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Abstract Climate models are our major source of knowl-

edge about climate change. The impacts of climate change

are often quantified by impact models. Whereas impact

models typically require high resolution unbiased input

data, global and regional climate models are in general

biased, their resolution is often lower than desired. Thus,

many users of climate model data apply some form of

bias correction and downscaling. A fundamental assump-

tion of bias correction is that the considered climate model

produces skillful input for a bias correction, including a

plausible representation of climate change. Current bias cor-

rection methods cannot plausibly correct climate change

trends, and have limited ability to downscale. Cross val-

idation of marginal aspects is not sufficient to evaluate

bias correction and needs to be complemented by further

analyses. Future research should address the development

of stochastic models for downscaling and approaches to

explicitly incorporate process understanding.
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Introduction

Many possible impacts of future climate change will be

experienced at the regional scale [1]. These impacts may

be quantified by impact models, which often require high

resolution meteorological input data that are—for present

conditions—unbiased compared to observations [2]. Cou-

pled atmosphere ocean general circulation models (GCMs)

are our major source of knowledge about future climate

change, but they currently neither provide regional-scale

nor unbiased information [3]. In particular processes, gov-

erning regional- to local-scale extreme events are, if at all,

not well represented in GCMs [4]. Regional climate mod-

els (RCMs) are becoming popular to bridge this scale-gap at

least partly—the typical horizontal resolution at present is

about 10–15 km—but also these still have substantial errors,

partly inherited from the driving GCMs [5, 6].

Thus, in any instance, many users of climate model data

demand some form of bias correction, sometimes called

bias adjustment. The origins of bias correction go back to

so-called model output statistics (MOS) [7] in numerical

weather prediction (NWP), which complements the widely

used perfect prognosis statistical downscaling approach [8].

Due to its relative simplicity and low computational demand

along with growing data bases of global and regional cli-

mate model simulations, bias correction has become very

popular in climate impact research. Over recent years, many

different methods have been developed [9, 10] and widely

applied to post-process climate projections [11–15].

In parallel, a critical debate about downscaling in gen-

eral [16–18] and bias correction in particular [19–22] has

flared up. Bias-corrected climate model data may serve as

the basis for real-world adaptation decisions and should thus

be plausible, defensible and actionable [18]. The use of bias

correction therefore has a distinct ethical dimension.
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The aim of this paper is to provide a concise introduc-

tion to bias correction. I will not give a comprehensive

overview of the technical details of different methods, but

rather review the background, conceptual aspects and—also

in the light of the ethical dimension—ongoing discussions

about the applicability and limitations of bias correction. A

detailed presentation of specific bias correction methods can

be found in [10], a comparison with classical perfect prog-

nosis statistical downscaling in [9]. For a detailed and com-

prehensive evaluation of bias correction methods, I refer the

reader to the framework developed by the EU COST Action

VALUE [23] and the related upcoming special issue.

In the next section, I present some relevant definitions,

review the origins of bias correction in weather forecast-

ing and discuss the rationale and associated assumptions of

bias correction. In “Methods for Bias Correction”, I will

give a brief overview of the most commonly used bias cor-

rection methods. The ongoing discussion about open ques-

tions and limitations of bias correction will be presented

in “Recent Discussions and Developments”, followed by a

discussion of the evaluation and performance of bias correc-

tion in “Evaluation and Performance of Bias Correction”. I

conclude with an outlook of future research.

Conceptual Issues

Definitions

Observed and simulated climate can be thought of as

a sample of a time-dependent multivariate probability

distribution—multivariate in space, in time and between

different climatic variables (see Fig. 1). The unconditional

distribution of one variable at one location (and precisely

at one time) is called marginal distribution. It can be

thought of as the distribution of one variable at one location,

ignoring the influence of all other variables (or locations).

Marginal aspects of the multivariate climate distribution can

be expressed by summary statistics such as mean, variance,

or wet day probability. Temporal aspects by, e.g. the lag-one

autocorrelation or the mean dry spell length; spatial aspects

by, e.g. the correlation between different locations; and mul-

tivariable aspects, e.g. by the correlation between different

climatic variables.

From a given finite observational time series (or field of

time series), one can only derive estimates of the climate

distribution and its statistics. Even the estimation of climatic

mean values is considerably affected by long term inter-

nal variability. The same holds for climate model output,

although long simulations or initial condition ensembles

help reducing sampling uncertainty.
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Fig. 1 Two-dimensional distribution (e.g. for two different variables

or one variable at two locations or two times). Surface plot indicates

multivariate probability density function. Dots indicate sample from

the distribution. Blue and orange indicate marginal probability density

functions

Transferring the bias concepts from statistics and fore-

cast verification [24, 25] to a climate modelling context,

a climate model bias can be defined as the systematic

difference between a simulated climate statistic and the cor-

responding real-world climate statistic. I will follow this

definition throughout the manuscript. A model bias derived

from model and observational data is—as the statistics it is

calculated from—only an estimate of the true model bias

and therefore also affected by internal climate variability [9,

26, 27].

As the climate system and, hence, the climate distribution

change with time, also a climate model bias is in gen-

eral time dependent. In other words, the simulated climate

change is in general not correct. Some authors, however,

define a bias as the time-invariant component of a model

error [28]. But a bias defined this way is not uniquely

defined: changing the reference period would in general

change the bias. The definition of a time-independent error

component is therefore itself time-dependent and arbitrary.

Origins in Weather Forecasting

In NWP, the first statistical post-processing methods have

been invented as early as in the late 1950s. The first opera-

tional models were too coarse to predict local weather and

simulated only few prognostic variables such as pressure
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and temperature. To overcome this gap, statistical regression

models have been calibrated between the observed large-

scale circulation—for those variables that were simulated

by the models—and the local scale weather observations

of interest, and applied to downscale the actual numerical

forecast [8]. For this approach to yield reasonable local fore-

casts, the large-scale predictor has to be perfectly forecast

by the numerical model, hence, the term perfect prognosis

(PP) had been introduced. In practice, this assumption is

often not met. Therefore, a new approach—so-called Model

Output Statistics (MOS)—had been developed [7]: about

a decade later, a considerable database of past forecasts

had been archived. Instead of calibrating a statistical down-

scaling model in the real world, it was now possible to

infer a relationship between past numerical weather fore-

casts and corresponding past observations. This approach

automatically corrects systematic model biases.

With the growing interest in climate change impacts,

MOS-approaches had been adapted for climate modelling.

But crucially, and different to numerical weather forecasts,

transient climate simulations are not in synchrony with

observations. As a result, regression models cannot easily

be calibrated. Therefore, researchers explored possibilities

to bias correct on the basis of long-term distributions instead

of day-to-day relationships [29, 30] (although these stud-

ies where still not based on transient climate simulations

but reanalysis driven RCMs). To have any credibility, these

methods must be homogeneous, i.e. map identical vari-

ables onto each other. In numerical weather prediction,

MOS systems could employ a range of different predic-

tors; in climate modelling, post-processed temperature is

predicted by temperature, precipitation by precipitation.

In other words, MOS in climate studies is almost exclu-

sively bias correction. It was indeed shown that reanalysis-

simulated precipitation—as a proxy for GCM output—is a

skillful predictor for regional-scale observed precipitation

[31]. Subsequently, the approach was applied to transient

climate change simulations with GCMs [32]. Since then,

bias correction has become an essential tool in climate

impact studies, in particular after large GCM [33, 34] and

RCM [35–37] datasets have become publicly available.

As discussed above, in numerical weather prediction

observed and modelled weather sequences are in close

synchrony; in climate modelling they are essentially uncor-

related. In addition to the problem of not being able

to calibrate regression models, this difference has further

important consequences [22]: (1) whereas skill of MOS in

numerical weather prediction can be quantified by forecast

verification scores, this assessment is essentially impossible

for climate change studies. (2) In numerical weather fore-

casting, prediction lead times are typically too short for the

numerical model to drift into its own biased attractor. Free

running climate models, however, are biased on all spatial

and temporal scales.

Rationale and Assumptions

Hydrological models—such as other impact models—are

typically calibrated to optimally represent the statistics

of some desired observed hydrological variable (such

as runoff), given observed meteorological input. If the

observed input is replaced by model data, the realism of the

hydrological model simulation is in general reduced. Bias

correcting the input data has been shown to increase the

agreement between simulated and observed hydrological

data [2]. The first obvious aim of a bias correction is there-

fore adjusting selected simulated statistics—such as means,

variances or wet-day probabilities—to match observations

during a present-day calibration period. But several deci-

sions need to be drawn, and the different possibilities may

imply different specific assumptions to be fulfilled:

– should a bias correction method be applied that pre-

serves or alters the climate change signal? A trend

preserving bias correction is justified under the assump-

tion that the model bias is time invariant; a non-

trend preserving method may sensibly be used if it

can be assumed that this method captures the time-

invariance of the bias, i.e. that it corrects the simulated

change.

– is downscaling to higher resolution or even point scales

intended? In such a case, one has to assume that the

downscaling captures the required local variations at the

time scales of interest, as well as the response to climate

change.

– which aspects of the climate distribution should be cor-

rected? Most bias correction methods adjust marginal

aspects only. Should also spatial, temporal and multi-

variate aspects be explicitly adjusted? In all cases, the

underlying assumption is that the climate change sig-

nal of the considered aspects, after bias correction, is

plausibly represented.

To what extent these decisions might be sensible will be

discussed in “Recent Discussions and Developments”.

The most crucial assumption underlying bias correction,

however, is that the driving dynamical model skillfully sim-

ulates the processes relevant for the output to be corrected

[22, 28]. For climate change simulations, this implies that

also the changes of these processes are plausibly simulated

[22]. Bias correction is a mere statistical post-processing

and cannot overcome fundamental mis-specifications of a

climate model.
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Methods for Bias Correction

In the following, a simulated present-day model (predictor)

time series of length N will be denoted as x
p
i , the corre-

sponding observed (predictand) time series as y
p
i . Following

the discussion in “Definitions”, both may follow marginal

distributions x
p
i ∼ D

p
raw and y

p
i ∼ D

p

real. The mean of the

uncorrected model over a chosen present period µ
p
raw can be

estimated as µ̂
p
raw = x̄

p
i (where the hat denotes the estima-

tor, the bar averaging in time), the corresponding real mean

µ
p

real as µ̂
p

real = ȳ
p
i . An estimator of the model bias for

present conditions is then given as

B̂ias(µp) = x̄
p
i − ȳ

p
i . (1)

Correspondingly, the relative bias might be estimated as

̂Rel.Bias(µp) = x̄
p
i /ȳ

p
i . (2)

The quantile for a probability α of a distribution D will

be denoted as qD(α) and is defined as the value which is

exceeded with a probability 1 − α when sampling from the

distribution. The corresponding empirical quantile q̂D(α)

can be obtained by sorting the given time series, say, xi ,

and then considering the value at position α × N/100 (also

called the rank of the data). The probabilities corresponding

to a given quantile qD(α) (i.e. the cumulative distribution

function) are written as pD(q) = α. Future simulations and

derived measures will be denoted with a superscript f .

Delta Change vs. Direct Methods

The most simple approach used for bias correction is the so-

called delta change approach. It has a long history in climate

impact research [38–40]. In fact, this approach is not a bias

correction of a climate model, but only employs the model’s

response to climate change to modify observations. As it is

a useful benchmark for bias correction, I will nevertheless

discuss this approach. In its most basic application, a time

series of future climate is generated as

x
f

i,corr = y
p
i + (

¯
x

f
i − x̄

p
i ). (3)

That is, an observed time series is taken, and only a model

derived climate change signal is added. For variables such

as precipitation (which assume positive values only), one

would typically consider relative changes, i.e.

x
f

i,corr = y
p
i ×

¯
x

f
i

x̄
p
i

. (4)

This approach—of course—conserves the observed weather

sequence and with it the linear spatial-, temporal- and multi-

variable dependence structure. The delta change approach is

therefore sensible only when these aspects may be assumed

unchanged for the considered future climate.

Mathematically similar, but conceptually different, is a

simple mean bias correction. It generates a future time

series by subtracting the present-day model bias from the

simulated future time series:

x
f

i,corr = x
f

i,raw − B̂ias(µp) = x
f

i,raw − (x̄
f

i,raw − ȳ
p
i ), (5)

or equivalently for precipitation

x
f

i,corr =
x

f

i,raw

̂Rel.Bias(µp)
= x

f

i,raw ×
ȳ

p
i

x̄
p
i

. (6)

The latter formulation is known as linear scaling [31] and

adjusts both mean and variance (but keeps their ratio con-

stant). A modified version also adjusts the number of wet

days [41]. Such approaches making direct use of the sim-

ulated time series are called direct approaches [9, 42]. For

a sensible application under future climate, they require

time-invariant biases (or relative biases).

Quantile Mapping

More flexible bias correction methods also attempt to adjust

the variance of the model distribution to better match

the observed variance [10]. A generalisation of all these

approaches is quantile mapping, which employs a quantile-

based transformation of distributions [43]. In a widely used

variant, a quantile of the present day simulated distribution

is replaced by the same quantile of the present-day observed

distribution (see Fig. 2):

x
f

i,corr = qD
p
y

(

pD
p
x
(x

f

i,raw)
)

. (7)

Typically, climate models simulate too many wet days

(the so-called drizzle effect [44]). In this situation, quan-

tile mapping automatically adjusts the number of wet days

(as the wet-day threshold is a quantile of the distribution)
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Fig. 2 Quantile mapping. A simulated value, a quantile of the

simulated distribution, is replaced by the quantile of the observed

distribution corresponding to the same probability
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[45]. If a climate model simulates too few wet days, it has

been suggested, e.g., to randomly generate low precipita-

tion amounts [46]. The actual formulation of the transfer

function depends on the implementation. Some authors con-

sider empirical quantiles, linearly interpolated [47], others

employ parametric models such as a normal distribution for

temperature and a gamma distribution for precipitation [45,

48]. For extrapolating to unobserved quantiles, a constant

transfer function beyond the highest observed quantile has

been assumed [49], extrapolation based on the model used

for the bulk of the distribution [45, 48], or specific extreme

value models [50]. In general, the higher the flexibility of

the mapping, the higher the danger of running into over-

fitting and implausible applications [22]. In particular for

high quantiles, where the sampling noise is very high, non-

parametric quantile mapping produces very noisy results

and essentially applies random corrections. Quantile map-

ping is mostly implemented as direct method, but can also

be applied as a delta-change-like approach by modifying an

observed series individually for different quantiles [51].

The implementation of quantile mapping according to

Eq. 7 assumes value-dependent biases: a value xi,raw, no

matter whether it occurs in present-day or future simula-

tion, will be transformed according to the transfer function

qD
p
y

(

pD
p
x
(.)

)

, but the transfer function might be different

for different values. As such, this implementation is in gen-

eral not trend preserving [11, 21]. Assume, e.g., a correction

of temperature values as illustrated in Fig. 3. If the modelled

present-day distribution has a negligible mean bias, but is

too narrow compared to observations, quantiles close to the

mean will only be weakly adjusted, whereas low and high

values will be inflated to match the observations. Along with

the inflation of the marginal distribution, variability on all

time scales including the overall trend will be inflated.

Whether or not such trend modifications are sensible will

be discussed in “State Dependent Biases and the Modification

of Climate Change Trends”. In any case, some authors

developed trend preserving variants of quantile mapping.

The simplest version preserves the trend in the mean [13],

a more sophisticated variant preserves the additive trend for

each quantile [52] (Note that a method preserving trends

in quantiles does not necessarily preserve the trend in the

mean [53]). Other methods have been developed to preserve

variability in the mean for a range of different time-scales

[28]. A comparison of how different methods handle the

representation of trends can be found in ref. [53].

Recent Discussions and Developments

State Dependent Biases and the Modification of Climate

Change Trends

GCMs provide a plausible picture of global climate change,

yet crucial phenomena are substantially mis-represented [54].

For instance, key processes governing El Niño/Southern

Oscillation, Monsoonal systems or the mid-latitude storm

track are biased along with high uncertainties in the rep-

resentation of changes in these phenomena [22]. Such

large-scale errors affect the representation of regional cli-

mate [55, 56] and are inherited by downscaling methods

[6]. Also at regional scales, both global and regional climate

models may mis-represent orography, feedbacks with the

land surface [57–59], and sub-grid processes such that local

surface climate is considerably biased [5, 60] and uncer-

tainties in projections are high [61]. It is also not a priori

clear whether sub-grid parameterisations, tuned to describe

present climate, are valid under future climate conditions.

For instance, there is evidence that the response of phenom-

ena such as summer convective precipitation is not plausibly

captured by operational RCMs at a resolution of 10 km and

beyond [62, 63]. In other words, in several cases, simulated

climate change trends might be implausible, and biases are

expected to be time dependent [26, 64].

In case one has trust in the simulated change, one should

employ a trend preserving bias correction. But in case one
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Fig. 3 Modification of trends by standard quantile mapping
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suspects implausibly simulated trends, the way forward is

more difficult. This is likely the case in the examples listed

above, or in presence of circulation biases, even though the

simulated changes might be plausible [22, 55, 65].

One solution might be to explicitly modify the simu-

lated trend. Current implementations of quantile mapping

do modify the climate change signal. But quantile mapping

is calibrated on day-to-day variability, and in general, it is

not clear whether the derived transfer function can be sen-

sibly used to modify long-term variability and forced trends

[22, 66]. If this transferability between time-scales cannot

be established for the given application, one could either

clearly communicate that no plausible climate change trends

could be provided, or better try to derive an expert guess

based on the model results and process understanding. In

any case, one should not intransparently communicate the

implausible trend as our best knowledge.

The aim of a local bias correction should, at any rate, not

be modifying a trend to obtain a (hypothetical) true future

value. Assume a GCM with a wrong climate sensitivity (in

fact, we do not even know the true one), that simulates a

plausible continental-scale response of regional climate in

Europe to global warming. However, locally the GCM (or

an RCM used to downscale the GCM) might mis-represent

important feedbacks and processes, such that local changes

are not consistent with global changes. A local bias correc-

tion could sensibly aim to correct the local errors, but should

not be used to correct the wrong global climate sensitivity.

Bias Correction and Downscaling

As discussed in “Rationale and Assumptions”, often a major

aim of bias correction is to spatially downscale to point

data. Downscaling itself can have several aims: (1) the pro-

vision of systematic spatial variations such as the variation

of climatological temperature with elevation, or of clima-

tological precipitation from the windward-side to the rain

shadow of a mountain. (2) The provision of day-to-day

variations in space such as the occurrence of localised rain-

fall events or temperature inversions between valleys and

nearby mountains. For climate change applications, one of

course also expects a sensible downscaling approach to pro-

vide a plausible future change of these variations. Almost

trivially, bias correction can fulfill the first aim for present

climate conditions—simply by calibration to high resolution

observations.

Whether the second aim can be fulfilled depends strongly

on the variable and region of interest. Consider two exam-

ples. Subgrid-variations of daily precipitation have a strong

random component. As almost all state-of-the-art bias

correction methods are deterministic, they cannot gener-

ate this random variability; variance correcting methods

such as quantile mapping may inflate extreme events [21].

Similarly, temperature inversions in sub-grid scale valleys

cannot be generated [22]. For some local phenomena, such

as valley breezes, the grid-scale average might not be rep-

resentative of local variations at all. Thus, bias correction

should be used for downscaling only if sub-grid variations

are very smooth in space.

Whether plausible sub-grid changes can be provided

depends again on the variable and region of interest; the dis-

cussion is identical to the one in “State Dependent Biases

and the Modification of Climate Change Trends”. As an

example, local effects such as the snow-albedo feedback

might modulate the climate change signal at sub-grid scales,

such that the large-scale simulated change is not a plausible

representation of local changes. As a result, a trend preserv-

ing bias correction missed about one third of the expected

springtime warming in the Sierra Nevada (USA) [22]. Also,

local wind phenomena such as valley breezes might respond

differently to climate change than the grid-scale average.

Bias correction cannot plausibly improve these changes

and should therefore not be used in such situations. These

problems are not only relevant for downscaling to sub-grid

scales, but also at the grid scale.

Correction of Multivariate Aspects

All bias correction methods discussed so far only modify

marginal distributions and thus leave other aspects largely

unchanged [67]. But as spatial, temporal and multi-variable

aspects are often misrepresented by climate models, meth-

ods have been developed for multivariate bias correction,

that also correct the dependence between variables [68, 69].

As discussed above, any bias correction introduces

inconsistencies with the driving model. When adjust-

ing joint (i.e. non-marginal) aspects, these inconsistencies

might become rather complex and affect other aspects. Take

for instance a correction of the dependence between precip-

itation at two locations. Assume that the probability of joint

dry days is too high. Thus, a correction needs to replace

some joint dry days at one location by a wet day. As a

consequence, also the temporal dependence is altered. In

the most extreme case, the simulated multivariate depen-

dence is completely ignored and replaced by the observed

[69]. As a consequence, also the sequence of events is taken

from observations, the method is essentially a multivariate

delta change approach. If one aims to apply such meth-

ods for climate change projections, one implicitly assumes

that the resulting changes in the adjusted—and indirectly

affected—aspects are plausible. The stronger the modifica-

tion, the more this assumption is questionable. In particular

the frequency and duration of long dry, hot and cold spells

are still not well simulated by global climate models [54]

(and these errors are inherited by regional climate models

[6]). Moreover, these phenomena are strongly governed by
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atmospheric dynamics and our confidence in projected

changes is generally low [56]. In particular substantial

changes which break consistency with major physical pro-

cesses should be avoided, such as adjusting the diurnal cycle

of precipitation or the onset of the Monsoon season. In any

case, a decision thus has to be drawn about which aspects

should be adjusted, and which inconsistencies might be

tolerable.

Added Value

All these cases highlight the value of RCMs. Directly bias

correcting a GCM is of course much cheaper than having

an intermediate dynamical downscaling step. Moreover, it

is difficult to demonstrate added value of an RCM, after

both GCM and RCM have been bias corrected [70]. But the

RCM resolution is typically five times higher than that of the

GCM, i.e. much of the regional-scale variability resolved by

the RCM is not represented by the GCM. Therefore, also

the risk is high that crucial processes and as a result the cli-

mate change signal are represented much worse in the GCM

than in an RCM—as illustrated in the case of snow albedo

feedbacks [22, 71].

Evaluation and Performance of Bias Correction

The previous discussions have highlighted the need for

a careful evaluation. As stated in “Origins in Weather

Forecasting”, the performance of MOS used in numerical

weather forecasting can be evaluated by classical forecast

verification, which are based on a pairwise comparison of

predicted and actually observed values. To eliminate arti-

ficial skill from overly complex statistical post-processing,

cross validation is applied: the statistical model is calibrated

on a subset of data spanning the calibration period, and

then used to predict the remaining data from the valida-

tion period [24, 25]. To reduce variability, a k-fold cross

validation might be applied: the data is separated into k non-

overlapping subsets, and the model is calibrated on all k

permutations of k − 1 blocks, the withheld blocks are used

as validation periods. The resulting k predictions are con-

catenated to one cross-validated time series which can be

compared with the observed time series for model evalua-

tion. Cross validation has widely been applied to evaluate

bias correction methods [10, 48].

Because pairwise correspondence between predictors

and predictands is generally missing in a climate mod-

elling context, an evaluation can only compare modelled

and observed long-term distributions. But these typically

change slowly, such that a cross validation is not sufficient

to identify artificial skill and unskillful bias correction [22].

The limitations of cross validation are particularly severe,

because most evaluation studies of bias correction evalu-

ate marginal aspects only—but these are typically calibrated

to match observations. The significance of a positive result

in such an evaluation is therefore limited. To minimise

the dangers of not identifying artificial skill and unskillful

bias correction, one should therefore evaluate aspects which

have not been calibrated, in particular non-marginal aspects.

Considering, e.g. diagnostics of inter-annual variability or

spell length distributions helps to uncover bias correction

problems [22].

For the design of sensible evaluation approaches, two

issues have to be addressed: (1) does the bias correction

method itself perform well under present and future con-

ditions? and (2) does the climate model provide plausible

input for a bias correction, both under present and future

conditions? The EU COST Action VALUE developed the

first comprehensive evaluation framework for downscaling

methods including bias correction [23]. Different experi-

ments need to be defined to fully address the two issues: (1)

bias correction of reanalyis data or reanalysis driven RCMs

to quantify the performance of a given bias correction

method under present climate conditions. Here, modelled

and simulated weather sequence is weakly synchronised,

and an assessment of classical forecast skill is possible at

least with seasonally aggregated data [57]. (2) Bias cor-

rection of GCMs (or GCM-driven RCMs) under present

conditions to evaluate the plausibility of the GCM simu-

lation. And (3) pseudo reality experiments to assess the

performance of a given bias correction method under cli-

mate change conditions [26]. The latter experiment can also

be carried out informally, e.g. by comparing the change

given by a bias corrected model with changes simulated

by a higher resolution model simulation, which is consid-

ered to simulate plausible changes [22, 72]. The assessment

whether the driving model simulates plausible changes

inherently relies on expert knowledge. One should, at least

based on a literature review, assess whether the model plau-

sibly simulates the processes relevant for the variable and

region of interest.

For a detailed evaluation of the performance of differ-

ent bias correction methods, also in comparison to classical

perfect prognosis statistical downscaling methods, please

refer to the forthcoming special issue of VALUE in the

International Journal of Climatology (currently in prepara-

tion/under review). Generally, bias correction methods used

to post-process reanalysis data or reanalysis-driven RCMs

improve the marginal aspects of the raw model [73], con-

serve or improve (indirectly by correcting the marginal

aspects) temporal [74] and spatial aspects [75]. As spatial

and temporal aspects are not explicitly post-processed, a

bias corrected RCM driven by reanalysis data typically per-

forms better for these aspects than the directly bias corrected

reanalysis data. In general bias correction performs at least
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as well as perfect prognosis. Thus, if a dynamical model is

available that provides skillful input with a plausible climate

change signal for a given user problem, bias correction is a

defensible and potentially powerful approach.

Discussion and Future Research

Bias correction is widely used in climate impact modelling.

It first of all aims to adjust selected statistics of a climate

model simulation to better match observed statistics over a

present-day reference period. Bias correction may or may

not involve a downscaling step; it may or may not modify

the simulated climate change; and it may adjust marginal

aspects only, or also spatial, temporal and multi-variable

aspects. A fundamental assumption of bias correction is that

the chosen climate model produces skillful input for a bias

correction, including a plausible representation of climate

change. Bias correction cannot fix fundamental problems of

a climate model.

Current approaches do not apply physical knowledge to

modify the climate change signal. If one can trust the simu-

lated change, a trend-preserving correction is the method of

choice. Standard quantile mapping does in general not mod-

ify trends in a physically plausible way. Current bias cor-

rection methods have a limited ability to further downscale

the model output. Sub-grid day-to-day variability cannot

be generated, and feedbacks altering the sub-grid climate

change signal cannot be represented. Any modifications

of spatial, temporal or multi-variable aspects may strongly

break the consistency with the driving model, and affect

other aspects than the desired ones. This holds in particu-

lar for major modifications of the temporal structure. Cross

validation of marginal aspects is not sufficient to identify

problems of bias correction and needs to be complemented

by an evaluation of multivariate aspects. The evaluation

should be carried out in a perfect boundary setting as well

as in a transient setting; ideally also the simulated climate

change should be analysed, e.g. in a pseudo reality.

Two major issues should be addressed by bias correction

research. First, the development of bias correction meth-

ods that are explicitly designed for downscaling. Stochastic

approaches should be developed to downscale either based

on regression models [76] or disaggregation approaches [9].

They might be used in conjunction with quantile mapping

to first bias correct and then downscale climate model data

[77]. If downscaling is not needed, but only station data

are available for bias correction, one could upscale the sta-

tion statistics using Taylor’s hypothesis of frozen turbulence

[78]. Second, the development of approaches that explic-

itly incorporate process knowledge, to generate a plausible

local response to climate change. Such approaches might

be statistical convection emulators or statistical models that

represent sub-grid feedbacks [79]. Also, the use of emer-

gent constraints [80] should be considered to bias correct

and constrain the climate change signal.

In any case it should be acknowledged that a successful

bias correction relies on a sound understanding not only of

the statistical model, but also the relevant climatic processes

and their representation of the considered climate model.
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64. Buser C, Künsch H, Lüthi D, Wild M, Schär C. Clim Dyn.

2009;33:849.

65. Addor N, Rohrer M, Furrer R, Seibert J. J Geophys Res.

2016. This paper nicely demonstrates the consequences of cir-

culation errors for bias correction, which should be consi-

dered when correcting biases originating in large-scale GCM

fields.

66. Maurer E, Pierce D. Hydrol Earth Syst Sci. 2014;18(3):915.

67. Wilcke R, Mendlik T, Gobiet A. Clim Change. 2013;

120(4):871.

68. Piani C, Haerter J. Geophys Res Lett. 2012;39(20):L20401.

69. Vrac M, Friederichs P. J Climate. 2015;28(1):218.

70. Eden J, Widmann M, Maraun D, Vrac M. J Geophys Res.

2014;119(11):040.

71. Salathe E, Steed R, Mass C, Zahn P. J Climate. 2008;

21:5708.

72. Dixon KW, Lanzante J, Nath M, Hayhoe K, Stoner A,

Radhakrishnan A, Balaji V, Gaitán C. Clim Change. 2016;

135(3):395.

73. Gutiérrez J et al. Int J Climatol. 2016. submitted.

74. Maraun D, Huth R, Gutierrez J, San Martin D, Dubrovsky

M, Fischer A, Hertig E, Soares P, Bartholy J, Pongracz R,

Widmann M, Casado M, Ramos P. Int J Climatol. 2016. subm.

75. Widmann M et al. Int J Climatol. 2016. submitted.

76. Wong G, Maraun D, Vrac M, Widmann M, Eden J, Kent T. J

Climate. 2014;27:6940.

77. Volosciuk C, Maraun D, Vrac M, Widmann M. 2016. submitted.

78. Haerter J, Eggert B, Moseley C, Piani C, Berg P. Geophys Res

Lett. 2015;42:1919. This paper provides a nice idea to compare

data at different spatial and temporal scales. It might prove useful

to avoid the scale gap between model and observational data for

evaluation.

79. Walton D, Sun F, Hall A, Capps S. J Climate. 2015;28(12):4597.

This paper presents one of the first statistical post-processing

approaches that deliberately modify the climate change signal

based on process understanding.

80. Collins M, Chandler R, Cox P, Huthnance J, Rougier J,

Stephenson D. Nat Clim Change. 2012;2(6):403.


	Bias correcting climate change simulations
	Abstract
	Introduction
	Conceptual Issues
	Definitions
	Origins in Weather Forecasting
	Rationale and Assumptions

	Methods for Bias Correction
	Delta Change vs. Direct Methods
	Quantile Mapping

	Recent Discussions and Developments
	State Dependent Biases and the Modification of Climate Change Trends
	Bias Correction and Downscaling
	Correction of Multivariate Aspects
	Added Value

	Evaluation and Performance of Bias Correction
	Discussion and Future Research
	Acknowledgments
	Compliance with Ethical Standards
	Conflict of interests
	Open Access
	References


