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Abstract All global circulationmodels (GCMs) suffer from

some form of bias, which when used as boundary conditions

for regional climate models may impact the simulations,

perhaps severely. Here we present a bias correction method

that corrects the mean error in the GCM, but retains the six-

hourly weather, longer-period climate-variability and climate

change from theGCM.Weutilize six different bias correction

experiments; each correcting different bias components. The

impact of the full bias correction and the individual compo-

nents are examined in relation to tropical cyclones, precipi-

tation and temperature. We show that correcting of all

boundary data provides the greatest improvement.

1 Introduction

Global circulation models (GCMs) provide the basis of our

capacity to simulate, understand and predict climate vari-

ability and change. These models are based on established

physical laws and have proven fidelity for assessing

changes to global quantities (Randall et al. 2007; Anderson

et al. 2004; Collins et al. 2004; Déqué et al. 1994; Flato

et al. 2013; Pope et al. 2000; Roeckner et al. 2003).

However, GCMs typically are of too a coarse resolution to

directly infer climatology of high-impact weather at local

scales and it is common to downscale over regions of

interest using statistical techniques or nested regional

climate models (RCMs). Unfortunately, biases that may be

acceptable at global scales can be problematic for these

downscaling applications to regional and extreme weather

climate scales (e.g. Liang et al. 2008; Ehret et al. 2012; Xu

and Yang 2012; Done et al. 2013).

One approach is to apply combined bias-correction and

downscalingmethods directly to theGCMdata in the formof

empirical relationships between the large scales and high

impact weather (Camargo et al. 2007; Walsh et al. 2007;

Bruyère et al. 2012). An obvious shortcoming of this method

is that this bias correction is applied independently across

time, space and variable, without taking into account feed-

back mechanisms between atmospheric processes. It is

important to also remember that the GCM data were gener-

ated at a coarse resolution, where local processes and terrain

heterogeneity were not taken into account. It also is possible

that statistical downscaling methods developed on past cli-

mate might not hold true under climate change conditions.

An alternative, widely-used approach is to nest a RCM

within GCM boundary conditions (Laprise et al. 2008;

Bender et al. 2010; Knutson et al. 2007, 2008; Walsh et al.

2004; Done et al. 2013). Because of their smaller domain,

RCMs can operate at higher resolution than GCMs to

enable simulation of much finer scale features, which are

required for assessment of many extreme weather phe-

nomena. One shortcoming of this approach is the trans-

mission of GCM biases through the RCM lateral and lower

boundaries, which may have a severe impact on the interior

climate (e.g. Warner et al. 1997; Done et al. 2013).

One approach to correcting these regional biases is to

apply a correction to the RCM output (e.g. Dosio and

Paruolo 2011). This approach suffers from the same limi-

tations as the aforementioned statistical bias correction of

GCMs and has the additional complication that GCM

biases may irretrievably change—or even destroy—the
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high-impact weather signal of interest (Ehret et al. 2012;

Done et al. 2013).

An alternative bias-correction approach is to construct

boundary conditions from a current climate reanalysis plus

a climate change perturbation, a technique known as

pseudo-global-warming (Schär et al. 1996; Rasmussen

et al. 2011). This approach is simple to apply and takes

advantage of the improved ability of GCMs to simulate

trends compared to absolute climates (Randall et al. 2007).

However, there are substantial disadvantages arising from

the inherent assumption of no change in synoptic and cli-

mate variability. Biases from current GCM simulations

also may change into the future and alias into the imposed

climate change perturbation.

Amore recent approach takes advantage of the strengths in

both the GCMs and RCMs by performing bias correction on

the GCM boundary data. Using a common bias-correction

method applied to all variables provides more balanced

atmospheric conditions to drive the RCM. Variance is free to

change into the future (within the resolution constraints of the

driving GCM) and the RCM has the freedom to develop its

own interior solution within the bias corrected boundary data.

A number of variations on this theme have been attempted

including; correcting bias in the mean and variance (Xu and

Yang 2012), quantile–quantile mapping (Colette et al. 2012),

and feature location correction (Levy et al. 2012). White and

Toumi (2013) tested both the mean bias correction and

quantile–quantile mapping methods, and found that the mean

bias correctionmethod is amore reliable and accuratemethod

compared to the quantile–quantile mapping method.

In this study we investigate the applicability of bias

correcting the boundaries in RCM simulations of high-

impact weather. The environments for Atlantic tropical

cyclones and North American summer precipitation and

temperatures are used as examples, but the results are

applicable to a wide range of weather extremes.

In Sect. 2.2 a bias correction method for GCM boundary

conditions is developed that successfully reproduces the

statistics of high-impact weather in the regional climate

simulation. We then develop physical insight into the role

of bias correction for the downscaled regional climate in

Sect. 3.2 through analysis of the simulation sensitivity to

bias correction of specific variables or sets of variables in

the driving data. The results are presented in Sect. 3.

Section 4 contains our conclusions.

2 Methodology

2.1 Models and data

The GCM used here is the Community Climate System

Model version 3 (CCSM3; Collins et al. 2006) run at T85

(*1.4� atmosphere and 1� ocean). CCSM3 is a coupled

climate model with components representing the atmo-

sphere, ocean, sea ice, and land surface as described in

detail in Collins et al. (2006). The simulation was initial-

ized in 1950 and run under twentieth century emissions.

The NCAR Weather Research and Forecasting model

(WRF; Skamarock et al. 2008) is nested into CCSM3 for

downscaling as the nested regional climate model (NRCM,

Done et al. 2013). TheWRFmodel is a fully non-hydrostatic

model, and is routinely used for real-time hurricane fore-

casting (Davis et al. 2008) and regional climate studies (see

the discussion in Done et al. 2013). The NRCM domain

(Fig. 1) extends from 10S to 60N, and from 160W to 50E.

Grid resolution is*36 kmwith 51 vertical levels. All model

simulations used the Kain–Fritsch convective parameteri-

zation scheme (Kain 2004), WSM6 microphysics scheme

(Hong and Lim 2006), CAM long- and shortwave radiation

schemes (Collins et al. 2004), the Yonsei University plane-

tary boundary layer scheme (Hong et al. 2006), and the Noah

land surface model (Chen and Dudhia 2001).

The atmospheric reanalysis used to bias correct the

CCSM3 data is the National Centers for Environmental Pre-

diction–National Center for Atmospheric Research (NCAR)

Reanalysis Project (NNRP, Kalnay et al. 1996). Analysis SST

data utilize the merged Hadley Centre and NOAA’s optimum

interpolation (OI) SST data set (Hurrell et al. 2008).

2.2 Bias correction

Note that here we are using the term bias in the context of

systematic errors in the model, as compared to some base

‘truth’ (specifically the NNRP). We also partially consider

the ‘bias’ that may arise from sampling from relatively

short time periods within a climate that varies on long and

short time scales (e.g. Maraun 2012). This is accomplished

through our use of a limited set of longer simulations. A

related ‘bias’ arising from the essentially nonlinear nature

of climate, which means that more than one internal

solution may result from the same imposed boundary

conditions is the subject of a separate study.

Fig. 1 Regional domain used for all RCM simulations. Shading

represents terrain height (m)
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The CCSM3 model output contains substantial mean

biases compared to NNRP and OI-SST data (Fig. 2). A

cold SST bias over the North Atlantic Ocean and a warm

SST bias along the west coasts of the Americas (Fig. 2a;

Large and Danabasoglu 2006) results in a permanent El

Niño- like condition and this drives a high vertical wind-

shear bias (defined as the difference in winds between 200

and 850 hPa, Fig. 2b) over the tropical Atlantic through a

modified Walker Circulation (e.g. Gray 1984). In addition,

the CCSM3 is drier (Fig. 2c), and colder aloft (Fig. 2d)

than the NNRP.

Application of the Cyclone Genesis Index (CGI, Bru-

yère et al. 2012) indicates a significant low bias over the

North Atlantic (Fig. 2e), a result of the combined cool SST

and high vertical shear over the development region. This

is confirmed when the NRCM is driven with the raw

CCSM3 model data with resulting suppression of almost all

tropical cyclone development (Fig. 3a) to an average of

only 1.5 storms per year, compared to the observed average

of *9–12 (Knapp et al. 2010). The storms that occur also

tend to develop much further poleward than observed

(Fig. 3c), away from the regions of high shear and low

moisture shown in Fig. 2.

Bias correction of the CCSM3 boundary conditions uses

the approach in Holland et al. (2010) (see also Xu and

Yang 2012; Done et al. 2013), which can be applied con-

sistently across variables and times. This corrects the mean

bias from the GCM, but allows synoptic and climate var-

iability to change and is similar to the approach used in

Maraun (2012). Six-hourly GCM data are broken down

into a mean seasonally-varying climatological component

(GCM) plus a perturbation term (GCM0):

GCM ¼ GCM þ GCM0 ð1Þ

The mean climatological component is defined over a

20-year base period (to smooth out influence of short-

period variations such as El Niño). Twenty years was

chosen to avoid inclusion of any significant climate trends

though we acknowledge that this may alias some decadal

oscillations into the bias correction.

Fig. 2 20 year (1975–1994) Aug–Sep–Oct mean bias (CCSM3–NNRP) for a Sea Surface Temperature (K), b 850–200 hPa Wind Shear (ms-1),

c 700 hPa Relative Humidity (%), d 200 hPa Temperature (K), and e Cyclone Genesis Index
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The NNRP reanalysis and OI-SST (Obs) is similarly

broken down into a seasonally-varying mean climatologi-

cal component (Obs) and a six-hourly perturbation term

(Obs0):

Obs ¼ Obsþ Obs0 ð2Þ

The bias corrected climate data for the NRCM boundary

conditions, GCM�, are then constructed by replacing the

GCM climatological mean from Eq. 1 with the Obs mean

from Eq. 2:

GCM� ¼ Obsþ GCM0 ð3Þ

These bias-corrected climate data thus combine a

seasonally-varying climate, as provided by NNRP and

OI-SST, with the six-hourly weather from the GCM. This

approach also retains the GCM longer-period climate

variability and climate change.

Equation 3 is applied to all the variables required to

generate surface and lateral boundary conditions for

NRCM: zonal and meridional wind, geopotential height,

temperature, relative humidity, sea surface temperature and

mean sea level pressure.

3 Results

3.1 CCSM bias corrections

Figure 4 illustrates the SST bias-correction changes to the

CCSM3 data. Represented in this figure is the average

Aug-Sep-Oct (ASO) SST over the hurricane Main Devel-

opment Region (MDR, 5–20�N; 20–60�W) from observa-

tions, together with the raw and bias-corrected CCSM3

simulation. The MDR was chosen as an indicative example

because of its importance as an indicator of Atlantic trop-

ical cyclone activity (Bruyère et al. 2012). However, any

region—including the entire model domain—together with

other variables or time averages could equally well have

been chosen. Compared with observations (black line), the

CCSM3 raw data (grey line) have a cold bias of almost

2 K. The bias correction procedure brings the revised

CCSM3 time series (blue line) up to values within the

observed SST error range (less than 0.1 �C over the North

Atlantic) as specified by Hurrell et al. (2008).

We next examine the sensitivity of the revised climate to

the choice of the base period arising from a possible non-

stationarity of the bias. Choosing different base periods

(1960–1979, 1965–1984, 1970–1989, and 1975–1994)

result in nearly identical bias corrections over the entire

simulation period (Fig. 4). This increases confidence that

the bias will not change substantially in the future. The

validity of this assumption is further addressed in the cli-

mate projection discussion.

The dashed red line in Fig. 4 shows the affect of

including variance bias correction in addition to the mean

correction (following the method of Xu and Yang 2012).

Clearly, accounting for variance in addition to mean bias

Fig. 3 Tropical storms generated by the RCM over the 11-year

period 1995–2005 when driven by a raw CCSM3 data, b bias

corrected CCSM3 data, c and observed TC tracks from an arbitrary

11 year current period

Fig. 4 Aug–Sep–Oct mean Sea Surface Temperature over the MDR

off the coast of Africa for: observations (black); raw CCSM3 (grey);

mean bias corrected CCSM3 data using different base periods

1960–1979, 1965–1984, 1970–1989, and 1975–1994 (green, purple,

teal and blue); and mean and variance bias corrected CCSM3 data

using the base period 1975–1994 (dashed red)
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Fig. 5 ASO mean wind shear (200–850 hPa, ms-1) for cases with bias

correction applied to: a no variables (NO_BC), bwinds (BC_UV), c SST

(BC_SST), d winds and SST (BC_SSTUV), e all boundary variables

(BC), f all boundaryvariables excludingSST(BC_NoSST),g novariables

for a 10-year simulation (NO_BC10), h all boundary variables for a

10-year simulation (BC10), and i a 20-year (1975–1994) NNRP average

Bias corrections of global models 1851
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makes only a marginal difference. This is supported by the

NRCM downscaling with mean bias-only correction. For

current climate, the variance in 500 hPa temperature over

the MDR is 0.88 for NNRP and 0.62 for the CCSM3

model. Yet, the NRCM with mean bias correction has a

variance of 0.96, indicating that it is effectively spinning up

realistic internal variance without the need for additional

variance bias correction.

3.2 NRCM downscaling

Sensitivity to choice of variables used for bias correction is

examined using a series of NRCM simulations with the

following boundary conditions: raw CCSM3 data

(NO_BC); bias corrected winds only (BC_UV); bias cor-

rected SST only (BC_SST); bias correction of both the

winds and SST (BC_SSTUV); all variables excluding SST

corrected (BC_NoSST); and all boundary data corrected

(BC). These simulations cover a 7 months period from

May 1 to Dec 1, for an arbitrarily chosen year represen-

tative of current climate. Note that for the surface only the

SST is prescribed, the land is free to evolve in NRCM.

Analysis of these sensitivity runs uses the ASO average

large-scale flow, however, since the anomalies in a single

year may not be representative of the anomaly over a

longer period, we also compare the NO_BC and BC cases

for a total of 11 years, using the first year as a spin-up year,

and years 2–11 for the analysis period. These simulations

are referred to as NO_BC10 and BC10.

3.2.1 Atlantic tropical cyclone environment

Figure 5 depicts the ASO mean wind shear for the six

sensitivity simulations. The NO_BC case (Fig. 5a) has

anomalously high shear values (up to 40 ms-1) over the

North Atlantic Ocean and especially in the MDR. This

strong shear extends all the way to the North American

coast and suppresses cyclogenesis to the point that not a

single cyclone develops in the basin.

Applying bias corrections to individual or combinations

of boundary variables results in the following:

• Winds (BC_UV, Fig. 5b) or SST (BC_SST, Fig. 5c)

alone both reduce the shear bias substantially. This is

expected: correcting the SST bias removes the anoma-

lous Walker circulation that generates the strong vertical

shear; applying wind corrections at the boundaries also

suppresses this Walker circulation in the regional model.

Fig. 6 RSME profiles for

a temperature (K), b relative

humidity (%), c height (m), and

d zonal wind (ms-1)
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Notably, although both brought about a similar reduction

in shear magnitude, leaving the cold SST in place

(BC_UV) still suppresses all cyclone activity, whereas

the warm oceans (BC_SST) combined with reduced

vertical shear generates three cyclones (not shown).

• Combining SST and wind corrections (BC_SSTUV,

Fig. 5d) improves the shear values comparable to the

sum of the shear improvement through correcting SST

and winds independently (Fig. 5b, c) This improvement

results in the genesis of five cyclones, some of which

form in the MDR.

• All boundary variables (BC; Fig. 5e), produces shear

patterns similar to those seen in observations (Fig. 5i),

and results in the formation of 7 cyclones in the MDR

and the Gulf of Mexico.

• Applying a bias correction to all boundary variables

excluding SST (BC_NoSST, Fig. 5f) indicates the

importance of getting the surface correct; the shear

increases substantially and only 2 cyclones develop.

Longer period simulations for NO_BC10 and BC10

produces similar results to those of the single season sim-

ulations (NO_BC and BC), with ASO mean shear values

over the North Atlantic too high for NO_BC10, and realistic

values being simulated for BC10 (Fig. 5g, h). These longer

simulations also produce similar annual cyclone numbers to

those for single seasons: *1.5 for NO_BC10 that devel-

oped too far north (Fig. 3a), and*10 for BC10 with much

more realistic genesis locations and storm tracks (Fig. 3b).

Figure 6 shows the ASO Root Mean Square Error

(RMSE) profiles of temperature, relative humidity, height

and zonal wind for the MDR, using 20-year NNRP as a

basis. Since the 20-year mean is being compared with a

single season, the RSME will reflect both the difference

due to bias as well as interannual variability. In all cases

the errors are reduced, as more boundary variables are bias

corrected. This is especially notable in the upper-air. In

general the NO_BC case results in the highest RMSEs and

the BC the lowest. The exception is height, where results

are somewhat mixed. BC_SSTUV also consistently per-

forms well, although not as well as the BC case.

The Taylor diagram (Taylor 2001) in Fig. 7 provides an

alternative measure of the performance of the various bound-

arymodifications. There is awide spread in overall response to

different boundary modifications, and this depends on the

variable that is chosen, with the upper-air values, which orig-

inally showed the biggest errors, responding most to the bias

correction. The one clear signal is that applying all boundary

modifications (BC, black dots) consistently produces the best

results. Clearly, applying a consistent correction across all

relevant variables provides the best outcome for dynamical

downscaling with the NRCM.

3.2.2 North American summer precipitation

and temperature

The impact of boundary bias corrections on summer pre-

cipitation over NorthAmerica is shown by theASO averages

in Fig. 8a–f, which can be compared with the CPC Unified

Gauge-Based Analysis of daily precipitation (Fig. 8g; data

provided by the NOAA/OAR/ESRL PSD, Boulder, Colo-

rado, USA, from their Web site at http://www.esrl.noaa.gov/

psd/). A marked zonal gradient in the observed precipitation

results from wet conditions along the east and Gulf coasts

decreasing to generally dry conditions in the west. Although

there is more noise due to the relatively short simulation

periods, applying the full set of boundary conditions (BC,

Fig. 8e) reproduces the observed pattern quite well. By

comparison, using the raw boundaries (NO_BC, Fig. 8a)

produces a simulation that is far too wet in the central and

northeastern USA. Here the correction for SST has the

largest single influence, as can be seen by comparing Fig. 8a,

b, f (simulations without SST bias correction) with 8c–e

(simulations with SST bias correction). When all boundary

corrections are made except for SST, the bias-corrected

simulation is substantially degraded (Fig. 8f).

North American temperature simulations, although more

robust than other variables, are also improved by the

application of a bias correction at the boundaries (Fig. 9).

Fig. 7 Taylor diagram showing normalized standard deviation and

correlations of the indicated simulations and variables compared to

NNRP. Colored dots indicate different choices of boundary correc-

tions and numbers different variables averaged over the MDR. To

present all the variables on one diagram, the standard deviation of

each modeled variable has been normalized to the standard deviation

of the observations. A perfect simulation would lie at 1 on the

abscissa. (The plot has been scaled for legibility, resulting in some

data points being outside the plotting area.)
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Fig. 8 ASO-average daily precipitation (mm/day) for cases with bias

correction applied to: a no variables (NO_BC), b winds (BC_UV),

c SST (BC_SST), d winds and SST (BC_SSTUV), e all boundary

variables (BC), f all boundary variables excluding SST (BC_NoSST),

and, g 20-year ASO-average daily CPC Unified Gauge-Based

Analysis of Daily Precipitation

1854 C. L. Bruyère et al.
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Figure 9 depicts the normalized distribution of ASO

maximum daily surface temperature (2 m level) over the

continental USA for the 6 sensitivity runs (color lines), as

well as the 20-year mean distribution from observations

(dashed grey line). The light grey shading indicates the

variance over the 20 observed years. The observed mean

daily maximum surface temperature is around 23 C, with

the year-to-year variations from 21.5 to 23.5 �C. Applying

raw boundary conditions results in a substantial regional

cooling of 2–3 �C in the NRCM simulations compared to

observations. Applying bias correction to specific variables

or sets of variables improved this cold bias and, as with

other experiments, using all boundary condition corrections

together provided the greatest improvement.

4 Conclusions

Biases in GCMs are transferred through lateral and lower

boundary conditions to RCMs, impacting the downscaled

results, sometimes severely. Here we examined application

of a bias correction method that corrects the seasonally-

adjusted mean error in the GCM but retains the weather

variance, longer-period climate variability, and climate

change from the GCM. The correction is nearly indepen-

dent of the period over which it is developed, giving

confidence that such corrections will be somewhat invari-

ant in future projections. Corrections to both mean and

variance were considered, but the variance correction made

very little difference, as the NRCM was able to success-

fully reproduce the observed variance internally.

The impact of both the full bias correction and indi-

vidual components were examined in relation to simula-

tions of the North Atlantic tropical cyclone environment

and North American precipitation and temperatures.

A consistent result was achieved for all three compo-

nents. Using the uncorrected climate model boundary

conditions resulted in substantial errors, including sup-

pressing almost all tropical cyclones. Applying the full

correction to all boundary variables substantially improved

the simulations compared to observations: simulated trop-

ical cyclones had realistic spatial distributions and annual

frequency; North American precipitation distribution and

magnitude was substantially improved; and the probability

distribution of surface temperatures moved from a distinct

cold bias to a better approximation of observations.

Correcting individual and groups of boundary variables

in isolation indicates that the biggest single improvement

came through correcting the SST. Correcting both SST and

winds at the horizontal boundary provided the majority of

the improvement. But in all cases correcting all boundary

variables in a consistent manner was better than correcting

any subset of variables.

These findings suggest that application of a relatively

simple bias correction to the GCM boundary conditions for

a RCM—in which only seasonal variability is included—

may suit many regional climate applications. A particular

strength of this approach is that it enables current-climate

variability within the GCM (weather, decadal and climate

change) to vary with future simulations while correcting

for the major biases that can cause serious issues for

regional climate downscaling.
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