOS simulation using the bias-

corrected fluxes has similar skill reproducing MBL measure-

ments to a simulation using fluxes from a modern inversion

system. These findings and their potential scientific impact

are summarized in Sect. 4.

2 The LoFI flux collection

Here we present the Low-order Flux Inversion (LoFI), a

collection of carbon fluxes driven by remote-sensing land-

surface data and bias-corrected to reproduce given atmo-

spheric and oceanic growth rates. We use the term “low or-

der” to distinguish it from modern flux inversion systems

which typically solve for fluxes at a regional, monthly scales

or finer. To demonstrate the impact of the empirical sink, we

also consider a “baseline” flux collection similar to that used

in Ott et al. (2015), with the only difference being that the

empirical land sink is removed. All products in both the LoFI

and baseline collections are conservatively regridded to the

0.5◦ ×0.625◦ dateline and pole-centered grid used by GEOS

for many applications including the MERRA-2 reanalysis

of the meteorological inputs needed by the flux components

(Sect. A1). All fluxes have a daily time step, except the land

biosphere which has a 3-hourly time step to resolve the di-

urnal cycle. In retrospective mode, the LoFI collection trails

the current date by up to a year. It forecasts fluxes for the

current and next year using the modifications described in

Sect. 2.3. As a rough metric of truth/plausibility, we com-

pare both collections to widely used ensembles of terrestrial

biospheric models, ocean biogeochemical models, and flux

inversions. These choices and the components of the LoFI

fluxes are detailed below and summarized in Table 1.

2.1 Individual flux components

The LoFI flux collection consists of the following six com-

ponents.

Net ecosystem exchange (NEE). The Carnegie-Ames-

Stanford Approach (Randerson et al., 1996) – Global

Fire Emissions Dataset version 3 (CASA-GFED 3;

van der Werf et al., 2003, 2010) uses satellite-based

observations of vegetation and land-cover along with

meteorology from MERRA-2 to constrain carbon

stocks and fluxes. Notably, net primary productivity

(NPP) is determined from Advanced Very-High-

Resolution Radiometer (AVHRR) observations of

normalized difference vegetation index (NDVI; Pinzon

and Tucker, 2014), and biomass burning is determined

from observations from Moderate Resolution Imaging

Spectrometer (MODIS) burned area estimates (Giglio

et al., 2010). This version is available on a 0.5◦ grid

with a monthly time step. More details about our

implementation and its use in GEOS are available in

Ott et al. (2015).

Biofuel. CASA-GFED 3 also produces an estimate of the

anthropogenic burning of harvested wood (van der Werf

et al., 2010), which we refer to here as biofuel. The

emissions have no seasonality and are calculated as the

population density times national per capita fuel con-

sumption estimates while being constrained by the total

available coarse woody debris at each model time step.

Biomass burning. The Quick Fire Emissions Dataset

(QFED; Darmenov and da Silva, 2015), an NRT prod-

uct, determines emissions based on MODIS fire radia-

tive power (FRP) estimates using a technique similar to

the Global Fire Assimilation System (GFAS; Kaiser et

al., 2012). QFED is produced on a 0.1◦ grid for every

day with a climatological diurnal cycle applied.

Fossil fuel combustion. The Open-source Data Inventory

for Anthropogenic CO2 (ODIAC; Oda and Maksyu-

tov, 2011, 2015; Oda et al., 2018) is a global, monthly,

high-resolution (1 km × 1 km) fossil fuel CO2 gridded

emission data product based on the disaggregation of

country-level fossil fuel CO2 emission estimates us-

ing a global power plant database and satellite obser-

vations of nighttime lights. It is updated on an annual

basis upon the availability of updated global fuel sta-

tistical data. This work uses the 2016 version, which

covers 2000–2015 (the current version goes through

2019). For all but the 2 most recent years (here, 2014

and 2015), ODIAC uses global and country estimates

from the Carbon Dioxide Information Analysis Center

(CDIAC; Gilfillan and Marland, 2021), while estimates

for the 2 most recent years are projected using BP’s Sta-

tistical Review of World Energy 2016 (Oda et al., 2018).

Ocean exchange. A method for restoring interannual vari-

ability to the monthly climatology of Takahashi et

al. (2009) is used for determining air–sea flux. This ap-

proach reapplies the global mean climatological growth

rate estimate of 1.5 µatm yr−1 for the partial pressure of

CO2 in seawater (pCOsw
2 ) that Takahasi et al. (2009)

use to derive their climatology. For the partial pressure

in the atmosphere (pCOatm
2 ), we use weekly values of
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Table 1. The components of our fluxes and the different ensembles used for evaluation.

Name Type References

LoFI flux components

CASA-GFED 3 NEE and biofuel van der Werf et al. (2010)a

QFED Biomass burning Darmenov and da Silva (2015)

ODIAC Fossil fuel Oda et al. (2018)b

LoFI Takahashi Ocean Sect. 3.1c

LoFI empirical land sink NEE adj. Sect. 3.2d

Top-down ensemble

CarbonTracker 2016 and 2017 NBE and ocean Peters et al. (2007)e

CarbonTracker Europe 2016 NBE and ocean Peters et al. (2007)f

CAMS v17r1 NBE and ocean Chevallier et al. (2011)

Jena CarboScope v4.1 S93 and S04 NBE and ocean Rödenbeck et al. (2003)

Bottom-up ensemble

GCP 2018 (TRENDY V7) NBE Sitch et al. (2015)g

GCP 2018 Ocean Le Quéré et al. (2018)h

a Implementation in GEOS described by Ott et al. (2015). b Available at http://db.cger.nies.go.jp/dataset/ODIAC/ (last

access: 10 November 2016). c See https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2016/CT2016_doc.pdf (last

access: 10 November 2016) for a more detailed description of a nearly identical approach used as an ocean prior in the

NOAA CarbonTracker flux inversion system. d See Chevallier et al. (2009) and Agustí-Panareda et al. (2016) for

examples of similar approaches. e Updates documented at http://carbontracker.noaa.gov. f Updates documented by van

der Laan-Luijkx et al. (2017). g Updates documented by Le Quéré et al. (2018). h Global, annual totals only.

zonal-mean surface CO2 from the NOAA MBL refer-

ence (Masarie and Tans, 1995; Dlugokencky and Tans,

2016a). Given the two partial pressures, estimates of the

flux from the ocean surface to the atmosphere follow

from the expression (Wanninkhof, 2014)

F sw = kCU2
10

(

pCOsw
2 − pCOatm

2

)

,

where k is a constant, U10 is the 10 m wind speed, and C

is the fractional sea-ice coverage. To complete the flux

calculation, we use daily, observationally constrained

estimates of U10 and C from MERRA-2. This approach

has been used by several previous studies and is de-

rived from one of the ocean priors in the NOAA Car-

bonTracker system (Table 1, footnote c).

Empirical land sink. An additional, empirical sink based

on the work of Chevallier et al. (2009) is applied to con-

strain the global atmospheric growth rate of the com-

bined LoFI flux package. The empirical sink decreases

heterotrophic respiration (HR) in months where the 2 m

air temperature (T ), meant as a rough proxy for soil

temperature, increases from the previous month. This

is designed to concentrate the correction to the northern

extratropics during the spring and summer, where the

neutral biosphere assumption of CASA is thought to be

most problematic (Yang et al., 2007; Carvalhais et al.,

2008), and flux inversions indicate a net sink (Gaubert

et al., 2019). For the mth month of each year, at every

point on the surface, the sink Sm has the form

Sm = α · 1+Tm · HRm, (1)

where

1+Tm = max(Tm − Tm−1,0)/(10 ◦C),

i.e., 1+Tm is the (non-dimensionalized) temperature in-

crease from the previous month, and α is a constant

scaling factor computed such that the global total fluxes

for the year match a specified atmospheric growth rate

1CO2. In other words,

α =
2.124 · 1CO2 − 〈F 〉

〈1+T · HR〉
,

where 2.124 · 1CO2 is the atmospheric growth rate in

units of Pg C (Ballantyne et al., 2012), 〈X〉 is the area-

weighted global, annual total in units of Pg C of a flux

field variable X, and F is the sum of all baseline fluxes.

In retrospective years (those preceding the current), we

use growth rates derived from the NOAA MBL refer-

ence (Dlugokencky and Tans, 2016b), and in NRT years

(the current and following) we use projections based on

seasonal forecasts of sea surface temperature described

in Sect. 2.3.

2.2 Anthropogenic short-cycle burning and lateral

fluxes

The above separation into component fluxes assumes that,

added together, biomass burning and biofuel emissions ac-
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http://db.cger.nies.go.jp/dataset/ODIAC/
https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2016/CT2016_doc.pdf
http://carbontracker.noaa.gov


B. Weir et al.: Bias-correcting carbon fluxes derived from land-surface data 9613

count for emissions from both naturally occurring wildfires

and anthropogenic burning due to gross land-use/land-cover

change. Furthermore, emissions from ethanol, biodiesel, and

other short-cycle fuels used for transportation are potentially

underestimated since they are not included in the ODIAC

fossil fuel and CASA-GFED 3 biofuel emissions, yet the

removal of carbon due to the corn and soybean harvest in

the Midwestern United States is included in CASA-GFED 3

(derived from USDA National Agricultural Statistics Service

data for 2005). Excluding the lateral transport of significant

amounts of carbon over continental scales, we do not expect

these assumptions to have a noticeable effect on the compar-

isons to follow since they consider only NBE, the sum of all

land fluxes except fossil fuel emissions, and not the individ-

ual components.

2.3 Modifications needed for forecasting mode

Many of the products used in the above fluxes are unavail-

able until a few months to years following the end of a given

year. In particular, fossil fuel inventories and the NOAA

MBL growth rate require data collection and analysis that

must necessarily trail real time. Simulations during the cur-

rent and future years are thus only possible with some type

of extrapolation and/or statistical model applied to past val-

ues. For all flux components except biomass burning and the

empirical sink, we produce estimates during NRT years by

first extrapolating a linear fit through the retrospective values

for each point and each month. This choice allows different

regions and different seasons to have different trend lines.

While more complex choices are possible, this is meant as

a simple first step as we work to reduce the latency of our

baseline satellite-derived flux products.

The primary motivation for using QFED biomass burn-

ing instead of GFED was QFED’s ability to produce NRT

estimates. This ability is particularly important for biomass

burning emissions whose interannual variability is compara-

ble in magnitude to its annual mean and seasonal cycle am-

plitude and is much greater than its long-term trend. While

the removal of terrestrial carbon by QFED fires does not

match the corresponding fire loss in CASA carbon stocks,

QFED emissions are calibrated to GFED (Darmenov and

da Silva, 2015), resulting in a difference that is minor com-

pared to that of the empirical sink (see Sect. A3).

For the empirical sink, we switch from using an atmo-

spheric growth rate derived from in situ data in retrospective

years to a linear functional fit to seasonal SST anomalies and

anthropogenic emissions (Jones and Cox, 2005; Betts et al.,

2016). This approach estimates the growth rate of CO2 in

ppm, 1CO2, as

1CO2 = 0.069 + 0.442N + 0.205E, (2)

where N is the average of SST anomalies in the Niño 3.4 re-

gion (5◦ N to 5◦ S, 170 to 120◦ W) from October of the previ-

ous year to September of the current year in units of degrees

Kelvin, and E is the global total anthropogenic emissions

from fossil fuels and net land-use/land-cover change in units

of Pg C. For the SST anomalies, we use the Reynolds analy-

sis (Reynolds et al., 2007) until the last month it is available

and fill in the remaining months with SST forecasts from

the GEOS Subseasonal to Seasonal (S2S) forecast system

(Molod et al., 2020), and for the anthropogenic emissions

we use extrapolated totals from the Global Carbon Project

(GCP) 2018 budget.

The coefficient 0.205 multiplying the anthropogenic term

in the growth rate forecast (Eq. 2) represents a constant

airborne fraction of 0.44 when converted using a factor of

2.124 Pg ppm−1, roughly in line with the findings of Rau-

pach et al. (2014). Historical data records tend to show that

the long-term trend in the airborne fraction is insignificant

compared to its interannual variability (Knorr, 2009; Ballan-

tyne et al., 2012), but there is some indication of significant

multi-decadal trends, including the possibility of a recent de-

crease (Keenan et al., 2016).

3 Flux and transport simulation analysis

Our primary methods for evaluating the LoFI flux package,

along with the baseline fluxes, are comparisons to the en-

sembles of bottom-up terrestrial biosphere and ocean bio-

geochemistry models and top-down flux inversions outlined

in Table 1 and described in more detail in Sect. A2. It is

important to note that the bottom-up ensembles and top-

down ensemble are not directly comparable: riverine input

of carbon from the terrestrial biosphere to the ocean causes

the top-down ensemble to infer a greater terrestrial sink and

smaller oceanic sink than the biospheric model ensemble

(Le Quéré et al., 2018). Jacobson et al. (2007) used fluxes

from a global erosion model (Amiotte Suchet and Probst,

1995; Ludwig et al., 1996) to estimate a riverine contribu-

tion of 0.45 ± 0.18 Pg C (all uncertainties reported here are

1σ ). Recently, Resplandy et al. (2018) used relationships

between ocean heat and carbon transport to derive an esti-

mate of 0.78 ± 0.20 Pg C. Since there is so much uncertainty

about this discrepancy, in particular its distribution in time

and space, we do not make any corrections to the ensemble

ranges used in the comparisons, and this choice should be

kept in mind in the interpretation of the following results. In

any case, the most appropriate ensemble for our purposes is

the top-down ensemble, while the bottom-up ensembles in-

dicate a greater range of plausibility.

There are several other flux evaluation metrics, which we

do not apply here, each with their own limitations. For exam-

ple, fluxes can be measured directly from towers with eddy

covariance techniques (Dabberdt et al., 1993), but the spa-

tial footprint of a flux tower is typically much smaller than

10 km (Raczka et al., 2013), and upscaling flux tower data to

a global, gridded product has thus far been unable to produce

reliable global NBE budgets (Jung et al., 2011). Eddy covari-
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ance measurements from aircraft (Desjardins et al., 1989),

e.g., NASA’s Carbon Airborne Flux Experiment (CARAFE;

Wolfe et al., 2018), are representative of much longer hori-

zontal length scales than towers, but the currently available

campaign data are sparse in space and time. As shown in

Sect. 3.3, another choice is to transport our fluxes through

the atmosphere with the GEOS general circulation model

(GCM) and compare the simulated CO2 mixing ratios with

atmospheric observations. While this approach can test the

ability of the fluxes to reproduce large-scale, long-term sig-

nals, it is susceptible to the misinterpretation of a transport

error as a flux error.

3.1 Ocean exchange

Over the past few decades, global pCOsw
2 has increased by

roughly 1.5 µatm yr−1, yet with considerable regional differ-

ences (Takahashi et al., 2009). At the same time, pCOatm
2 has

increased at an even greater pace, driving an increasing ocean

sink. Deviations from these trends are predominantly limited

to the tropical Pacific, where the El Niño–Southern Oscilla-

tion (ENSO) is the dominant driver of interannual variabil-

ity (Rödenbeck et al., 2015), and the Southern Ocean, where

the net ocean sink switched from increasing to decreasing in

the early 1990s and switched back in the early 2000s (Land-

schützer et al., 2015).

By imposing observed trends in pCOsw
2 and pCOatm

2 , our

ocean exchange fluxes produce a sink that is generally con-

sistent with the inversion ensemble and GCP 2018 ocean bio-

geochemical model ensemble (Figs. 1 and A1), again with

the provision that the biogeochemical model ensemble does

not include outgassing due to riverine input. Averaged over

2000–2010, our mean ocean sink is 1.55 Pg C. This is con-

sistent with annual budgets based on atmospheric measure-

ments of a combination of O2 and CO2 called atmospheric

potential oxygen (APO; Stephens et al., 1998): Keeling and

Manning (2014) estimate an ocean sink of 2.50 ± 0.60 Pg C

for 2000–2010, which reduces to 1.72 ± 0.60 Pg C after re-

moving 0.78 Pg C to account for riverine input (see discus-

sion above). The pCOsw
2 -based products of Landschützer et

al. (2014) and Rödenbeck et al. (2014), which do not require

a riverine adjustment, produce sinks of 1.37 and 1.74 Pg C

(averages from GCP 2018; Le Quéré et al., 2018), also in

line with our budgets (several more comparable estimates are

available in Jacobson et al., 2007). Even during the strong

ENSO of 2015–2016, the constant growth in pCOsw
2 that we

impose produces a global sink within the ranges of the top-

down and bottom-up ensembles (Fig. 1). While linear growth

is not appropriate for simulations of several decades, over

which pCOsw
2 increases exponentially (Raupach et al., 2014),

it is sufficient for our 15-year study period and something we

hope to address in future developments.

Figure 1. Global annual totals of LoFI ocean exchange fluxes (solid

blue; identical to baseline) for 2003–2017. Minimum-to-maximum

ranges of the inversion ensemble (dark grey) and GCP 2018 ocean

biogeochemical model ensemble (light grey) are provided for com-

parison.

3.2 Net biospheric exchange

In comparison to the flux inversion ensemble and the

TRENDY version 7, simulation 3 (Sitch et al., 2015) ensem-

ble of dynamical global vegetation models (DGVMs), the

baseline fluxes consistently underestimate NBE – the sum of

NEE, biofuels, and biomass burning – by over 3 Pg C (see

Fig. 2a and Table 2). This is due to the assumption of a

neutral biosphere in CASA-GFED, which thus has no long-

term net sink, and is the primary motivation for the deriva-

tion of the empirical land sink. In the Northern Hemisphere,

the neutral biosphere assumption causes CASA to systemat-

ically underpredict seasonal cycle amplitudes in comparison

to measurements from flux towers (Carvalhais et al., 2008)

and a combination of aircraft- and ground-based remote-

sensing retrievals (Yang et al., 2007). This effect is seen in

the diagnostic fluxes as an underprediction of the global sink

strength in March through July (Fig. 2) limited primarily to

the northern extratropics (Fig. 3, first column). In contrast,

including the empirical sink in the LoFI fluxes moves its

annual totals and seasonal cycle significantly closer to the

ranges of the comparison ensembles. Since the empirical sink

increases the seasonal cycle and its magnitude increases as

net terrestrial uptake grows, it produces a seasonal cycle am-

plitude that increases in time, consistent with observations in

high northern latitudes (Graven et al., 2013) and their attri-

bution to increased extratropical terrestrial uptake (Barnes et

al., 2016).

Increasingly, modern flux inversions tend to predict a per-

sistent, net sink in the northern extratropics (NE), with the

tropics and southern extratropics (T+SE) in near balance with

considerably more interannual variability than the NE (Ciais
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Figure 2. Global total NBE from fluxes excluding (baseline; dash–

dot red) and including (LoFI; solid blue) the empirical sink: (a) an-

nual averages and (b) the seasonal cycle climatology for 2003–

2015. Minimum-to-maximum ranges of the inversion ensemble

(dark grey) and TRENDY V7 ensemble (light grey) are provided

for comparison.

Table 2. Comparison of 2004–2014 NBE budgets over the northern

extratropics (NE) and tropics and southern extratropics (T+SE).

Product NE (Pg C) T+SE (Pg C)

Baseline 0.07 −1.24

LoFI 2.50 −0.41

Inversionsa 2.27 ± 0.36 −0.10 ± 0.28

TRENDY V7a,b 1.27 ± 0.65 0.00 ± 0.48

a Ranges are the 2004–2014 average of the 1σ uncertainties across

all products. b Requires adjustment for riverine export, e.g.,

0.78 Pg C added to the NE budget.

et al., 2019; Gaubert et al., 2019). Stephens et al. (2007) first

showed that inversions with neutral T+SE fluxes compared

better to profiles of in situ aircraft data than inversions with a

significant T+SE source. Inversions from the Regional Car-

bon Cycle Assessment and Processes (RECCAP; Canadell et

al., 2011) intercomparison also showed a clear separation be-

tween neutral and source T+SE budgets, with the difference

being due to the decision to average observational data over

month-long intervals (Peylin et al., 2013). For the RECCAP

inversions that used data varying within the month, Peylin et

al. (2013) found a sink over 2001–2004 of 1.85 ± 0.25 Pg C

in the NE and −0.34±0.27 Pg C in the T+SE. The agreement

has become even stronger across more modern inversion sys-

tems, with those covering 2004–2014 finding a NE sink of

2.17±0.36 and 0.06±0.11 Pg C in the T+SE (Gaubert et al.,

2019). Over this same time period, the LoFI fluxes have a

NE sink of 2.50 Pg C and a T+SE sink of −0.41 Pg C, sug-

gesting possibly a slight overestimation of the T+SE source,

yet still within a reasonable range of uncertainty (see Table 2

for comparable ranges from the TRENDY and inversion en-

sembles).

The net terrestrial sink found by inversions has been shown

to be consistent with growth in temperate and boreal terres-

trial ecosystems driven primarily by carbon fertilization and

forest regrowth (Schimel et al., 2015; Fernández-Martinez

et al., 2019) with the possibility of an additional contribu-

tion from agriculture (Zeng et al., 2014). Notably, the for-

est inventory analysis of Pan et al. (2011) estimated a 2000–

2007 sink of 1.28±0.17 Pg C in boreal and temperate forests

(mostly in the NE) and −0.08±1.17 Pg C in tropical forests.

Further evidence for a persistent NE sink and a weak sink or

source in the T+SE can be found in estimates of aboveground

biomass change derived from vegetation optical depth (VOD;

Liu et al., 2015), a product of remotely sensed microwave

radiation, and DGVM simulations constrained with forest

demography data (Pugh et al., 2019), the global forest age

dataset (GFAD; Poulter et al., 2018). Pugh et al. (2019) find

a significant sink in the Eastern United States, which is pro-

duced by our empirical sink as well (Fig. 3, third row, third

column). These studies do differ with Pan et al. (2011) in im-

portant ways, including the attribution of a greater percentage

of the net tropical sink to gains in shrublands and savannas

than to forest regrowth (Liu et al., 2015) and estimating a sig-

nificantly smaller tropical regrowth sink (Pugh et al., 2019).

Taken together, the findings described above suggest an

empirical sink proportional to the CO2 growth rate (e.g.,

driven by carbon fertilization) and monthly temperature in-

crease (e.g., focused to the extratropical growing season).

The choice of the last remaining factor in Eq. (1), het-

erotrophic respiration (HR) over, for example, net primary

production (NPP), requires further investigation. We chose

HR rather than NPP for several reasons: (1) boreal forests

allocate a much greater percentage of biomass below ground

than tropical forests do (Pan et al., 2011); (2) the NDVI driver

data of CASA tend to put a strong, observationally driven

constraint on NPP; and (3) the uncertainty in the HR response

to temperature changes through its so-called Q10 function

(Lloyd and Taylor, 1994; Tjoelker et al., 2001; Huntzinger

et al., 2020). In any case, the temperature increase factor of
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Figure 3. Climatologies (2003–2015) of NBE from the fluxes excluding (baseline) and including (LoFI) the empirical sink. The first row

depicts annual averages, and each subsequent row depicts averages over different seasons. In the left column, zonal-mean NBE from the

baseline fluxes (dash–dot red) and LoFI fluxes (solid blue) are plotted along with the ranges of the inversion ensemble (dark grey) and the

TRENDY V7 ensemble (light grey), while the middle and right columns show maps of the LoFI fluxes (middle) and the magnitude of the

empirical sink (right), i.e., the difference between the LoFI and baseline fluxes. Note that the scale of the annual average plots is 3 times

smaller than that of the seasonal average plots.

the empirical sink makes it relatively insensitive to the choice

of the flux factor (e.g., HR, NPP, or ecosystem respiration).

Even after adding the empirical sink, the LoFI fluxes have

some discrepancies with the comparison ensembles worth

noting. In particular, the LoFI fluxes predict a sink from 0

to 15◦ S during JJA, while the comparison ensembles pre-

dict neutral fluxes (Fig. 3, first column, fourth row, difference

between blue line and grey shading). The opposite differ-

ence, although less noticeable, is present during DJF (Fig. 3,

first column, second row). It is unclear, however, how accu-

rate either ensemble is in this case: the inversions are hin-

dered by the limitation of in situ data and uncertainties in

transport over this latitude band, while the biospheric mod-

els are potentially hindered by inaccuracies in meteorologi-

cal driver data and deficiencies in the representation of distur-

bance (Molina et al., 2015; van der Laan-Luijkx et al., 2015).

This approach may overestimate the net sink over the Mid-

western United States, where our version of CASA-GFED 3

already includes a corn and soybean harvest (other harvests

are not currently represented). Understanding the interaction

of these two adjustments is the subject of ongoing work.

3.3 Transport simulations

Ultimately, a major goal of this effort is to develop a realistic

collection of fluxes that improves the ability of transport sim-
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ulations to reproduce measurements and support retrospec-

tive and NRT studies. As a test of this skill, we transport the

LoFI fluxes through the atmosphere with the GEOS GCM

and compare the results to in situ measurements from NOAA

MBL sites available in NOAA ObsPack GlobalView+ v4.2.2

(Masarie et al., 2014; Cooperative Global Atmospheric Data

Integration Project, 2019). We do the same with NOAA’s

CarbonTracker 2016 (CT2016; Peters et al., 2007, with up-

dates documented at http://carbontracker.noaa.gov, last ac-

cess: 10 November 2016) fluxes for all components, which

functions as a benchmark of the ability of the GEOS GCM

to reproduce NOAA MBL measurements when using fluxes

from a modern inversion system.

All transport simulations are run using the Heracles 4.0

GEOS GCM version on a 0.5◦ × 0.625◦ regular latitude–

longitude grid with 72 vertical levels, a time step of 15 min,

and output instantaneous fields every 3 h. The run uses the

GEOS replay approach to reproduce the effect of the meteo-

rological data assimilation system without having to rerun it

(see Orbe et al., 2017, for the most up to date description).

In this configuration, the large-scale circulation, tempera-

ture, and moisture are constrained by analysis fields every

6 h, while physical processes such as convection, turbulence,

and radiative transfer are recalculated at a high temporal res-

olution. This computationally efficient framework provides

the ability to simulate realistic meteorology with a tight cou-

pling between fine-scale atmospheric transport processes and

trace gas emissions. For the analyzed meteorology, we use

MERRA-2, resulting in a transport simulation sharing many

of the properties of that used by Ott et al. (2015).

The evaluation of the two model runs (one with LoFI

fluxes, the other with CT2016 fluxes) against the NOAA

MBL surface sites is shown in Fig. 4. Neither of the runs

is clearly superior. This suggests that, at least in terms of

aggregate statistics over multiple years, the empirical sink

produces a correction to the baseline, diagnostic fluxes with

a similar skill as running a formal inversion system based

on MBL data. While our approach may degrade the skill of

CT2016 by using a different transport model, it may also im-

prove it by running at a higher resolution, and our calculated

differences are consistent with those in the evaluation in the

CT2016 documentation. At this level of agreement with the

surface sites, it is difficult to say if errors from atmospheric

transport or any single component of the LoFI fluxes domi-

nate all other sources of error. Further refinement of any sin-

gle component then runs the risk of confusing errors in one

component with those from another.

3.4 Growth rate forecasts

At the start of 2016, the LoFI fluxes switch from retrospec-

tive mode to NRT. While it would be possible to extend retro-

spective mode to 2018 at the time of writing, we pick 2016 as

an interesting test case where we must forecast a growth rate

during a strong El Niño. In practice, NRT runs are limited to

Figure 4. Box-and-whisker plots of observation minus forecast

(OMF) statistics for 2003–2015 from model simulations using

CT2016 fluxes (green) and using LoFI fluxes (blue). The compar-

ison sites are all of the stations from the marine boundary layer

collection and are ordered by latitude along the y axis. For each

site, the circular target denotes the median, the solid box denotes

the range between the 25th and 75th percentiles, whiskers denote a

range of roughly 99 % of the data, and boxes denote values outside

this range. Grey bars on the right indicate, from top to bottom, the

northern extratropics (north of 23◦ N), tropics (between 23◦ N and

23◦ S), and southern extratropics (south of 23◦ S).

2 years since the flux products in the LoFI collection have at

most a 2-year latency. For 2016 and 2017, Eq. (2) predicts

growth rates of 2.93 and 2.63 ppm, while the current NOAA

MBL reference values are 2.85 ± 0.09 and 2.15 ± 0.09 ppm.
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Figure 5. Time series comparisons of model simulations using

CT2016 fluxes (green) and using LoFI fluxes (blue) to observations

(black) at the Mauna Loa observatory. Panel (a) depicts all samples,

while panel (b) is a 3-month mean of the observation minus model

differences. The solid black line at 2016 indicates the switch from

retrospective to NRT modes in the LoFI fluxes.

These small differences do not appear to significantly impact

the ability of NRT LoFI model runs to reproduce in situ mea-

surements at Mauna Loa (Fig. 5) – while there is a notable

error near the start of 2016, it is comparable in size to errors

during the 2010–2011 El Niño, and all errors after 2016 stay

below 1 ppm in magnitude. This suggests that misrepresen-

tations of the spatial and temporal variability of El Niño may

have a greater impact on our ability to represent the Mauna

Loa data record than errors in the growth rate forecast.

A major factor in the ability of NRT LoFI to reproduce

atmospheric CO2 observations is that, even in forecasting

mode, it continues to use the retrospective meteorological

analysis from MERRA-2. If we were to use meteorologi-

cal forecasts instead, we would expect the skill to degrade

within a few months and last about 2 years or less (Ilyina et

al., 2020).

4 Conclusions

This paper presented an adjustment to a diagnostic collection

of surface fluxes designed to bias-correct its global budgets

to match inventory data and in situ observations. For the ad-

justment, we developed an empirical sink that was the prod-

uct of the monthly increase in temperature with heterotrophic

respiration, thus focusing the correction to the northern extra-

tropics (NE) in spring and summer. The seasonal and zonal

variability of the bias-corrected fluxes were shown to be con-

sistent with ensembles of flux inversions and DGVMs and a

growing body of literature indicating a net sink in the NE

(Gaubert et al., 2019) driving increases in seasonal cycle am-

plitude in the high northern latitudes (Graven et al., 2013;

Barnes et al., 2016). This suggests that diagnostic models of

the terrestrial biosphere have the potential to reproduce these

patterns with the addition of a transient carbon pool repre-

senting the net sink in the NE.

Using the fluxes bias-corrected with the empirical sink in

transport simulations reproduced atmospheric measurements

in the marine boundary layer with the same skill as trans-

port simulations using fluxes from a flux inversion system.

In particular, the annual total errors were consistently less

than 1 ppm, with the true value almost always falling within

a quartile of the differences. Globally, the errors are on the or-

der of a few tenths of 1 ppm. The empirical sink thus enables

the study of carbon cycle anomalies, like the 2015–2016 El

Niño, whose effect on the atmospheric growth rate is a few

ppm or less. By removing the dominant error contribution to

our baseline fluxes, the lack of a net sink, the bias correction

also opens the possibility of correcting for errors in other flux

components, e.g., fossil fuel emissions, a major, long-term

scientific goal needed in the implementation and verification

of international climate accords.

There are several benefits to using this approach to bias-

correct a system’s surface fluxes. In comparison to a flux

inversion system, it is exceedingly simple to implement. It

is also less susceptible to errors due to the particular trans-

port model, data selection, and error covariance models.

For example, constraining the global growth rate alone re-

quires few, if any, assumptions about atmospheric transport

or decorrelation times and lengths. When used in simulations

or as a prior in an assimilation system, this approach signif-

icantly reduces biases due to misspecification of the growth

rate. Failing to remove such a bias before assimilating data

limits the ability of the assimilation system to account for

other signals of interest in the observations (Dee, 2005), e.g.,

synoptic-scale variations due to passing weather systems, re-

gional and seasonal anomalies due to drought, and changes

in anthropogenic emissions. Finally, our approach produces
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high-resolution fluxes which are often precluded by the com-

putational demands of flux inversion systems.

Since observational estimates of the global growth rate are

currently only available at the end of each year, using the

empirical sink developed here in an NRT atmospheric moni-

toring system requires a prediction of the global growth rate.

We projected growth rates in 2016 and 2017 based on fore-

casts and analyses of SST (Jones and Cox, 2005; Betts et al.,

2016). The values of 2.93 and 2.63 ppm were reasonable es-

timates of the values measured in the MBL of 2.85±0.09 and

2.15±0.09 ppm, which are unavailable until a few months af-

ter the year’s end. The predicted CO2 mixing ratios showed

comparable skill in reproducing in situ observations. Com-

bined with the future ability to assimilate satellite retrievals

of CO2 lagging real time by just a few days, we expect to be

able to monitor and predict growth rates in NRT.
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Appendix A

A1 The downscaling algorithm

Because of the rectifier effect, if a model transport simulation

hopes to reproduce the observed latitudinal gradient, it must

use surface fluxes with a diurnal cycle (Denning et al., 1995).

To resolve the diurnal cycle of the fluxes, we first down-

scale the monthly LoFI fluxes to daily using the algorithm

described below. We stop at daily for all fluxes other than

terrestrial NEE, which is the difference of ecosystem respi-

ration (ER) and gross primary productivity (GPP). Daily ter-

restrial ER and GPP are downscaled to 3-hourly following

the approach of Olsen and Randerson (2004) with the slight

modification of starting from daily instead of monthly fluxes.

This approach is quite similar to the downscaling approach

used by NOAA’s CarbonTracker system. It has the advantage

of avoiding the noticeable discontinuities at monthly bound-

aries that are present in the monthly to 3-hourly downscal-

ing, but the disadvantage of possibly missing synoptic-scale

disturbances that occur over multiple days since the down-

scaling from monthly to daily uses interpolation.

Fluxes are downscaled to a higher resolution either spa-

tially or temporally by finding the smoothest interpolant

that preserves the averages at the original, coarser resolu-

tion. This interpolant is found by minimizing a quadratic

cost function subject to a linear constraint. The quadratic

cost function is the square of the discrete approximation to

the Laplacian of the downscaled field. When interpolating

in space, we use the spherical Laplacian, which takes the

shrinking distance between grid boxes near the poles into ac-

count. The linear constraint is that the averages of the down-

scaled field at the coarser resolution be the original values. It

is imposed using Lagrange multiplier, which transforms the

problem into an unconstrained quadratic optimization prob-

lem on a higher-dimensional space. This approach is used to

downscale monthly NEE to daily as described above and is

applied to downscale ocean pCOsw
2 from its native 4◦ × 5◦

spatial grid to the 0.5◦×0.625◦ grid of MERRA-2 (as shown

in Fig. A1).

A2 The evaluation ensembles: further details

We evaluate our fluxes using a top-down ensemble of mod-

ern flux inversion systems and bottom-up ensembles of ter-

restrial biosphere and ocean biogeochemical models. The

flux inversion ensemble consists of the 2016 and 2017

versions of NOAA CarbonTracker (CT2016 and CT2017;

Peters et al., 2007, with updates documented at http://

carbontracker.noaa.gov), CarbonTracker Europe (CTE) ver-

sion 2016 (van der Laan-Luijkx et al., 2017), Coperni-

cus Atmospheric Monitoring Service (CAMS) version 17r1

(Chevallier et al., 2011), and the S93 and S04 runs of Jena

CarboScope (JCS) version 4.1 (Rödenbeck et al., 2003). The

bottom-up model ensembles are the same as those used in

Figure A1. Climatologies (2003–2015) of ocean exchange from the

LoFI fluxes. The first row represents annual averages, and each sub-

sequent row represents averages over different seasons. The left col-

umn depicts zonal means from the LoFI fluxes (dash–dot red) and

the ranges of zonal means from the inversion ensemble (dark grey),

and the right column shows seasonal gridded maps of the diagnostic

fluxes.

the Global Carbon Project, 2018 (GCP 2018; Le Quéré et al.,

2018): the terrestrial model ensemble is all TRENDY ver-

sion 7, simulation 3 (Sitch et al., 2015) dynamical global

vegetation models except LPJ-GUESS, which did not sub-

mit monthly results, and the ocean model ensemble is the

collection of global annual ocean exchange totals reported in

GCP 2018. While comparison to these ensembles is not a true

validation of our fluxes and is susceptible to uncertainties in

lateral exchanges between the land and ocean, we do expect

it to indicate when and where our surface flux product is an

outlier compared to other estimates. In particular, we use the

ensembles to identify coherent, systematic surface flux errors

over wide zonal bands and multiple months.

The ensemble comparisons only consider net biospheric

exchange (NBE), the sum of net ecosystem exchange (NEE),

biomass burning emissions, and all other emissions not due

to the combustion of fossil fuels. For the inversion ensemble,

we compute NBE by subtracting a common fossil fuel prod-
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uct, which we use in our diagnostic fluxes, from the total

surface flux. No distinction is made here between changes in

NEE and biomass burning due to natural effects or to anthro-

pogenic activities such as land-use change. To avoid issues

associated with statistics on small sample sizes or bias due to

overrepresentation of certain model configurations, we use

only the range of the minimum and maximum values over

each ensemble.

A3 QFED versus GFED in LoFI

The main motivation behind replacing GFED in CASA-

GFED with QFED is to avoid having to extrapolate biomass

burning emissions in the forward processing product. Un-

like other flux components, we do not expect the construc-

tion of a month-by-month linear climatology to have much

skill for biomass burning. Rather than switching from GFED

to QFED in the switch from reanalysis to forward process-

ing fluxes, we chose to always use QFED. This prevents the

introduction of a jump in the fluxes and allows a more di-

rect comparison of averages but has the downside of intro-

ducing a biomass burning component that is not in balance

with the carbon stocks of CASA. In any case, as is shown in

Figs A2 and A3, the difference between QFED and GFED

biomass burning emissions is quite small at almost every

time and place. The only noticeable difference is that the

baseline fluxes are slightly lower in the Amazon and Congo

rain forests during JJA. Still, this difference is minor in com-

parison to the empirical sink.

Figure A2. Global total NBE from the fluxes using GFED (solid

purple) and QFED (dash–dot red) biomass burning: (a) annual

averages and (b) the seasonal cycle climatology for 2003–2015.

Minimum-to-maximum ranges of the inversion ensemble (dark

grey) and TRENDY V7 ensemble (light grey) are provided for com-

parisons.
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Figure A3. Climatologies (2003–2015) of NBE from the fluxes using GFED (solid purple) and QFED (dash–dot red) biomass burning and

the LoFI fluxes (solid blue) for comparison. The first row represents the annual total, and each subsequent row represents a different season.

The left column depicts zonal means of the baseline fluxes using GFED and QFED, the range of the inversion ensemble (dark grey), and

the range of the TRENDY V7 ensemble (light grey); the middle column depicts the distance of the baseline fluxes using GFED to the range

of the inversion ensemble; and the right column depicts the difference of the baseline fluxes using QFED with those using GFED, i.e., the

difference of QFED with GFED.

Atmos. Chem. Phys., 21, 9609–9628, 2021 https://doi.org/10.5194/acp-21-9609-2021



B. Weir et al.: Bias-correcting carbon fluxes derived from land-surface data 9623

Data availability. LoFI fluxes and GEOS simulated mixing ratios

are available upon request via email from the corresponding

author. TRENDY V7 gridded model output was provided by

request by Pierre Friedlingstein and Stephen Sitch. NOAA

CarbonTracker CT2016 and CT2017 results were provided by

NOAA ESRL, Boulder, Colorado, USA, and are publicly avail-

able from their website at https://gml.noaa.gov/aftp/products/

carbontracker/co2/CT2016/ (NOAA CarbonTracker Team, 2018a)

and https://gml.noaa.gov/aftp/products/carbontracker/co2/CT2017/

(NOAA CarbonTracker Team, 2018b). CarbonTracker Europe

2016 results were provided by Wageningen University in collab-

oration with the ObsPack partners. The current version (2020) is

publicly available at http://www.carbontracker.eu (CarbonTracker,

2018), and previous versions are available upon request via email.

CAMS v17r1 surface fluxes are produced at the Climate and

Environment Sciences Laboratory (Laboratoire des Sciences du

Climat et de l’Environnement; LSCE) and are publicly available

at https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/

(CAMS Team, 2018). Jena CarboScope v4.1 S93 and S04

fluxes were provided by Christian Rödenbeck at the Max

Planck Institute for Biogeochemistry and downloaded from

http://www.bgc-jena.mpg.de/CarboScope/ (Jena CarboScope

Team, 2018). Data from the 2018 Global Carbon Budget are

archived at https://www.globalcarbonproject.org/carbonbudget/

archive/2018/GCP_CarbonBudget_2018.pptx (Global Carbon

Project, 2018).
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