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Abstract 

Quantifying the effects of future changes in the frequency of precipitation extremes is a key 

challenge in assessing the vulnerability of hydrological systems to climate change, but is difficult as 

climate models do not always accurately simulate daily precipitation. This paper compares the 

performance of four published techniques used to reduce the bias in a Regional Climate Model 

(RCM) precipitation output: (i) linear, (ii) non-linear, (iii) gamma-based quantile mapping and (iv) 

empirical quantile mapping. Overall performance and sensitivity to the choice of calibration period 

were tested by calculating the errors in the first four statistical moments of generated daily 

precipitation time series and using a cross validation technique. The study compared the 1961-2005 

precipitation time series from the Regional Climate Model HadRM3.0-PPE-UK (unperturbed 

version) with gridded daily precipitation time series derived from rain gauges for seven catchments 

spread throughout Great Britain. We found that whilst the first and second moments of the 

precipitation frequency distribution can be corrected robustly, correction of the third and fourth 

moments of the distribution is much more sensitive to the choice of bias-correction procedure and 

to the selection of a particular calibration period. Overall, our results demonstrate that, if both 

precipitation datasets can be approximated by a gamma distribution, the gamma-based quantile-

mapping technique offers the best combination of accuracy and robustness. In circumstances where 

precipitation datasets cannot adequately be approximated using a gamma distribution, the non-linear 

method is more effective at reducing the bias but the linear method is least sensitive to the choice of 

calibration period. The empirical quantile mapping method can be highly accurate, but results were 

very sensitive to the choice of calibration time period. However, it should be borne in mind that bias 

correction introduces additional uncertainties, which are greater for higher-order moments. 
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1. Introduction 

The impact of climate change on the hydrological cycle is of great interest to environmental and 

water resource managers (Arnell, 2001, Bates et al., 2008). Quantifying the effects of future 

changes in the frequency of daily precipitation extremes is a key challenge in assessing the 

vulnerability of hydrological systems to climate change. Nevertheless, whilst the accuracy of Global 

Climate Models (GCMs) in simulating the large-scale atmospheric circulation has improved 

markedly in recent years, global models have difficulty resolving the processes that govern local 

precipitation. The most common problem associated with GCM simulations of precipitation is that, 

at a daily time-scale, precipitation occurs more frequently than observed, but often with a lower 

intensity (e.g., Sun et al., 2006). 

In order to make simulations at hydrologically-relevant spatial and temporal scales, downscaling is 

necessary. Downscaling techniques that have been reviewed in the literature include statistical 

downscaling, which uses empirical relations between climate model outputs and historical observed 

data, and dynamical downscaling, which involves the use of a Regional Climate Model (RCM) (see 

Fowler et al., 2007 for a detailed review). RCMs offer a more physically-realistic approach to GCM 

downscaling than statistical downscaling because they provide an explicit representation of the 

mesoscale atmospheric processes that produce heavy precipitation. When nested within a GCM, 

RCMs provide regional detail that is not only consistent with the parent GCM, but which is 

spatially-coherent. That is, a degree of spatial persistence of large-scale atmospheric features is 

automatically ensured, because the model generates these features dynamically. This property of 

RCM simulations is important in producing realistic forcing data for hydrological models because 

many floods and droughts are caused by spatially- and temporally-persistent precipitation patterns. 

Two major studies of the accuracy of RCM precipitation estimates used daily extreme precipitation 

statistics to compare the performance of several different 50 km RCMs nested within both ECMWF 

ERA-15 reanalysis data (Frei et al., 2003), and within the Hadley Centre HadAM3 GCM (Frei et 

al., 2006). They found that the RCMs were capable of reproducing important mesoscale patterns of 
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observed precipitation, particularly during autumn and winter, and demonstrated that the effects of 

topography on precipitation could be much better represented at regional scales. Nevertheless, Frei 

et al. (2006) found that appreciable model biases could occur in summer when convective 

precipitation is common. Simulations using two Hadley Centre RCMs (HadRM2 and HadRM3) 

nested within HadCM2 demonstrated that UK precipitation statistics were well reproduced by the 

model, and that biases in the rainfall extremes (on timescales from one to thirty days and return 

periods of two to twenty years) were approximately equivalent in magnitude to those in the mean 

(Buonomo et al., 2007). 

Evidence of bias in GCM and RCM precipitation data has prompted many investigators to avoid 

direct use of climate model precipitation outputs for hydrological climate change impact analysis. 

One very common approach is to calculate the difference between future and baseline climate from 

the GCM/RCM outputs, and apply this ‘factor of change’ to historical observed time series to 

generate synthetic time series assumed to be possible realisations of the future (e.g., Arnell et al., 

2003). However, this approach does not change any of the temporal structure of the time series. 

Another approach is to generate synthetic precipitation time series using a stochastic weather 

generator, where the parameters in the generator are changed according to estimated changes in the 

climate from the GCM/RCM outputs (e.g. Kilsby et al., 2007, Fatichi et al., 2011). However, most 

weather generators produce local time series, and if applied to different locations, do not generate 

spatially consistent data, limiting their use to local studies. For analysis where spatio-temporal 

structure of precipitation is important, or for regional or global studies, the use of climate model 

outputs provides this spatial consistency and incorporates any changes in the temporal structure of 

precipitation. Techniques to correct the biases in the climate model outputs are therefore used to 

improve the realism of GCM/RCM precipitation time series, based on statistical properties obtained 

from observed data taken from the same baseline period.  

The bias in GCM and RCM daily precipitation simulations may not be limited to monthly means, 

but may also affect precipitation variability and other derived measures that are of hydrological 
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importance (Arnell et al., 2003, Diaz-Nieto and Wilby, 2005, Fowler et al., 2007). These effects 

include differences in variability and extreme daily precipitation, and differences between the 

modelled and observed distribution of dry days, and periods of dry days. When correcting for biases 

in climate model output, it is also important that changes in the frequency distribution of climatic 

variables are correctly represented. Several techniques for adjusting biases in GCM and RCM daily 

precipitation have been published. These techniques can be grouped into the following four 

families: (i) linear (e.g., by using a seasonally- and spatially-varying change factor; Lenderink et al., 

2007); (ii) non-linear (e.g., by using a seasonally- and spatially-varying change factor and exponent; 

Leander and Buishand, 2007); (iii) distribution-based quantile mapping (e.g., gamma distribution, 

Hay et al., 2002, Piani et al., 2010); and (iv) distribution-free quantile mapping (e.g., empirical 

distribution, Wood et al., 2002, Wood et al., 2004, Ashfaq et al., 2010). 

We have considered a range of established bias-correction techniques to determine which is the 

most effective and robust method to use when correcting daily precipitation simulated by a RCM 

for subsequent use in a hydrological model. This paper discusses the accuracy of the four 

techniques in detail when applied to the Exe-Culm river basin in south-west England. This is 

followed by summary results for another six basins spread throughout Great Britain, each 

representative of different climate conditions; Scotland is the coolest and wettest part of the United 

Kingdom throughout most of the year, while the South is usually warmer with England being the 

driest region. Observed daily gridded precipitation was obtained at 1 km horizontal resolution by 

interpolation from Met Office rain gauges (Keller et al., 2006). RCM daily precipitation at 0.22º 

horizontal resolution (approximately 25 km) was obtained from the HadRM3.0-PPE-UK 

unperturbed model from the ensemble of perturbed-physics experiments employed in the UK 

Climate Impacts Programme study UKCP09 (Jenkins et al., 2009). Prior to the bias-correction, the 

RCM time series where regridded to 1 km horizontal resolution and modified so that the frequency 

of wet days was the same as that in the 1 km gridded observed dataset. Each bias-correction method 

was then calibrated using the 1 km modified RCM time series for each month independently.  
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This paper is organized as follows. The first part describes the bias-correction methods that form the 

subject of this study. The statistical methods used to evaluate the bias corrections are then outlined. 

This is followed by a description of the data and study regions, before the results of the evaluation 

procedures are presented. The paper concludes with a discussion of the findings. 

2. Bias-correction methods 

2.1. Linear correction method 

When using the linear correction method, RCM daily precipitation amounts, P, are transformed into    such that        , using a scaling factor,    ̅  ̅⁄ , wherein  ̅ and  ̅ are the monthly mean 

observed and RCM precipitation for that 1 km grid point, respectively. Here, the monthly scaling 

factor is applied to each uncorrected daily observation of that month, generating the corrected daily 

time series. The linear correction method belongs to the same family as the ‘factor of change’ or 

‘delta change’ method (Hay et al., 2000). This method has the advantage of simplicity and modest 

data requirements: only monthly climatological information is required in order to calculate 

monthly correction factors. However, correcting only the monthly mean precipitation can distort the 

relative variability of the inter-monthly precipitation distribution, and may adversely affect other 

moments of the probability distribution of daily precipitations (Arnell et al., 2003, Diaz-Nieto and 

Wilby, 2005). 

2.2. Non-linear correction method 

Noting that a linear scaling factor adjusts the mean but not the standard deviation of monthly 

precipitation, Shabalova et al. (2003) and Leander and Buishand (2007) advocate the use of a 

power-law correction such that P* = aPb 
, where   is a scaling exponent. The constants   and   are 

calculated in two stages: (i) the scaling exponent,  , is calculated iteratively so that, for each grid 

box in each month, the coefficient of variation of the RCM daily precipitation time series matches 

that of the observed precipitation time series. Here, this is achieved using Brent’s method (Press et 

al., 1986); (ii) the prefactor,   is then calculated so that the mean of the transformed precipitation 



8 

 

values is equal to the observed mean. Finally, monthly constants   and   are applied to each 

uncorrected daily observations corresponding to that month in order to generate the corrected daily 

time series. 

In common with the linear method, this approach has the advantage that it requires monthly 

observed statistics but, in addition to the mean, it needs information on the coefficient of variation 

of precipitation. This approach results in the mean and the standard deviation of the daily 

precipitation distribution becoming equal to those of the observed distribution. Biases in higher 

order moments are not removed by the non-linear method; however these will be affected to a 

certain degree by the correction procedure. 

2.3. Gamma distribution correction method 

The gamma distribution-based correction method assumes that the probability distributions of both 

observed and RCM daily precipitation datasets can be approximated using a gamma distribution, for 

example: 

 (     )         (   ⁄ )
 ( )  ,    [5] 

where   > 0 and     are the form and scaling parameters of a gamma distribution, respectively, 

and where P represents RCM daily precipitation. Here, parameters   and   were estimated for each 

grid box for each month, using the method of moments: 

   (  ̅  ) 
,      [6] 

       ̅ ,      [7] 

where  ̅ and    are the sample mean and standard deviation of  , respectively. 

In order to perform the bias-correction, each daily RCM precipitation amount was expressed as a 

quantile, q, calculated as the inverse of the cumulative distribution function, F, where: 
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 (     )    (     )
 ( ) ,     [8] 

wherein  is the lower incomplete gamma function (e.g., Press et al., 1986), and k and   are the 

parameters of the gamma distribution fitted to the RCM simulated precipitation. This quantile was 

then used to generate a bias-corrected precipitation time series by replacing the RCM precipitation 

amount P by its value resampled from the gamma distribution fitted to the observations and 

associated with the same quantile. This method is designed to remove biases in the first two 

statistical moments and similar methods were found to perform well when used on GCM outputs at 

global and European scales (Vidal and Wade, 2008a, b, Piani et al., 2010). 

2.4. Empirical distribution correction method 

The correction method based on empirical distributions follows the same approach as the gamma 

distribution method, with the RCM distribution transformed to match the observed distribution 

through a transfer function. Unlike the gamma distribution method, the empirical method does not 

make any a priori assumptions about the precipitation distribution (Figure 1). 

To implement the empirical distribution correction method, the ranked observed precipitation 

distribution is divided into a number of discrete quantiles. For each quantile division, a linear 

correction factor was calculated by dividing the mean observation in that quantile by the RCM 

simulated mean precipitation in the same quantile; this being the transfer function. The number of 

quantile divisions controls the accuracy of the method: using fewer quantiles might smooth out the 

information contained within the observed record, while using too many quantiles might result in 

over-fitting of the model to the data. A method of the same family has been shown to perform well 

in the correction of RCM precipitation forecasts for use as variables of interest for hydrologic 

simulations and climate change studies (Wood et al., 2002, Wood et al., 2004, Themeßl et al., 

2010). 

3. Evaluation methodology 
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Although an overall assessment of the performance of each bias-correction method can be obtained 

by comparing differences between observed, RCM and corrected datasets, the quantification of 

robustness is more complex. We have evaluated the robustness of each method by quantifying the 

sensitivity of its performance to the choice of time period used for calibration. Prior work has noted 

that properties of the extreme tail of the precipitation distribution can be difficult to estimate 

robustly using short (e.g., 30-year) RCM simulations, particularly where natural variability of the 

climate has a significant component varying on decadal time-scales (Kendon et al., 2008). The 

robustness of the bias-correction techniques is important because it determines the degree to which 

the correction procedure is sensitive to the differences in natural climate variability between the 

observed data and the output of the RCM (and its driving GCM). 

Here, a cross-validation technique similar to the jack-knife (Bissell and Ferguson, 1975) is used, 

where measures of performance are evaluated using a sample which was not included in the 

calibration of the correction procedure. This approach offers the possibility of quantifying sample 

spread, defined as the difference between the re-sampled time series, and frequency of error 

reduction. To quantify the sample spread, given a total length of observed record N (in the present 

case N = 40 years), we repeatedly removed m consecutive years (here m = 10 years), calibrated the 

parameters of the correction method on the N-m sample, and performed the bias-correction of RCM 

precipitation for the remaining m-year period. This procedure generated N-m+1 sets of bias-

corrected precipitation time series. To evaluate the robustness of the correction procedure, we 

calculated the average of the absolute value of the relative differences (ARD, defined as |    |  ⁄ , where X and X’ are statistics from observed and bias-corrected precipitation, 

respectively) between the N-m+1 sets of corrected and observed precipitation data over the m-year 

period that was not used to calibrate the bias-correction method. We also calculated the frequency 

of error reduction, defined as the proportion of bias-corrected time series where ARD was smaller 

than that calculated from the 1 km RCM-driven data before bias correction. The higher this number, 

the more certain one can be that the correction method will improve the match between observed 
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and simulated data. A similar procedure has been used to evaluate the robustness of a gamma-based 

quantile mapping technique in Northern Eurasia (Li et al., 2010). 

4. Data 

4.1. Study regions 

It is important that daily precipitation bias-correction methods are capable of correcting over the full 

extent of the spatial area of interest. Great Britain has a wide range of annual average precipitation 

and topography; hence, a method which successfully corrects biases in one region may not 

necessarily be as effective in another. To explore this question more comprehensively, the four bias-

correction methods were each applied to seven test regions. 

The seven regions were chosen by comparing river catchments from the National River Flow 

Archive (NRFA) Hydrometric Register (Marsh and Hannaford, 2008). The starting point for 

choosing the catchments was the NRFA Benchmark Network, which is a subset of the NRFA 

stations which have a nearly natural flow regime and little impact from human activity (Bradford 

and Marsh, 2003). Box-bound regions or multiple catchments are used where single catchment 

areas are too small to be worth comparing or not large enough to investigate spatial pattern of the 

results (i.e. East Anglia, North Scotland and Exe-Culm). The catchments were compared using 

statistics such as elevation range and mean annual average rainfall, so that they describe the range 

of climatic conditions found in Great Britain. Details of the seven study regions are given in Table 1 

and their location is shown in Figure 2. 

4.2. Observed data 

Our observed precipitation dataset is the 1 km daily precipitation data associated with the 

Continuous Estimation of River Flows (CERF) model (Keller et al., 2006). It was generated from 

rain-gauge observations from the UK Met Office using the triangular planes method followed by a 

normalisation based on average annual precipitation (Jones, 1983). The dataset extends over 
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England, Scotland and Wales and covers the period 1961–2008, however only data for the period 

1961-2000 were used in this study. In total, data from 17,812 rain-gauges were used to derive the 

CERF dataset.  

4.3. RCM data 

Daily precipitation outputs from the Met Office Hadley Centre Regional Model Perturbed Physics 

Ensemble simulations for the 21
st
 Century for the UK domain, HadRM3-PPE-UK 

(http://badc.nerc.ac.uk/data/hadrm3-ppe-uk/) were considered here. The model was run for the 

period 1950–2100 at 0.22° horizontal resolution (approximately 25 km), with lateral boundary 

conditions taken from the HadCM3 GCM using the SRES A1B emission scenario (rapid, 

regionally-convergent growth with a balance of fossil and non-fossil fuels). Here, only the outputs 

of the unperturbed version of the HadRM3.0 model for the period 1961-2000 were used.  

Previous studies have shown that climate models often simulate precipitation time series in which 

the frequency of wet days with low precipitation is higher than observed (the so-called drizzle 

effect, e.g., Sun et al., 2006). This means that the sequencing of wet and dry days, which is vital for 

the generation of hydrological extremes (both floods and droughts), is not well reproduced. To 

reduce this issue, the RCM daily precipitation outputs were modified so that the monthly frequency 

of rain days matched that of the observed record. As observations were available at 1 km, and 

because a fine spatial distribution of precipitation is important in the accurate representation of 

runoff-generating processes in hydrological models, the procedure was applied for each 1 km grid 

cell by setting the precipitation to zero for any day with precipitation lower than a threshold 

calculated so that the monthly frequency of wet day becomes identical to that of the observed time 

series for this grid cell. In the following, ‘simulated data’ refers to the 1 km RCM-driven time series 

after wet frequency correction and not to the original RCM precipitation outputs. The wet-day 

correction is regarded as essential for most hydrological applications (Weedon et al., 2011) and so it 

is used in association with all of the bias correction methods described here. 

http://badc.nerc.ac.uk/data/hadrm3-ppe-uk/
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5. Results for the Exe-Culm catchment 

In total, seven bias-correction methods were compared, each belonging to one of the four families 

of methods described earlier. For the empirical distribution correction approach, four different 

methods were considered where the transfer functions were defined using 25, 50, 75 and 100 

quantiles. All methods were constructed monthly for each grid cell of the catchments. Results are 

presented at the catchment level (i.e. average performance within a catchment) and from 1 km maps 

of ARD in the four first statistical moments. 

First, overall performance of each model is calculated on the calibration period 1961–1990, aiming 

to investigate how well high moments can be reproduced. Second, the robustness of each model is 

tested using a cross-validation methodology on the period 1961–2000, to evaluate how well the 

models perform outside their calibration period. Calibration periods of 30 years are used in both 

steps as this time-scale is considered by the World Meteorological Organization (WMO, 1983) as 

being a good compromise for capturing natural variability. 

5.1 Overall performance 

For each grid cell, ARD associated with the four first moments are calculated and corresponding 

catchment average ARD derived. The ARD, being calculated over a period of 30 years, will here be 

referred to as “ARD30”. As a baseline measure, ARD30 from the RCM-driven precipitation time 

series are also calculated for all considered statistics (Figure 3). Note that, although linear and non-

linear methods force the first moment (the mean) of the corrected distribution to be equal to that of 

the observed distribution, the resulting impact on the other moments is not known a priori. 

For all methods, ARD30 is lower or equal after correction (Figure 3): biases in the daily 

precipitation distribution are effectively reduced by the bias-correction methods. While, by design, 

the bias-corrected mean (first moment) is equal to the observed when using the linear and non-

linear methods (ARD30 equal to 0), this is not the case for the distribution-based methods. This is 

because these methods aim to reproduce as well as possible all statistical moments of the 

distribution and not only the first. Consequently, the ARD30 values for all moments are reduced but 
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none is completely removed. The non-linear method is the only one which reproduces the standard 

deviation precisely, as it is the only method which imposes this constraint. The ARD30 on standard 

deviation is slightly reduced using the linear method, but the error remains large, suggesting that the 

linear method cannot entirely correct bias in precipitation variability. Amongst the distribution-

based methods, the gamma distribution is associated with the lowest ARD30 on standard deviation 

while ARD30 reduction for the empirical distribution method increases with the number of 

quantiles used. ARD30 values for the third (skewness) and fourth (kurtosis) moments are not 

reduced by the linear method, but are reduced by about one fifth by the non-linear method and 

halved by the gamma distribution method. Finally, the empirical distribution method provides the 

most consistent reduction of ARD30 across all the four moments (reduction on average of 0.014 in 

ARD30 for every increase of 25 quantiles), likely to be a result of the amount of information used 

for its calibration: the lowest ARD30 is achieved with 100 quantiles, but as the number of quantiles 

employed falls, the empirical distribution method becomes less effective. Note that when calibrated 

using 25 quantiles, the empirical distribution method results in ARD30 smaller or equal to those 

obtained from the linear method for all moments considered here, except the mean. The greatest 

errors in uncorrected simulated precipitation are found in between May and July when rainfall is 

mainly convective. Monthly variation evens out over all moments using the gamma distribution and 

is reduced, even if only slightly, using the other correction methods. However, the empirical 

distribution method seems to consistently induce an error peak in July. In view of the complexity of 

the empirical distribution method (here using a minimum of 25 parameters), model performance is 

arguably best with the two-parameter gamma distribution method, which has smaller ARD30 than 

the non-linear method (which also uses two parameters) and an overall acceptable performance. 

5.2 Robustness 

Using the cross-validation methodology presented above, the seven bias-correction methods (linear, 

non-linear, gamma, empirical with 25, 50, 75 and 100 quantiles) were calibrated by constructing 
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daily artificial time series generated from the observed data by removing ten consecutive years of 

data in turn. In total, 31 samples representative of the observations, each of 30 years duration, were 

created. The robustness of each of the seven bias-correction techniques was evaluated by 

calculating ARD between the bias-corrected precipitation time series and the 10-year observations 

removed from the calibration sample. The resulting ARD, being calculated over a 10-year period, 

will be referred to as “ARD10”. 

5.2.1. Sample spread 

The spread of the ARD10 partly reflects the uncertainty associated with each bias-correction 

method. The seasonal means of the 31 ARD10 obtained from the cross-validation procedure are 

plotted on each 1 km grid (Figures 4–8, depending on the statistic considered for the evaluation) to 

investigate whether spatial and seasonal patterns emerge, where each method is described in a 

separate row. The first row (SIM) illustrates the difference between the uncorrected simulated 

precipitation distribution and the observed precipitation distribution. Catchment mean ARD10 is 

shown in the top right of each plot. Small mean ARD10 indicate a good reproduction of the 

statistical properties of the observed daily precipitation distribution by the bias-corrected time 

series, and suggests robust model performance outside its calibration period. In contrast, large errors 

suggest that the bias-correction procedure is sensitive to the choice of calibration period. This 

suggests that caution must be taken if the bias-correction procedure is applied to a time period 

different from that which was used for calibration, as this is the case for example when using the 

correction procedure for future periods. 

Three conclusions emerge from our study of the first moment of the distribution (Figure 4): (i) 

errors remaining after bias correction are smaller than those present in the uncorrected RCM data; 

(ii), for all bias-correction procedures, the correction of the mean of the precipitation distribution is 

relatively insensitive to the choice of calibration time-period, although this result is sensitive to the 

change of season, with spring and summer exhibiting more variability than other seasons. This 
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could be a consequence of the occurrence of convective precipitation in this season, which has little 

spatial or temporal structure, and is therefore very difficult to reproduce using any bias-correction 

method; and (iii) applying a bias-correction technique using observed data at a finer scale than that 

of the RCM (i.e., 1 km instead of 0.22º) introduces a detailed spatial distribution of precipitation 

within the catchment. This can be advantageous in spatially-distributed hydrological applications if 

the spatial pattern of precipitation plays an important role in runoff generation. However, such an 

approach assumes that rainfall values at 1 km can be compared with RCM estimates at a coarser 

resolution and ignores for the sake of simplicity the possibility that wide-area rainfall averages are 

systematically different from finer-resolution rainfall estimates (Rodriguez-Iturbe and Mejía, 1974). 

Figures 5 and 6 show the seasonal and spatial patterns of mean ARD10 in the standard deviation 

and coefficient of variation. While mean ARD10 in the standard deviation is largely reduced by 

most models, the spatial patterns of mean ARD10 vary between seasons, and between methods 

particularly in the summer. Again, this result is likely due to the strong convective activity that 

generates much of the summer precipitation in southern England, which is both local and episodic, 

but treated differently by the different methods. The coefficient of variation (CV, defined as the 

ratio of the standard deviation to the mean) is a dimensionless measure of variability. For all 

methods, mean ARD10 in the CV is increased for all seasons, suggesting that these methods are not 

robust to the choice of the calibration period when correcting the CV. Note however that mean 

ARD10 in the CV reduces in spring when bias correction is done using the empirical distribution 

method. The standard deviation and CV show a large difference in robustness, which could be 

attributed to the combination of the corrections of both the average and the standard deviation, as 

the CV is the result of dividing the latter by the former. 

The impact of the calibration period on the results is highest for ARD10 in the third and fourth 

moments (Figures 7 and 8 respectively) where all methods show an increased catchment mean 

ARD10 (top-right corner of the maps). The non-linear method shows the greatest increase in 
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catchment ARD10, while ARD10 is smaller for the gamma distribution and linear correction 

methods than for the empirical distribution method. This suggests that, while the greatest accuracy 

is achieved by an empirical distribution method defined by at least 25 quantiles (i.e., the overall 

error from the same calibration-evaluation period is smallest), results are also most sensitive to the 

chosen calibration period. This is likely due to an over-fitting of the parameters of the correction 

method to a particular set of data, particularly noticeable in summer when precipitation values are 

more variable in this catchment. 

5.2.2 Frequency of error reduction 

Table 2 provides a quantitative assessment of the frequency with which the application of each of 

the bias-correction procedures actually resulted in improved precipitation statistics when evaluated 

against data from a time-period which was different from that over which the bias-correction 

procedures had been calibrated. For the mean, ARD10 is reduced between 86% (non-linear method) 

to 89% (empirical distribution method with 25 and 50 quantiles) of the time. For the standard 

deviation, the gamma distribution method achieves a reduction in ARD10 82% of the time while it 

is true only 76% and 77% of the time for the non-linear method and empirical distribution method 

with 25 and 50 quantiles. For the CV, this frequency drops to 35% for the gamma distribution 

method and 27% for the linear and non-linear methods, suggesting that the combination of errors in 

the mean and standard deviation is greater than their individual errors. For the higher moments, the 

frequency of error reduction further decreases to 11% (gamma distribution and linear methods) and 

6% (empirical distribution method with 25 quantiles) for skewness, and to 11% (linear method and 

empirical distribution method with 75 and 100 quantiles) methods to 7% (non-linear method) for 

kurtosis. 

We note from this analysis that no method gives a frequency of error reduction greater than 11% for 

the third and fourth moments (skewness and kurtosis), i.e., calibrated bias-correction methods 

succeed in generating daily time series with high-order moments more similar to the observed only 
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slightly more often than one in ten times when applied to time periods not included in the 

calibration. Moreover, the gamma distribution method and empirical distribution method with 75 

and 100 quantiles give the best chances for reducing the bias. Performance also varies with seasons, 

with an ARD10 reduced more often in spring and less often in summer. The overall frequency of 

error reduction suggests that the choice of correction technique must be made very carefully with an 

awareness of the additional uncertainties that may be introduced through the use of bias-correction 

techniques. 

6 Results over Great Britain 

The robustness of the methods for the six remaining catchments is assessed by considering how the 

performance of each correction method varies with location and climatic characteristics using the 

methodology described above. 

6.1 Sample spread 

The results of the robustness tests are shown in Table 3. The ARD, being calculated over a 10-years 

period, will here be referred to as “ARD10”. It can be seen that all bias-correction methods in all 

catchments are effective in reducing ARD10 in at least the lower order statistical moments. The 

linear method consistently improves the average but rarely improves the higher order moments. The 

non-linear and gamma methods show similar performance in most catchments, with a reduction of 

errors achieved at higher order moments. However, both of these methods struggle to improve the 

higher order moments in the summer season (Newton et al., 2010), and in particular the non-linear 

method. This is most apparent in the East Anglian catchment where summer precipitation is 

dominated by convective storms. The empirical approach shows the best results for the higher order 

moments, however its performance can be erratic and can result in high ARD10 (mean ARD10 > 1) 

even in the lower order moments in all catchments. 
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The transfer functions calculated for each percentile of the distribution were analysed to understand 

the variability in performance of the empirical approach. In some months, in localised areas of the 

catchments, the transfer functions for some quantiles (generally the lower quantiles) were 

unrealistically high. These high values of the transfer function occur when, for some quantiles, the 

simulated precipitation is significantly lower than the observed precipitation. This low precipitation 

intensity, known as a weakness of climate models (Sun et al., 2006), leads to mid to low simulated 

precipitation quantile values which are significantly lower than those of the observed precipitation 

data. The bias correction procedure attempts to generate those higher precipitation values through 

very high transfer function values. 

6.2 Frequency of error reduction 

Table 4 provides a quantitative assessment of the frequency with which the application of each of 

the bias-correction procedures actually resulted in improved precipitation statistics when evaluated 

against data from a time-period which was different from that over which the bias-correction 

procedures had been calibrated. For the mean, ARD10 is reduced between 77% (empirical 

distribution method with 75 quantiles) to 84% (linear method) of the time. For the standard 

deviation, the gamma distribution method achieves a reduction in ARD10 79% of the time while it 

is true only 58% of the time for the empirical distribution method with 25 quantiles. For the CV, 

this frequency is 64% for the gamma distribution method and drops to 36% for the linear method. 

For the skewness and kurtosis, the highest frequency of error reduction is achieved by the linear 

method (61% and 62%, respectively), while the lowest frequency is obtained using the empirical 

distribution method with 50 quantiles (24% and 18%, respectively). 

We note from this analysis that the frequencies of the third and fourth moments (skewness and 

kurtosis) do not drop as rapidly as over the Exe-Culm basin and that the gamma distribution method 

gives on average the best chance of correcting for the bias. Performance also varies with season, 

with ARD10 reduced more often in winter and less often in spring. The overall frequency of error 
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reduction is slightly higher than that over the Exe-Culm basin, although this does not change the 

suggestion that the choice of correction technique must be made very carefully with an awareness 

of the additional uncertainties that may be introduced through the use of bias-correction techniques. 

7 Discussion and conclusion 

In this paper, we have compared four bias-correction techniques to determine which is the most 

effective and robust method to use when correcting daily precipitation simulated by a RCM for 

subsequent use in a hydrological model. These published techniques can be grouped into the 

following four families: (i) linear, (ii) non-linear, (iii) distribution-based quantile mapping and (iv) 

distribution-free quantile mapping. The robustness of a method has been tested using a cross-

validation technique, similar to that of the jack-knife, carried out on seven catchments spread 

throughout Great Britain, each representative of different climate conditions.  

The linear method showed the weakest correction as it is designed to alter only the mean, while the 

non-linear method corrects up to the second statistical moment of the frequency distribution. Using 

a gamma distribution affects all statistical moments, but this bias-correction technique uses only 

two parameters, and so its success is contingent on the underlying precipitation data being drawn 

from a gamma distribution.  The most comprehensive correction was achieved by using the 

empirical quantile-mapping methods, which incorporate information from the frequency 

distributions of modelled and observed precipitation. The greater the number of quantile divisions 

used to represent the underlying frequency distributions, the better the correction. 

However, the effectiveness of bias-correction was found to be sensitive to the time-period for which 

the bias-correction procedures have been calibrated. As the complexity of the bias-correction 

technique increases, the amount of information that it requires from the baseline observed 

climatological dataset also increases. It should therefore be expected that the accuracy of the bias-

correction procedure will increase as more information from the observed record is taken into 

account. At the same time, the potential to over-calibrate the bias-correction procedure to a 
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particular set of reference data increases as more and more observed data are used to calculate the 

correction parameters. 

Taken together, our results indicate that there is a high probability of correcting RCM precipitation 

data up until the second moment, but the ability to correct higher moments falls quickly, owing to 

the problem of over-tuning the correction procedure to the particular observed dataset employed. 

Our results also support the assertion of Li et al. (2010) that the frequent extrapolation and 

interpolation that is required with empirical quantile mapping methods can lead to unsatisfactory 

results, particularly for extreme quantiles (Themeßl et al., 2010). 

We conclude by stating that whilst the first and second moments of the precipitation distribution 

can be corrected robustly, none of the methods evaluated here could robustly correct the third and 

fourth moments of the precipitation frequency distribution. The empirical quantile mapping method 

with 100 quantile divisions was highly accurate but its sensitivity to the choice of time period was 

higher than that of methods which used fewer parameters and which were, therefore, less vulnerable 

to over-tuning. Overall, the correction method based on a gamma distribution offers the best 

combination of accuracy and robustness, but it is valid only when the observed and modelled 

precipitation data are gamma distributed. In circumstances where precipitation datasets cannot 

adequately be approximated using a gamma distribution, the linear and non-linear correction 

methods were most effective at reducing bias across all moments tested here (Table 3). The non-

linear method is more effective at reducing the bias but the linear method is least sensitive to the 

choice of calibration period. However, it should be borne in mind that bias correction introduces 

additional uncertainties, due to the choice of bias correction method and the choice of calibration 

period, which are greater for higher-order moments (Table 4). 
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Table 1. Information about the seven test regions used in the study. NRFA catchment ID (followed 

by a B if the catchment is in the benchmark network), mean annual rainfall and elevation range all 

come from Marsh and Hannaford (2008). The easting and northing distances are the number of 1 

km grid squares required in each direction to encompass the region. The type indicates whether the 

region is delimited by a catchment outline (C) or a rectangle (R).  

Name NRFA ID 

Mean 

Annual 

Rainfall 

(mm/yr) 

Elevation 

Range (m) 

Easting 

Distance 

(km) 

Northing 

Distance 

(km) 

Location Type 

Exe-Culm 
45001 1295 488 

56 53 
South West 

England 
C 

45003 985 249 

Northern 

Scotland 
95001 B 2201 1409 130 20 

Northern 

Scotland 
R 

Tay 15006 B 1461 1184 147 75 
Eastern 

Scotland 
C 

Ribble 71001 B 1345 678 60 70 
North West 

England 
C 

Conway 66011 2183 1028 39 30 
North 

Wales 
C 

Severn 54001 924 809 115 76 
Midlands of 

England 
C 

East 

Anglia 

33019 B 641 60 
61 69 

South East 

England 
R 

36008 609 92 
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Table 2. Frequency of error reduction, in percent, for four statistical moments over the whole year 

and for each season over all four statistical moments of each of the frequency distributions of 

observed, simulated and corrected daily precipitation datasets over the whole of the Exe-Culm 

basin, where the probability is calculated out of the 31 10-year slices of the cross-validation study. 

See description of Figure 3 for table acronyms. 

Moment Frequency of error reduction (%) 

 Lin Nln Gam Emp 

    025Q 050Q 075Q 100Q 

Mean 88 86 86 89 89 88 88 

Standard deviation 79 77 82 76 77 79 80 

Coefficient of variation 27 27 35 30 33 34 33 

Skewness 11 7 11 6 7 8 8 

Kurtosis 11 7 9 7 10 11 11 

        

Season        

Winter 50 45 49 48 49 49 49 

Spring 56 50 57 57 59 59 59 

Summer 29 24 27 20 22 26 26 

Autumn 38 44 45 41 42 43 43 
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Table 3. Catchment mean absolute relative differences (ARD10) in mm day
-1

 for four statistical 

moments over the whole year between observed, simulated and bias-corrected daily time series 

resulting from the 10 years cross-validation methodology. Mean ARD10 > 1 corresponds to large 

differences ranging from 3.60 to 1.82 x 10
6
. See description of Figure 3 for table acronyms. 

Moment Catchment Mean absolute relative difference (mm/day) 

  Sim Lin Nln Gam Emp 

      025Q 050Q 075Q 100Q 

Mean N. Scotland 0.26 0.04 0.04 0.04 > 1 > 1 > 1 > 1 

 Tay 0.26 0.02 0.02 0.02 0.04 0.09 > 1 0.05 

 Ribble 0.18 0.02 0.03 0.03 0.03 0.03 > 1 0.02 

 Conway 0.28 0.03 0.04 0.04 0.04 0.04 0.64 0.03 

 Severn 0.17 0.03 0.03 0.03 0.03 0.03 > 1 0.05 

 East Anglia 0.24 0.01 0.02 0.02 0.03 0.08 0.02 0.11 

  0.23 0.03 0.03 0.03 > 1 > 1 > 1 > 1 

Standard deviation N. Scotland 0.20 0.18 0.04 0.04 > 1 > 1 > 1 > 1 

 Tay 0.19 0.13 0.03 0.03 0.07 0.52 > 1 0.21 

 Ribble 0.17 0.10 0.02 0.02 0.06 0.05 > 1 0.04 

 Conway 0.24 0.12 0.04 0.04 0.07 0.05 > 1 0.04 

 Severn 0.12 0.08 0.03 0.03 0.07 0.05 > 1 0.20 

 East Anglia 0.13 0.12 0.03 0.02 0.07 0.37 0.05 0.61 

  0.18 0.12 0.03 0.03 > 1 > 1 > 1 > 1 

Coefficient of variation N. Scotland 0.16 0.16 0.02 0.02 0.07 0.09 0.13 0.12 

 Tay 0.14 0.13 0.02 0.03 0.03 0.02 0.02 0.02 

 Ribble 0.10 0.12 0.01 0.03 0.03 0.02 0.02 0.02 

 Conway 0.12 0.14 0.01 0.05 0.03 0.02 0.01 0.01 

 Severn 0.09 0.09 0.02 0.03 0.04 0.03 0.02 0.02 

 East Anglia 0.09 0.13 0.02 0.03 0.04 0.03 0.03 0.03 

  0.12 0.13 0.02 0.03 0.04 0.04 0.04 0.04 

Skewness N. Scotland 0.14 0.14 0.15 0.11 0.09 0.13 0.18 0.18 

 Tay 0.17 0.14 0.10 0.07 0.07 0.07 0.06 0.06 

 Ribble 0.15 0.15 0.08 0.06 0.06 0.07 0.07 0.07 

 Conway 0.15 0.15 0.09 0.09 0.05 0.06 0.06 0.06 

 Severn 0.10 0.09 0.09 0.07 0.07 0.07 0.07 0.07 

 East Anglia 0.10 0.10 0.20 0.12 0.05 0.07 0.08 0.08 

  0.14 0.13 0.12 0.09 0.07 0.08 0.09 0.09 

Kurtosis N. Scotland 0.14 0.14 0.14 0.11 0.09 0.13 0.16 0.16 

 Tay 0.17 0.14 0.09 0.07 0.08 0.08 0.07 0.07 

 Ribble 0.16 0.16 0.07 0.07 0.07 0.07 0.06 0.06 

 Conway 0.17 0.17 0.08 0.10 0.04 0.06 0.06 0.06 

 Severn 0.11 0.10 0.09 0.07 0.07 0.08 0.07 0.07 

 East Anglia 0.11 0.11 0.18 0.10 0.05 0.06 0.07 0.07 

  0.14 0.14 0.11 0.09 0.07 0.08 0.08 0.08 
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Table 4. Frequency of error reduction, in percent, for four statistical moments over the whole year 

and for each season over all four statistical moments of each of the frequency distributions of 

observed, simulated and corrected daily precipitation datasets averaged over the whole of the 6 

catchments, where the probability is calculated out of the 31 10-year slices of the cross-validation 

study. See description of Figure 3 for table acronyms. 

Moment Frequency of error reduction (%) 

 Lin Nln Gam Emp 

    025Q 050Q 075Q 100Q 

Mean 84 82 83 82 82 77 79 

Standard deviation 69 72 79 58 62 64 64 

Coefficient of variation 36 59 64 53 57 60 60 

Skewness 61 42 60 25 24 26 26 

Kurtosis 62 36 53 24 18 19 20 

        

Season        

Winter 72 75 82 57 56 55 57 

Spring 54 48 58 44 46 48 49 

Summer 56 45 59 45 48 51 51 

Autumn 68 65 70 48 45 43 43 
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Figure 1. Schematic of the empirical distribution correction approach with observed (solid) and 

simulated (dashed) cumulative density function of daily precipitation and the transfer function 

(dotted lines) used to correct the simulated precipitation intensity. The corrected intensity of a 

simulated precipitation of a given quantile is found by resampling from the observed distribution 

the precipitation intensity with the same quantile value.  
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Figure 2. Location of the seven catchments in the UK. For the rectangular regions the catchments 

from which the statistics in Table 1 derive are shown inside the region. 
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Figure 3. Monthly catchment average absolute relative differences (ARD30) in mm day
-1

 for four 

statistical moments of each of the frequency distributions of simulated (Sim) and corrected (Lin for 

linear, Nln for non-linear, Gam for gamma and Emp 025Q, 050Q, 075Q and 100Q for empirical 

with 25, 50, 75 and 100 quantiles, respectively) daily precipitation datasets over the whole of the 

Exe-Culm basin, where correction factors are calculated over 1961–1990 and applied to the same 

period. Monthly values of the catchment average ARD30 are shown by the solid line, while the 

dotted line illustrates the annual mean value of the catchment average ARD. The Y-axis and X-axis 

represent the absolute relative difference and corresponding month, respectively. 
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Figure 4. Seasonal absolute relative differences (ARD10; in mm/day) in the mean between 

observed, simulated (SIM) and each bias-corrected data obtained from the 10 years cross-validation 

procedure (top-right corner: catchment average), for the Exe-Culm river basin. Bias correction 

methods are linear (LIN), non-linear (NLN), gamma distribution (GAM), empirical distribution 

with 25, 50, 75 and 100 quantiles (EMP.025Q, EMP.050Q, EMP.075Q and EMP.100Q 

respectively). 
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Figure 5. Same as Figure 4 for the standard deviation. 
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Figure 6. Same as Figure 4 for the coefficient of variation. 
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Figure 7. Same as Figure 4 for the skewness. 
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Figure 8. Same as Figure 4 for the kurtosis. 
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