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Abstract

Two different bias correction methods, the quantile mapping (QM) and quantile delta mapping (QDM), are applied to simu-

lated daily temperature and precipitation over China from a set of 21st century regional climate model (the ICTP RegCM4) 

projections. The RegCM4 is driven by five different general circulation models (GCMs) under the representative concentra-

tion pathway RCP4.5 at a grid spacing of 25 km using the CORDEX East Asia domain. The focus is on mean temperature 

and precipitation in December–January–February (DJF) and June–July–August (JJA). The impacts of the two methods on 

the present day biases and future change signals are investigated. Results show that both the QM and QDM methods are 

effective in removing the systematic model biases during the validation period. For the future changes, the QDM preserves 

the temperature change signals well, in both magnitude and spatial distribution, while the QM artificially modifies the change 

signal by decreasing the warming and modifying the patterns of change. For precipitation, both methods preserve the change 

signals well but they produce greater magnitude of the projected increase, especially the QDM. We also show that the effects 

of bias correction are variable- and season-dependent. Our results show that different bias correction methods can affect in 

different way the simulated change signals, and therefore care has to be taken in carrying out the bias correction process.
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1 Introduction

While general circulation models (GCMs) produce impor-

tant climate change information on the global scale, they 

are still characterized by an excessively coarse resolution 

to provide information for impact studies. Regional climate 

models (RCMs) with higher horizontal resolution have been 

widely used in recent decades (Giorgi 2019) to downscale 

GCM simulations and provide fine scale regional climate 

information. They can be especially useful for the East Asia 

region, whose climate is dominated by the East Asia mon-

soon and is characterized by a large diversity both in space 

and time.

As reported in previous studies, high resolution RCM 

simulations show better performance in reproducing present 

day climate over China, and particularly the development of 

the East Asia monsoon (Gao et al. 2006). In addition, RCMs 

tend to project different change pattern compared to the driv-

ing GCMs due to a more realistic topographic and land use 

forcings (e.g., Gao et al. 2006, 2012; Zou and Zhou 2013; 

Yu et al. 2015; Gao and Giorgi 2017; Huang et al. 2018).

As well known, systematic biases of climate model simu-

lations relative to observations widely exist due to various 

reasons. It can be very difficult and sometimes even not pos-

sible to use model outputs directly in impact assessment 

studies, e.g., as forcings for hydrological and agricultural 

models. Thus, bias correction has been widely used to post-

process the climate model output prior to application for 

impact studies (Wood et al. 2004; Boé et al. 2007; Ashfaq 

et al. 2010; Piani et al. 2010; Yang et al. 2010; Hagemann 

et al. 2011; Teutschbein and Seibert 2012; Eden et al. 2012).
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A number of bias-correction methods have been devel-

oped, although those employing quantile mapping (QM) 

are the most commonly used (Eden et al. 2012; Maraun 

2013; Mehrotra and Sharma 2016; Ngai et al. 2017; Han 

et al. 2018; Yang et al. 2018). In the QM method a transfer 

function (TF) depending on the quantile distribution is first 

established by matching daily values in present day simula-

tions with observations during a reference period. This is 

then applied to other periods of the model simulations, e.g., 

future time slices. Typically, a validation period is selected 

and the bias corrected variables are compared against obser-

vations to evaluate its performance. As reported by previous 

studies, the QM method effectively removes model biases, 

not only for the mean and interannual variability, but also 

for extreme events (e.g., Wood 2002; Wood et al. 2004; Boé 

et al. 2007; Piani et al. 2009; Ashfaq et al. 2010; Piani et al. 

2010; Teutschbein and Seibert 2012; Gudmundsson et al. 

2012; Tong et al. 2017).

In general, the QM method assumes that the cumulative 

distribution function (CDF) for a variable in the simulation 

and observation time series remains un-changed in the future 

period. However, this distribution has been found to change 

in future projections (IPCC 2013), and therefore the QM 

method may artificially distort the climate change signals 

and corrupt future model-projected trends (Ahmed et al. 

2013; Bürger et al. 2013). This calls for a method that can 

effectively preserve relative or absolute changes in simulated 

quantiles (Haerter et al 2010; Li et al. 2010; Willems and 

Vrac 2011; Bürger et al. 2012; Bürger et al. 2013; Hempel 

et al. 2013; Cannon et al. 2015; Pierce et al. 2015).

One QM method is, the non-parametric QM using robust 

empirical quantiles (RQUANT) (Gudmundsson et al. 2012), 

which has been used to bias correct daily precipitation and 

temperature over China in a RCM simulation driven by rea-

nalysis data over China (Tong et al. 2017; Han et al. 2018). 

Therefore, here we apply this non-parametric QM method 

to a series of 21st century climate projections over an East 

Asia domain by the same RCM driven by different GCMs.

We also test a different bias-correction method, named 

the quantile delta mapping (QDM) (Cannon et al. 2015). The 

QDM is based on the quantile delta change and detrended 

quantile mapping method as described by Cannon et al. 

(2015), which is close to the equidistant cumulative distribu-

tion function (EDCDF) method as in Li et al. (2010) and the 

quantile delta change as in Olsson et al. (2009) (see Sect. 2.2 

below for more detail).

The main purpose of this paper is to investigate how these 

two bias-correction methods modulate the climate change 

signal over China and to intercompare the results from the 

methods in order to assess which is more appropriate to use 

in post-processing of climate variables for application to 

impact studies. We stress that intercomparative analyses of 

different bias-correction methods applied to high resolution 

models for the China territory to our knowledge are not 

available in the literature, and therefore our study can be 

especially useful in increasing understanding of this tech-

nique, which is increasingly being used in a wide range of 

impact applications. In addition, the use of an ensemble of 

simulations for post-processing increases the robustness of 

our results compared to previous RCM-based studies.

The methods and experiments are described in the next 

section, while results are discussed in Sect. 3, both for the 

present day reference period and the future climate change 

signal.

2  Model, data and methods

2.1  Model and data

The model employed here is the Abdus Salam Interna-

tional Center for Theoretical Physics (ICTP) Regional Cli-

mate Model version 4 (RegCM4) (Giorgi et al. 2012). The 

Coordinated Regional Climate Downscaling Experiment 

(CORDEX) Phase II East Asia domain is used in the simu-

lations (Giorgi et al. 2009), which covers the whole of China 

and its surrounding East Asia areas (Fig. 1). The model is 

run at 25 km grid spacing with 18 vertical sigma layers and a 

model top at 10 hPa. The configuration of the model follows 

Gao et al. (2016, 2017) with the land cover data over China 

updated to represent the realistic vegetation cover as in Han 

et al. (2015). The initial and time evolving lateral bound-

ary conditions needed to drive RegCM4 are derived from 5 

GCMs from the Phase 5 of the Coupled Model Intercompar-

ison Project (CMIP5, Taylor et al. 2012): CSIRO-Mk3-6-0, 

EC-EARTH, HadGEM2-ES, MPI-ESM-MR and NorESM1-

M (Rotstayn et al. 2010; Hazeleger et al. 2010; Collins et al. 

2011; Stevens et al. 2012; Jungclaus et al. 2013; Bentsen 

et al. 2012; Iversen et al. 2013, respectively). These GCMs 

were selected due to their higher resolution in the CMIP5 

ensemble, the data availability as well as their relatively 

good performance over the region (Jiang et al. 2016).

The RegCM4 simulations cover the period 1968–2005 

for the present day, with observed greenhouse gas concen-

trations, and 2006–2099 for the future period (Gao et al. 

2018) with greenhouse gas concentrations following the 

representative concentration pathway RCP4.5 (Moss et al. 

2010). Following the GCMs, the five RegCM4 simulations 

conducted are referred to as CdR, EdR, HdR, MdR, and 

NdR, respectively.

The gridded observational dataset CN05.1 (Wu and Gao 

2013) at a resolution of 0.25° × 0.25° (latitude × longitude) 

is used to validate and bias correct the simulations. CN05.1 

is based on the interpolation from over 2400 observing sta-

tions in China as an augmentation of CN05 (Xu et al. 2009). 
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The model outputs are linearly interpolated to the same grid 

as in CN05.1.

The bias adjustment calibration period covers 1981–2000 

and the period 2001–2015 is used to validate the perfor-

mance of the bias correction methods for present day climate 

conditions. Projected changes by the end of the 21st cen-

tury for the period 2079–2098 with respect to the reference 

period 1986–2005 are then analyzed, with comparisons of 

the QM and QDM results against the original uncorrected 

change signal.

The bias correction is applied to each simulation sepa-

rately, but here we focus on the ensemble mean temperature 

and precipitation in DJF (December–January–February) and 

JJA (June–July–August) to increase robustness of the results. 

In addition, a correction to account for dry-day frequency 

is applied in both bias-correction methods, because climate 

models tend to simulate light rain days instead of dry days 

which cannot be corrected directly by using the TF (Teutsch-

bein and Seibert 2012; Gudmundsson et al. 2012; Cannon 

et al. 2015). The TFs are constructed and applied for each 

season separately.

Ten major river basins within the Chinese territory 

(MWRC 1981; Fig. 1) are employed as sub-regions in view 

of the future use of the data in hydrological studies (e.g., 

Liu et al. 2016; Su et al. 2017). The basins are Songhuaji-

ang River Basin (SRB), Liaohe Basin (LRB), Haihe Basin 

(HaiRB), Yellow River Basin (YLB), Huai River Basin 

(HRB), Yangtze River Basin (YRB), Zhujiang River Basin 

(ZRB), Southeast Rivers Basin (SERB), Southwest Rivers 

Basin (SWRB), and interior rivers in the Northwest Basin 

(NWRB).

2.2  Methods

2.2.1  Non‑parametric quantile mapping using robust 

empirical quantiles

Given a certain variable x, the QM method is designed to 

minimize the difference between the empirical cumulative 

distribution functions (CDFs) of the original model output 

data and that of the observations during a calibration period 

(1981–2000) using Eq. (1). Equation (2) is then applied to 

Fig. 1  Model domain (gray in 

a), topography (shaded, unit: 

m) and the 10 river basins over 

China (b). 1. Songhuajiang 

River Basin (SRB); 2. Liaohe 

Basin (LRB); 3. Haihe Basin 

(HaiRB); 4. Yellow River Basin 

(YLB); 5. Huai River Basin 

(HRB); 6. Yangtze River Basin 

(YRB); 7. Zhujiang River Basin 

(ZRB); 8. Southeast Rivers 

Basin (SERB); 9 Southwest 

Rivers Basin (SWRB); 10. 

Interior rivers in the Northwest 

Basin (NWRB)
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the rest of the 21st century time series to correct future val-

ues of x:

where x
bc

 is the bias corrected result; model data is denoted 

by the subscript m, where x
m,c

 , F
m,c

 and x
m,p

 , Fm,p are the 

variable’s simulated values during the calibration period 

(denoted by the subscript c) and projected period (denoted 

by the subscript p), along with their corresponding empirical 

CDFs ( F ), respectively; x
o,c

 and F−1

o,c
 are the observed data 

(denoted by the subscript o), and the corresponding inverse 

empirical CDFs.

Previous studies have shown that using nonparametric 

transformations to establish transfer functions has the advan-

tage of not requiring specific assumptions on the distribution 

of the original data (Boé et al. 2007; Gudmundsson et al. 2012; 

Tong et al. 2017). The RQUANT method is a non-parametric 

quantile mapping using robust empirical quantiles. It estimates 

the values of the quantile–quantile relation of observed and 

model time series for regularly spaced quantiles using local 

linear least square regression, and performs quantile mapping 

by interpolation of the empirical quantiles.

The calculation is based on the R language packages qmap, 

with further information available in Gudmundsson (2012) 

and https ://cran.r-proje ct.org/web/packa ges/qmap/index .html.

2.2.2  Quantile delta mapping

Quantile delta mapping (QDM) preserves the changes in quan-

tiles and is equivalent to the equidistant and equiratio forms 

of the QM as described by Cannon et al. (2015). The model 

projection is detrended by quantiles firstly, and the simulated 

value is bias corrected by QM with the transfer function con-

structed in the calibration period. Then the projected abso-

lute (for temperature) or relative (for precipitation) changes in 

quantiles are added or multiplied to the bias corrected model 

outputs to obtain the final results.

To be more specific, for a climate variable x, we first calcu-

late the nonexceedance probability associated with the value 

at time t:

(1)F
m,c

(

x
m,c

)

= F
o,c

(

x
o,c

)

,

(2)xbc = F−1

o,c

[

Fm,p

(

xm,p

)]

,

where xm,p(t) is a modeled value at time t within the pro-

jection period, denoted by the subscript p. �(t) has a range 

from 0 to 1. F(t)
m,p

 is the time-dependent CDF of the model 

projected series x
m,p

 , which is estimated from the empirical 

CDF over a time window around t, using 30-year moving 

windows.

For precipitation, the relative change in quantiles between 

the calibration periods and project time t can be written as:

while for temperature, the absolute change in quantiles 

between the calibration periods and future periods is writ-

ten as:

where F−1

m,c
 is the inverse CDF of the simulations in the cali-

bration periods. It is also possible to bias correct the simu-

lated � quantile at model-projected time t over the calibration 

periods from observed values, as follows:

where F−1

o,c
 is the inverse CDF estimated from observed val-

ues x
o,c

 at the calibration periods.

Finally, the bias-correction results in the future period at 

time t equals this bias correction x̂ multiplied by the rela-

tive change Δ(t) for precipitation (Eq. 7) and added to the 

absolute change in quantiles Δ(t) for temperature (Eq. 8), 

as follows:

The calculation is based on the R language packages 

‘MBC’, https ://cran.r-proje ct.org/web/packa ges/MBC/index 

.html.

3  Validation

3.1  Temperature

Figure  2 presents the mean observed temperature, the 

ensemble mean (ensR) model bias (simulation minus 

(3)�(t) = F(t)
m,p

[

xm,p(t)
]

,

(4)Δ(t) =
F(t)−1

m,p
[�(t)]

F−1
m,c

[�(t)]
=

xm,p(t)

F−1
m,c

{

F
(t)
m,p

[

xm,p(t)
]

} ,

(5)

Δ(t) = F(t)−1

m,p
[�(t)] − F−1

m,c
[�(t)] = xm,p(t) − F−1

m,c

{

F(t)
m,p

[

xm,p(t)
]

}

,

(6)x̂(t) = F
−1

o,c
[�(t)],

(7)x
bc(t) = x̂(t)Δ(t),

(8)x
bc(t) = x̂(t) + Δ(t),

Fig. 2  Mean temperature from observation and biases during 2001–

2015 over China (units: °C): a observation in DJF; b observation in 

JJA; c biases in DJF; d biases in JJA; e biases of ensR_QM in DJF; f 

biases of ensR_QM in JJA; g biases of ensR_QDM in DJF; h biases 

of ensR_QDM in JJA. Cross area in panels indicates that all simu-

lations simulated the negative/positive bias. Regional mean over the 

whole of China and the CORs with observation for c to h are pro-

vided in the lower left corner of the panels

◂

https://cran.r-project.org/web/packages/qmap/index.html
https://cran.r-project.org/web/packages/MBC/index.html
https://cran.r-project.org/web/packages/MBC/index.html
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observations), and the ensembles mean biases of the bias-

corrected model simulation using the QM and QDM (ensR_

QM and ens_QDM) methods for the validation period in 

DJF and JJA over China. The observed temperature in DJF 

shows a pronounced latitudinal gradient (Fig. 2a), while high 

temperatures prevail over eastern China in JJA (Fig. 2b), and 

a strong topographical signal is found over western China.

The temperature biases of ensR in DJF show a general 

warm bias in high latitudes during the cold season (Fig. 2c), 

consistent to previous model simulations driven by re-anal-

ysis fields (Gao et al. 2017) as well as most GCMs (e.g., 

Jiang et al. 2016). Meanwhile, a dominant cold bias over the 

Tibetan Plateau is found. In JJA (Fig. 2d), the model shows 

a warm bias over the desert areas in the Northwest, while a 

cold bias prevails elsewhere except over the Sichuan Basin. 

The simulations show bias patterns in agreement among the 

individual realizations, with major biases consistent across 

models indicated by hatched areas in the figures. This result 

is consistent with Wu and Gao (2020) when analyzing 4 

simulations of the series during the period of 1986–2005.

The analysis of different sub-regions indicates that the 

temperature biases of ensR in DJF show the largest warm 

bias over the SRB (2.6 °C) in Northeast China (Table 1), 

while the maximum cold bias is found in SWRB (− 5.3 °C) 

followed by SERB (− 2.3 °C). In NWRB, the large warm 

bias in the Northwest counterbalances the cold bias in the 

Tibetan Plateau leading to a relatively small mean value of 

− 0.3 °C. In JJA, the biases are all negative over the different 

basins, with maxima of − 1.9 °C and − 1.8 °C for SWRB 

and SERB, respectively. Mean biases over whole of China in 

DJF and JJA are − 0.8 °C and − 0.7 °C, respectively.

The spatial correlation coefficients (CORs) between ensR 

and observations are also provided in Table 1. The CORs are 

high, with only 6 of the total 20 river basin cases being < 

0.95, all statistically significant at the 95% confidence level 

using the equivalent sample size method (Zwiers and von 

Storch 1995).

Both ensR_QM (Fig. 2e, f) and ensR_QDM (Fig. 2g, h) 

reduce substantially the biases in DJF and JJA. The patterns 

of bias as well as the agreement among the ensemble mem-

bers are very similar between ensR_QM and ensR_QDM 

in both seasons. In DJF (Fig. 2e, g), the biases are mostly 

within ± 1.0 °C except in the region where the Yangtze and 

Yellow Rivers originate over the eastern part of the Tibetan 

Plateau. Smaller biases, within ± 0.5 °C are found in the 

Northeast and Northwest. A general cold bias prevails 

throughout the country but with lower agreement among 

the ensemble members. Regional mean biases over the dif-

ferent river basins and the whole of China for ensR_QM and 

ensR_QDM are close to 0, and the CORs are all close to 1.00 

thus they are not shown for brevity.

In JJA the biases are smaller than in DJF, mostly 

within ± 0.5 °C (Fig. 2f, h). Cold biases ranging from 0.5 °C 

to 1 °C are found in the mid and lower reaches of the Yang-

tze River basin and small portions over the Tibetan Plateau. 

Similar to DJF, close to 0 regional mean biases, and close to 

1 CORs are found over the China river basins.

3.2  Precipitation

For precipitation, values greater than 200 mm in the South-

east and less than 50 mm over most of north and northwest 

China are observed in the dry season of DJF (Fig. 3a). In 

JJA, the monsoon season, precipitation is more pronounced 

over the country with maxima exceeding 750 mm along the 

southern coastal regions (Fig. 3b).

The broad spatial patterns and magnitude of the precipi-

tation biases in ensR show consistencies with those found 

when the model is driven by re-analysis fields (Gao et al. 

2017). In DJF, there is an underestimation by 25–50% in the 

Southeast, where the precipitation center located, and a large 

overestimation, even in excess of 100%, over the dry and 

mountainous regions of central and western China. The larg-

est bias values over the river basins are found in SWRB and 

NWRB (Table 1). However, the uncertainties in the gridded 

observation dataset (due to the complex topography, lack of 

station observations over areas largely uninhabited, as well 

as the gauge undercatch of solid precipitation) may contrib-

ute to this large overestimation over the basins (Wu and Gao 

2013; Gao et al. 2017). The smallest (negative) bias is found 

over SERB. The CORs between ensR and observations are 

Table 1  Biases of mean temperature (units: °C) and precipitation 

(%) for ensR and the spatial correlation coefficients (CORs) between 

ensR and observations over the 10 major river basins (see Fig. 1 and 

Sect.  2.1 of the main text for the abbreviations) and China (CN) in 

DJF and JJA

Correlation coefficients that are not statistically significant at the 95% 

confidence level are indicated by italic

T (°C) P (%)

DJF JJA DJF JJA

1-SRB 2.6/0.93 − 0.7/0.97 210/0.75 11/0.77

2-LRB 0.8/0.95 − 1.4/0.97 375/0.89 33/0.70

3-HaiRB 0.5/0.99 − 1.4/0.99 225/− 0.11 67/− 0.08

4-YLB − 0.7/0.97 − 1.5/0.99 236/0.60 84/0.61

5-HRB 1.0/0.95 − 1.1/0.94 23/0.94 − 5/0.09

6-YRB − 2.0/0.98 − 0.6/0.99 320/0.29 29/0.38

7-ZRB − 0.4/0.95 − 0.2/0.92 38/− 0.22 9/0.07

8-SERB − 2.3/0.89 − 1.8/0.87 − 12/0.39 17/0.58

9-SWRB − 5.3/0.99 − 1.9/0.98 795/0.37 157/0.28

10-NWRB − 0.3/0.81 − 0.1/0.99 545/0.55 55/0.73

CN − 0.8/0.94 − 0.7/0.98 389/0.46 52/0.67
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Fig. 3  Same as Fig. 2, but for precipitation (%)
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statistically significant in 7 of the 10 basins, with a range of 

0.29 to 0.94. In HaiRB and ZRB, negative CORs are found. 

The regional mean bias over whole of China is very large 

due to the contributions of the western basins, and the COR 

is 0.46.

The bias of the ensR in JJA (Fig. 3d) is much smaller 

than in DJF, indicating a better performance of the model 

during the wet season. The main model bias is a large over-

estimation over the area extending from north HaiRB to 

Inner Mongolia, and an underestimation over the deserts in 

the Northwest. The biases are mostly positive in the river 

basins except HRB (Table 1). Greater than or close to 100% 

values are found in SWRB and YLB. A ~ 50% excess pre-

cipitation is simulated for the whole of China. The COR 

for the whole of China in JJA is 0.67, greater than in DJF. 

However the CORs are statistically significant in only 6 

out of the 10 basins, with close to zero values found in 

HaiRB, HRB, and ZRB. Thus the model reproduces the 

overall precipitation pattern for the whole country but not 

at the sub-regional river scale.

The biases are greatly reduced by both bias correction 

methods (Fig. 3e–h), more significantly in JJA, with the 

values of bias in most places within ± 25%. Similar bias dis-

tribution patterns and magnitudes are found between ensR_

QM and ensR_QDM in both DJF and JJA. The mean biases 

over different basins are mostly within ± 25% in DJF and in 

the range of − 5 ~ 15% in JJA, respectively. The CORs are in 

general greater than 0.95 over the river basins, except ZRB 

with values around 0.60 and NWRB in the range of 0.80 

to 0.90 (tables not shown for brevity). The regional mean 

biases over the whole of China for ensR_QM in DJF and 

JJA are 1% and − 4%, and slightly larger for ensR_QDM, 

8% and 9% for ensR_QDM, respectively. The CORs for 

the whole of China are generally high, in the range of 0.98 

and 0.99.

4  Future climate change signals

4.1  Temperature

4.1.1  Projections by RegCM4

Figure 4a, b present the projected temperature changes at 

the end of the century (2079–2098) in DJF and JJA from 

ensR over China, while the mean changes over different 

river basins are reported in Fig. 5a, b. As can be seen, sub-

stantial warming is projected in both seasons. In DJF the 

warming is maximum over the Tibetan Plateau with values 

ranging from 3 °C to greater than 4 °C (Fig. 4a). This may 

be related to the stronger feedback between the warming 

and melting of snow cover over this cold region (Giorgi 

et al. 1997), and is considered as one of the added values 

of the downscaling as reported by Wu and Gao (2020). The 

warming in DJF is also large over the basins (deserts) in the 

Northwest (> 2.7 °C). As indicated in Fig. 5a, b substantial 

spread across the river basins is found, with greatest warm-

ing around 3 °C in SWRB and NWRB and lowest warming 

of 2 °C in ZRB and HRB. The mean over the whole of 

China in DJF is 2.6 °C.

In JJA the warming is slightly weaker, with a mean value 

over China of 2.3 °C (Fig. 4b). The warming is more evenly 

distributed in space for JJA compared to DJF, with a lower 

spread across the river basins, from ~ 2 to ~ 2.5 °C (Fig. 5b). 

Larger values (> 2.4 °C) are found mostly over the region 

extending from LRB in the Northeast to the Northwest, as 

well as the northern part of the SWRB. Mean values over 

the river basins are largest in HaiRB and LRB and smallest 

in ZRB and SERB.

4.1.2  Bias corrected projections using QM and QDM

In DJF the ensR_QDM (Fig. 4e) shows very similar (and 

in fact almost same) values as ensR both in magnitude and 

spatial distribution, while large differences are found in 

ensR_QM (Fig. 4c). In ensR_QM the warming over the 

Tibetan Plateau is strongly reduced, as is the warming over 

the over Sichuan Basin. Figure 5 shows that in all basins 

the ensR_QM projects a lower warming than the original 

ensR, resulting in a mean warming over China in ensR_QM 

being reduced by − 0.3 °C with respect to ensR. The cor-

relation between the ensR_QM and ensR warming patterns 

is 0.75.

For the different river basins, Table 2 provides the dif-

ferences and CORs for the temperature changes between 

ensR_QM and ensR at the end of 21st century. The biases 

of ensR_QDM are all close to 0 (see Fig. 5a) and the CORs 

close to 1 thus they are not provided for brevity. As shown in 

Table 2 and Fig. 5a, b general weakening of the warming is 

found over most river basins in DJF, except in HRB and ZRB 

with values close to 0. The differences are larger, reaching 

half a degree, over NWRB, SWRB, and YRB. The CORs are 

mostly positive and statistically significant except in SERB 

and ZRB, indicating that the original spatial patterns of the 

changes in most river basins are approximately kept.

Also in JJA the ensR_QDM maintains the original signal 

of ensR very well, while ensR_QM does not (Fig. 4f, d). The 

magnitude of the mean warming over China by ensR_QM 

is -0.1ºC lower than in ensR and the differences in the spa-

tial distributions are large, with a COR value of about 0.32. 

Differently from the general lowering of temperature in DJF 

by the QM, a stronger warming is found in 3 out of the 10 

river basins in JJA (Table 2; Fig. 5d). The maximum warm-

ing amplification is 0.4 °C over SERB, while the maximum 
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warming reduction is −0.4 °C in HaiRB. CORs between 

ensR and ensR_QM JJA temperature change patterns are sta-

tistically significant in only 5 basins (YLB, SERB, SWRB,  

NWRB, and SRB). In summary, the QM method modifies 

significantly the temperature change signals from the origi-

nal ensemble in both DJF and JJA, while the QDM method 

preserves it very closely.

4.1.3  Results for individual simulations

Figure 6 provides the projected and bias corrected model 

results for each of the 5 individual simulations in DJF. 

The simulated temperature changes show large differences 

among the ensemble members (Fig. 6a1–5). As reported by 

Wu and Gao (2020), this can be largely attributed to the 

dependence on the driving GCMs and their climate sensi-

tivities. Results from QDM show good consistencies with 

the original signal for all the simulations, both in the magni-

tude and spatial distribution (Fig. 6c1–5), while the signals 

are substantially modified in all the simulations using QM 

(Fig. 6b1–5). However the extent of this modification shows 

differences across the simulations.

While an overall lowering of the regional mean tem-

peratures over China is found in all simulations, a larger 

Fig. 4  Projected changes of temperature at the end of 21st century 

(2079–2098 in relative to 1986–2005) (units: °C): a ensR in DJF; b 

ensR in JJA; c ensR_QM in DJF; d ensR_QM in JJA; e ensR_QDM 

in DJF; f ensR_QDM in JJA. Regional mean over the whole of China 

and the CORs with ensR for c to f are provided in the lower left cor-

ner of the panels
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decrease (0.6  °C) is found for HdR_QM, followed by 

MdR_QM (0.4 °C). Values for the rest of the realizations 

are in the range of 0.2–0.3 °C. Concerning the CORs, the 

largest value of 0.90 is found for CdR_QM with the large 

warming over the Tibetan Plateau better preserved than 

in the other simulations (Fig. 6b1). The smallest value of 

COR is found in HdR_QM (0.71).

Similarly, in JJA (Fig. 7) the QDM preserves the tem-

perature change signals very well for all simulations, dif-

ferently from the QM. The weakening of the warming by 

QM is not as large as in DJF (Fig. 7b1–b5), with the larg-

est magnitude of the warming reduction over China being 

0.3 °C for MdR_QM, followed by 0.1 °C for HdR_QM and 

NdR_QM. The values of warming remain unchanged in 

CdR_QM and EdR_QM. CORs of the individual simula-

tions are close to 1 for QDM but in the range of 0.34–0.81 

for QM. It is noted than the COR between ensR and 

ensR_QM is only 0.32, smaller than in all the individual 

simulations.

Fig. 5  Comparison of the temperature (unit: °C) and precipitation (%) 

change in ensR, ensR_QM and ensR_QDM at the end of 21st cen-

tury over the 10 major river basins in China: a temperature in DJF; b 

temperature in JJA; c precipitation in DJF; d precipitation in JJA. The 

colored symbols indicate the different methods. The numbers indi-

cate the different river basins as Fig. 1 with CN indicate the whole of 

China
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4.2  Precipitation

4.2.1  Projections by RegCM4

Changes in precipitation from ensR, ensR_QM and ensR_

QDM in DJF and JJA at the end of the 21st century are 

presented in Fig. 8. In both seasons and all ensembles a 

precipitation increase dominates throughout the country 

except for some small regions over the Northwest. In DJF, 

an increase of precipitation > 15% is found, except over 

areas extending from the Southwest to the middle reaches 

of the YRB (Fig. 8a). The relative change is largest over 

the dry basins in the Northwest, in excess of 50%. The 

mean increase over China in DJF is 19%. The spread of 

the increase is large across the river basins (Fig. 5c), with 

values of < 10% over YRB, SERB and ZRB, to over 30% 

over NWRB.

In JJA (Fig. 8b), the main regions with increased precipi-

tation include the northern region of the Northeast (SRB), 

HRB and its adjacent areas in the west, and the eastern part 

of the Tibetan Plateau. The magnitudes of the increases 

are much lower than in DJF, in the range of 5–15%. Little 

change or slight decreases of precipitation are found in the 

other areas. Consistently, the spread in different river basins 

in JJA is narrower than in DJF, in the range of close to 0 

(HaiRB and LRB) to ~ 7% (SRB and HRB). The regional 

mean change in precipitation over the whole of China is a 

small increase of 3%.

4.2.2  Bias corrected projections using QM and QDM

The change patterns of precipitation are in general pre-

served by both the QM and QDM methods in both seasons 

(Fig. 8c–f). In DJF, the corrections show a low impact with 

slight or negative changes (YRB and Southwest China), but 

tend to amplify the increases. This is more pronounced over 

western China in QM compared to QDM. The regional mean 

change over China using the QM is 32%, which is about 

7% higher than in the original model runs. CORs between 

ensR_QM and ensR_QDM with ensR in DJF are still high, 

as 0.81 and 0.93, respectively.

Concerning the river basins, in excess of 20% more pre-

cipitation is found in SWRB and NWRB for ensR_QM com-

pared to ensR (Table 3; Fig. 5c). The values are also large 

in LRB and HaiRB, about 15% and 14%, respectively. The 

amplification of the increases is lower in ensR_QDM, rang-

ing from 3 to 10% across the river basins. CORs between 

ensR_QDM and ensR are in general greater than in the 

case of ensR_QM over the basins. Statistically insignificant 

CORs are found in LRB and HaiRB in both ensR_QM and 

ensR_QDM.

In JJA (Fig. 8d, f), both methods preserve the original 

changes more strictly that in DJF. An amplification of the 

increase is found also in JJA by both QM and QDM but less 

pronounced than in DJF. In QDM, the decrease of precipita-

tion over the basins in Northwest is converted to an increase. 

The mean precipitation increase over China for ensR_QM 

and ensR_QDM is 4% and 6%, respectively, thus close to 

the ensR value of 3%. CORs are high, with values of 0.94 

and 0.88, respectively. Over the river basins, the differences 

compared to ensR for the QM and QDM methods are in the 

range of – 1 to 2% and 1–4%, respectively (Table 3; Fig. 5d). 

Lower than 0.90 COR (0.80) is found only in QDM over 

NWRB. In general, in JJA for precipitation the QM method 

preserves the change signal somewhat better than the QDM 

one.

4.2.3  Results for individual simulations

Figure 9 presents the projected precipitation changes from 

each of the 5 individual simulations and the corresponding 

bias corrected changes using the QM and QDM methods. In 

agreement with the ensemble mean, the projected wet-dry 

patterns are in general well preserved by both methods. The 

bias corrections tend to amplify the projected increase of 

precipitation in all runs, more significantly in QDM. The 

magnitudes and spatial distribution of the areas of precipi-

tation reduction are also well kept, except in NdR_QDM 

over the lower reaches of the YRB, where a more extended 

decrease is found. The greatest precipitation amplification 

Tabel 2  Differences and CORs of temperature changes (units: °C) 

at the end of 21st century between ensR_QM and ensR over the 10 

major river basins and China in DJF and JJA

Correlations coefficients that are not statistically significant at the 

95% confidence level are indicated by italic

T (°C)

Differences CORs

DJF JJA DJF JJA

1-SRB − 0.2 − 0.2 0.82 0.37

2-LRB − 0.1 − 0.1 0.39 − 0.07

3-HaiRB − 0.2 − 0.4 0.61 0.27

4-YLB − 0.3 0.0 0.79 0.72

5-HRB 0.0 − 0.2 0.71 − 0.10

6-YRB − 0.5 0.1 0.79 0.16

7-ZRB − 0.0 0.2 0.14 − 0.22

8-SERB − 0.3 0.4 − 0.17 0.64

9-SWRB − 0.6 − 0.1 0.86 0.58

10-NWRB − 0.4 − 0.2 0.41 0.52

CN − 0.3 − 0.1 0.75 0.32
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is found in HdR_QM, a simulation for which we also find 

the smallest COR with the original model projection (0.68). 

In JJA, the precipitation change signals for the individual 

runs are all well preserved by both methods (not provided 

for brevity).

4.3  Annual cycles

Figure 10a, b compare the annual cycle of monthly mean 

temperature and precipitation changes from the ensR, ensR_

QM and ensR_QDM over China by the end of the 21st cen-

tury. For temperature in ensR (Fig. 10a), greater warming in 

Fig. 6  Projected changes of temperature by the individual simula-

tions and bias correction of them at the end of 21st century in DJF 

(unit: °C): a the original simulations; b corrected by QM; c corrected 

by QDM; (1–5) indicates RegCM4 simulation driven by different 

GCMs. Regional mean over the whole of China for a to c and the 

CORs with original model projection for b to c are provided in the 

lower left corner of the panels
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the range of 2.6–2.8 °C is found during the winter months, 

from November to February, with a maximum in Novem-

ber. The warming is the lowest in the spring months, May 

and April, with values of 1.9 °C and 2.0 °C, respectively. 

Interestingly, the warming has a peak also in august, with a 

value of 2.5 °C.

While the QDM keeps the magnitude of warming very 

closely in all months, the QM reduces the warming in 

7 months of the year, especially in the winter months, about 

0.4 °C in January and 0.3 °C in December and February. 

Only in April and May the QDM produces a higher warming 

than ensR by about 0.1 °C.

For precipitation (Fig. 10b), the largest increases are pro-

jected in ensR during the colder and drier part of the year, 

from October to April, in the range of 10–25%. Increases 

of < 5% are found in the summer monsoon months. The 

shape of the annual cycle of precipitation change in ensR 

is reproduced by both ensR_QM and ensR_QDM, however 

Fig. 7  Same as Fig. 6, but for JJA
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both bias correction methods tend to amplify the precipi-

tation increases, except for the three summer months. In 

general, the QM method produces a larger amplification of 

the precipitation increase than the QDM, up to about 15% 

amplification in the winter months.

5  Conclusions and discussion

In this paper, we apply the QM and QDM bias correction 

methods to a series of RegCM4 downscaled projections 

driven by 5 CMIP5 models over East Asia. The simulated 

present day climate biases and validation for the two meth-

ods are first presented, followed by an analysis of the change 

signals. Our focus of is on the mean temperature and pre-

cipitation in DJF and JJA over China. This is the first study 

that intercompares different bias-correction methods applied 

to an ensemble of RCM projections to increase robustness 

of the results.

The biases of ensR for the present day climate simula-

tion period show consistencies with the model driven by 

other GCMs and re-analysis fields (Gao and Giorgi 2017; 

Gao et al. 2017). The RegCM4 is characterized by a warm 

bias in DJF at high latitudes of northern China and a cold 

Fig. 8  Same as Fig. 4, but for precipitation (%)
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bias over the Tibetan Plateau, along with an underestimate 

of precipitation in the Southeast and an overestimate in the 

dry north. In JJA, a warm bias is found over the deserts of 

the Northwest and a cold bias prevails elsewhere, while 

the precipitation climatology is better simulated than in 

DJF.

These biases are effectively removed by both the QM 

and QDM methods, although some differences with obser-

vations still remain. However, these are small and show 

consistency between the methods so that it is not pos-

sible to establish which method is better in this respect. 

Concerning the future changes, substantial warming is 

projected in ensR, greater in DJF than in JJA. While the 

QDM preserves very closely the change signal of ensR 

both in spatial distribution and magnitude, substantial dis-

tortions are found when using the QM, which produces 

lower warming and some modifications in the patterns of 

change. These effects are more pronounced in DJF than 

JJA, and are found in all individual simulations of the 

ensemble.

Concerning the projected precipitation, a prevailing 

increase is found north of 30°N, with greatest magnitude 

over the Northwest basins in DJF. In JJA over eastern 

China, the precipitation change shows areas of alterna-

tive positive and negative changes moving from north 

to south, but a prevailing increase of precipitation. The 

patterns of precipitation change are in general preserved 

by both the QM and QDM methods, which however tend 

to amplify the precipitation increases. This amplification 

is more pronounced during the winter months and by the 

QM method.

In summary, the QDM method is shown to preserve 

better the change signal for temperature in both seasons 

and for precipitation in the winter (dry season). In sum-

mer the two methods exhibit more similar results. An 

important conclusion of our analysis is that the mag-

nitude of the projected changes can be substantially 

affected by the bias correction, and depend on the method 

adopted, the season and the variable analyzed. For exam-

ple, the QM method produces much larger precipitation 

changes and lower warming levels in the winter com-

pared to the original RCMs, with both effects considera-

bly reduced by the QDM method. This highlights the fact 

that care has to be taken in performing bias correction of 

model data, as this adds a further layer of uncertainty in 

regional climate projections. Different methods should be 

tested for given model applications and the final choice 

of method may depend on the specific objectives of a 

given application. Adding a correction factor as proposed 

by Pierce et al. (2015) may also be an effective method 

to make sure that the change in seasonal mean values are 

well preserved, and this issue will be explored in future 

work.

Our final goal is to construct a bias corrected climate 

change dataset over China based on the series of RegCM4 

simulations for impact studies. As a starting point, we 

have focused the analysis on the mean climatology. How-

ever, for example, the amplification of the projected 

precipitation increase may be at least partly due to the 

amplified heavy precipitation increase by both the QM 

and QDM methods, which accounts for a large proportion 

of the total precipitation amount over China (Zhai et al. 

2005). Therefore further investigations on daily statistics 

and extreme events is needed and will be carried out in 

future work.

Tabel 3  Differences and CORs of precipitation changes (%) at the 

end of 21st century between ensR_QM/ensR_QDM and ensR over 

the 10 major river basins and China in DJF and JJA

Correlation coefficients that are not statistically significant at the 95% 

confidence level are indicated by italic

P (%)

Differences CORs

DJF JJA DJF JJA

1-SRB 9/9 − 1/1 0.83/0.85 0.97/0.98

2-LRB 15/10 0/1 0.62/0.70 0.92/0.96

3-HaiRB 14/6 1/2 0.51/0.89 0.95/0.95

4-YLB 11/3 1/2 0.72/0.78 0.98/0.97

5-HRB 0/3 0/2 0.93/0.93 0.96/0.92

6-YRB 6/3 0/1 0.73/0.91 0.95/0.96

7-ZRB 1/8 0/2 0.89/0.85 0.97/0.94

8-SERB − 2/5 0/3 0.73/0.56 0.94/0.92

9-SWRB 22/7 0/1 0.68/0.78 0.94/0.98

10-NWRB 20/4 2/4 0.70/0.92 0.93/0.80

CN 13/5 1/3 0.81/0.93 0.94/0.88
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Fig. 9  Same as Fig. 6, but for precipitation (%)
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Fig. 10  The annual cycle of 

monthly mean temperature 

(a; units: °C) and precipitation 

changes (b; %) at the end of 

21st century over China ensR 

(black), ensR_QM (blue) and 

ensR_QDM (red)
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