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SUMMARY

Semicontinuous data in the form of a mixture of zeros and continuously distributed positive values fre-
quently arise in biomedical research. Two-part mixed models with correlated random effects are an at-
tractive approach to characterize the complex structure of longitudinal semicontinuous data. In practice,
however, an independence assumption about random effects in these models may often be made for con-
venience and computational feasibility. In this article, we show that bias can be induced for regression
coefficients when random effects are truly correlated but misspecified as independent in a 2-part mixed
model. Paralleling work on bias under nonignorable missingness within a shared parameter model, we
derive and investigate the asymptotic bias in selected settings for misspecified 2-part mixed models. The
performance of these models in practice is further evaluated using Monte Carlo simulations. Addition-
ally, the potential bias is investigated when artificial zeros, due to left censoring from some detection
or measuring limit, are incorporated. To illustrate, we fit different 2-part mixed models to the data from
the University of Toronto Psoriatic Arthritis Clinic, the aim being to examine whether there are differen-
tial effects of disease activity and damage on physical functioning as measured by the health assessment
questionnaire scores over the course of psoriatic arthritis. Some practical issues on variance component
estimation revealed through this data analysis are considered.

Keywords: Correlated random effects; Excess zeros; Outcome-dependent sampling; Repeated measures.

1. INTRODUCTION

1.1 Motivating example

Psoriatic arthritis (PsA) is a chronic inflammatory arthritis associated with psoriasis. The University of
Toronto Psoriatic Arthritis Clinic has developed a prospective longitudinal observational cohort of patients
with PsA since 1978 (Gladman and others, 1987). In a recent study, the investigators were interested in
examining whether there are differential effects of disease activity and damage on physical functioning as
measured by the health assessment questionnaire (HAQ) over PsA duration (Husted and others, 2007).

The HAQ is a self-report functional status (disability) measure that has become the dominant in-
strument in many disease areas, including arthritis (Bruce and Fries, 2003). It produces a measure that
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Fig. 1. Bar plot for the HAQ data in Section 1.1.

can take the value zero with positive probability, while nonzero values vary continuously in the range 0
(no disability) to 3 (completely disabled). Since June 1993, the HAQ has been administered annually to
patients in the PsA clinic and, as of March 2005, 440 patients had completed at least one HAQ, with
382 (87%) completing 2 HAQs (Husted and others, 2007) and comprising the study group. In addition,
at clinic visits, scheduled at 6–12 month intervals, demographic and other clinical information was ob-
tained. There were 2107 HAQ observations available for our analyses. As shown in Figure 1, a notable
feature of these data is the observation cluster at zero (645/2107 = 30.6%). This presents a challenge in
characterizing the relationship between the HAQ scores and the explanatory variables.

1.2 Models for longitudinal semicontinuous data

When an outcome variable is a mixture of true zeros and continuously distributed positive values, the
data generated are termed “semicontinuous” (Olsen and Schafer, 2001). Various methods have been pro-
posed for analyzing cross-sectional and longitudinal semicontinuous data (Olsen and Schafer, 2001; Berk
and Lachenbruch, 2002; Tooze and others, 2002; Moulton and others, 2002; Hall and Zhang, 2004). It
is natural to view a semicontinuous variable as the result of 2 processes, one determining whether the
outcome is zero and the other determining the actual value if it is nonzero; for convenience, we refer
to the data arising from these 2 processes as the “binary part” and the “continuous part” of the data,
respectively. Two-part models are therefore attractive. In a 2-part model, it is assumed that explanatory
variables influence the outcome through their role in the different processes. For example, for the HAQ
data, interest may be in characteristics that distinguish PsA patients who had no difficulty in physical
functioning (HAQ score = 0) from those who had at least mild difficulty (HAQ score > 0), and what
characteristics have impact on the actual level of difficulty represented by positive HAQ scores, given
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that the patients had at least mild difficulty (HAQ score > 0). In other words, the targets of inference are
the distribution of the binary HAQ indicators and the conditional distribution of the HAQ scores given
they are positive. In econometrics, 2-part models have been well developed for cross-sectional semicon-
tinuous data (Duan and others, 1983; Zhou and Tu, 1999; Tu and Zhou, 1999). For longitudinal semi-
continuous data, 2 approaches have been proposed recently. One is based on 2-part mixed models with
correlated random effects in both parts of the model (Olsen and Schafer, 2001; Berk and Lachenbruch,
2002; Tooze and others, 2002). The other is based on 2-part marginal models using generalized estimating
equation methodology (Moulton and others, 2002; Hall and Zhang, 2004). Here, we focus on the former
approach.

It is natural to conjecture that the 2 processes that generate semicontinuous data may be related, espe-
cially if the outcome is observed at multiple time points. For example, since no disability and low level
of disability can both be features of mild PsA, clinically we would expect a low level of disability (posi-
tive HAQ score) on one occasion to be positively associated with the probability of having no disability
(zero HAQ score) on another occasion. The introduction of correlated random effects is a means to ac-
count for both the dependence between observations within subjects and the dependence between the 2
processes in semicontinuous data. However, it can also lead to severe computational problems. For exam-
ple, with many unstandardized explanatory variables and a long sequence of unbalanced longitudinal data
(Husted and others, 2007), it may not be possible to obtain a fit using the SAS NLMIXED procedure (SAS
Institute, Cary, NC, Version 9.1) within a reasonable time frame, probably due to the complexity of the
specified model. In the analysis reported in Husted and others (2007), 2 of us (Brian D. M. Tom and
Vernon T. Farewell) uncritically conjectured further that an incorrect assumption of independent random
effects would not prevent consistent estimation of regression coefficients. Here, we correct this assumption
and examine the impact of this correlation on the estimation of 2-part mixed models. The correlation is
important because parameters in the model for the binary part determine the cluster size (e.g. the number
of observations with positive HAQ score within subjects) for the continuous part of the model. There-
fore, we are faced with an “informative cluster size” problem. Thus, the assumption of independence
between random effects may produce bias in the estimation of both regression coefficients and variance
components in the continuous part of the model for semicontinuous data.

The remainder of this article is organized as follows. Section 2 briefly summarizes 2-part mixed mod-
els for longitudinal semicontinuous data, including an extension to accommodate artificial zeros due to left
censoring, and derives the asymptotic bias of parameter estimators when random effects are incorrectly
assumed independent and other variance component parameters are fixed. In Section 3, we investigate the
factors that influence the asymptotic bias derived in Section 2. The performance of 2-part mixed models
in practice is considered in Section 4 using Monte Carlo simulations. The HAQ data are analyzed in Sec-
tion 5, and some practical issues regarding variance component estimation are addressed in Section 6. We
conclude with a discussion in Section 7.

2. BIAS IN 2-PART MIXED MODELS FOR SEMICONTINUOUS DATA

In this section, we briefly describe 2-part mixed models for semicontinuous data and their extension to
accommodate artificial zeros (Olsen and Schafer, 2001; Berk and Lachenbruch, 2002; Tooze and others,
2002). We also discuss the potential bias for parameters in the continuous part.

2.1 Model assumptions

Olsen and Schafer (2001) first extended the 2-part model to the longitudinal setting by introducing corre-
lated random effects into both the binary and the continuous parts of the model. Tooze and others (2002)
discussed a similar 2-part mixed model.
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Let Yi j be a semicontinuous variable for the i th (i = 1, . . . , N ) subject at time ti j ( j = 1, . . . , ni ).
This outcome variable can be represented by 2 variables, the occurrence variable

Zi j =
{

0 if Yi j = 0,

1 if Yi j > 0,

and the intensity variable g(Yi j ) given that Yi j > 0, where g(·) is a transformation that makes Yi j | Yi j > 0
approximately normally distributed with a subject-time-specific mean.

Instead of focusing on the marginal distribution of Yi j , in a 2-part mixed model we are interested
in both the distribution for the occurrence variable Zi j and the conditional distribution of the intensity
variable g(Yi j ) given that Yi j > 0. Specifically, it is assumed that Zi j follows a random effects logistic
regression model

logit{Pr(Zi j = 1)} = Xi jθθθ + Ui , (2.1)

where Xi j is a 1 × q explanatory variable vector, θθθ is a q × 1 regression coefficient vector, and Ui is the
subject-level random intercept. The intensity variable g(Yi j ) given Yi j > 0 follows a linear mixed model

g(Yi j ) | Yi j > 0 = X∗
i jβββ + Vi + εi j , (2.2)

where X∗
i j is a 1× p explanatory variable vector, βββ is a p ×1 regression coefficient vector, and Vi is again

a subject-level random intercept. The error term εi j is assumed to be distributed as N (0, σ 2
e). Note that

this 2-part mixed model can be extended to include additional random effects. For simplicity, we restrict
attention here to 2-part mixed models with random intercepts; extensions to models with random slopes
will be discussed in Section 3.2.

An important assumption is that the random intercepts, (Ui , Vi ), are jointly normal and possibly cor-
related, [

Ui

Vi

]
∼ N

([
0

0

]
,

[
σ 2

u ρσuσv

ρσuσv σ 2
v

])
. (2.3)

In the context of the HAQ analysis introduced in Section 1.1, for example, the correlation aspect of
this assumption can be interpreted as the presence or absence of disability at one occasion being related
to the level of disability, if any, at that and other occasions.

In this model, the explanatory variable vectors Xi j , X∗
i j may coincide, but this is not required. The

data can be unbalanced by design or due to ignorable missingness. The primary targets of inference are
the regression coefficients θθθ and βββ, while variance components, including the correlation parameter ρ, are
usually treated as nuisance parameters.

2.2 Model fitting

Generally, the estimation of θθθ , βββ, σ 2
u , σ 2

v , ρ, and σ 2
e is based on maximization of the likelihood

L =
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

f (yi j | θθθ,βββ, ui , vi , σ
2
e) f (ui , vi | σ 2

u , σ 2
v , ρ)dvi dui

=
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

{1 − Pr(Zi j = 1 | θθθ, ui )}(1−zi j ){Pr(Zi j = 1 | θθθ, ui )}zi j

× [ f {g(yi j ) | βββ, vi , σ
2
e}]zi j f (ui , vi | σ 2

u , σ 2
v , ρ)dvi dui , (2.4)
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which presents the same computational challenges as with generalized linear mixed models (GLMM) (Sti-
ratelli and others, 1984; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993). Olsen and Schafer
(2001) proposed an approximate Fisher scoring procedure based on high-order Laplace approximations
for obtaining maximum likelihood estimates. Tooze and others (2002) used quasi-Newton optimization
of the likelihood approximated by adaptive Gaussian quadrature and implemented it in the SAS PROC
NLMIXED procedure. In the simulations and HAQ analysis in Sections 4 and 5, we use the same estima-
tion procedure (SAS, 9.1) as in Tooze and others (2002).

2.3 Potential bias in 2-part mixed models

In practice, the multidimensional integration that is necessary to obtain the likelihood in (2.4) induces
difficulties in fitting 2-part mixed models. In our HAQ analysis, we found that, even with properly stan-
dardized explanatory variables and the simplest model with 2 correlated random intercepts, it can take
several hours to fit using the SAS NLMIXED procedure (1.5-GHz CPU, 1-Gb RAM, and SUN worksta-
tion). This is probably linked to the number of explanatory variables included in the model and the amount
of data available for analysis. As a result, it may be impractical to conduct model assessment and selection
procedures when a number of potentially important explanatory variables are available. However, if we
assume independence between random effects, the likelihood components for the binary and continuous
parts become separable (Tooze and others, 2002) and maximization of the likelihood is computationally
much simpler and faster.

Nevertheless, as noted earlier, if the random effects are correlated, there is an informative cluster
size aspect to the data structure since parameters in the binary part influence the number of observations
in the continuous part of the model. Essentially, with a positive correlation, subjects with larger random
effects Vi will have more observations contributing to estimation of the continuous part of the model; there
will be an overrepresentation of larger values in this part of the data. Since we assume that E(Vi ) = 0,
an incorrect assumption of independence between random intercepts and the consequent analysis of the
continuous part of the data separately from the binary part will produce positive bias in estimating the
intercept term in βββ. The impact on estimation of other elements in βββ will depend on θθθ , σ 2

u , σ 2
v , ρ, σ 2

e , and
the true value for βββ.

This scenario parallels the nonignorable missingness problem characterized in a class of “shared pa-
rameter models” (Wu and Carroll, 1988; Wu and Bailey, 1989; Henderson and others, 2000; Saha and
Jones, 2005). The model for the binary part in semicontinuous data corresponds to the logistic random
effects model for missing indicators in shared parameter models, and the continuous part is similar to the
partly unobserved outcome data modeled (typically) by linear mixed models. Underlying random effects
in the shared parameter models link the models for missing indicators and outcomes, while in our case,
the shared parameters are exactly those controlling correlated random intercepts (Ui , Vi ) in (2.3). The
only difference between these 2 scenarios is that in 2-part mixed models, both θθθ and βββ are primary targets
of inference, whereas in shared parameter models only βββ in the outcome model is of interest.

For shared parameter models, Saha and Jones (2005) provided a useful procedure to quantify the
asymptotic bias for estimating regression parameters in the outcome model when missingness is
nonignorable and the missing data mechanism is not modeled jointly. Following Saha and Jones (2005),
we can derive the asymptotic bias (as N goes to infinity) for estimating βββ in 2-part mixed models when the
correlation ρ is nonzero but ignored (i.e. set to be zero) in estimation. We adopt the following notation:

(A) ni = J , the fixed number of observations within subjects;

(B) Xi j = X∗
i j = (1, ti j , Gi , Gi ti j ) such that the explanatory variable vectors Xi j and X∗

i j both
follow a group by time design and Gi ∈ (0, 1) is a group membership indicator;

(C) βββT = (β0, β1, β2, β3), true regression coefficients in the continuous part;
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(D) Mi , the pattern of occurrence variables (Zi1, . . . , Zi J ) that is observed for the i th subject;

(E) Pr(Mi = m | Gi = g), the probability that a subject in group g will have the mth occurrence
indicator pattern;

(F) Xm,g and Zm,g , the fixed-effects design matrix and the random-intercepts design vector in the
continuous part for the subjects in group g who have the mth occurrence indicator pattern;

(G) Var{g(Yi j ) | Yi j > 0, Mi = m, Gi = g} = ���m,g = Zm,g���ZT
m,g + σ 2

eI, where ��� = σ 2
v 11T, 1 is

a vector of 1s, and I is the identity matrix;

(H) βββT
m = (β0m, β1m, β2m, β3m), the regression coefficients for the continuous part given that the i th

subject in group g has the mth occurrence indicator pattern, where β0m = β0 + E(Vi | Mi =
m, Gi = 0), β1m = β1, β2m = β2 + E(Vi | Mi = m, Gi = 1) − E(Vi | Mi = m, Gi = 0),
β3m = β3, and Vi is the random intercept as in (2.3).

Further, for illustration, we assume that subjects have equal probability of being in the 2 groups, in
other words, Pr(Gi = g) = 1/2 (g = 0, 1), and that variance component parameters σ 2

u , σ 2
v , ρ, and σ 2

e
are known. It follows by equation (12) in Saha and Jones (2005) that the separate maximization of the
likelihood for the continuous part (ρ = 0) will give estimates of βββ:

βββ∗ =
⎛
⎝ 1∑

g=0

2J −1∑
m=1

Pr(Mi = m | Gi = g)XT
m,g���

−1
m,gXm,g

⎞
⎠

−1

×
1∑

g=0

2J −1∑
m=1

Pr(Mi = m | Gi = g)XT
m,g���

−1
m,gXm,gβββm . (2.5)

Therefore, the absolute asymptotic bias of this estimation procedure is βββ∗ − βββ, which is a function of θθθ
and σ 2

u , σ 2
v , ρ, and σ 2

e . Because we assume that the continuous part of the model is specified by a linear
mixed model and the variance components are known, the asymptotic bias derived here is independent of
the true value of βββ. In practice, variance components also need to be estimated, and the asymptotic bias
for estimating βββ in misspecified 2-part mixed models will depend on the true value of βββ. In that case,
iterative methods are necessary to evaluate the asymptotic bias, as no analytical expression is available
(Saha and Jones, 2005).

To compute (2.5), we need to evaluate Pr(Mi = m | Gi = g) and E(Vi | Mi = m, Gi = g). These
can be shown to be

Pr(Mi = m | Gi = g) =
∫

Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui , (2.6)

E(Vi | Mi = m, Gi = g) =
∫ ∫

vi Pr(Mi = m | Gi = g, Ui = ui ) f (ui , vi )dvi dui∫
Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui

=
∫

E(Vi | Ui = ui )Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui∫
Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui

. (2.7)

The integrals in (2.6) and (2.7) are analytically intractable. In Section 3.1, we use a 30-point Gaussian
quadrature (Stroud and Secrest, 1966) to evaluate them.

2.4 Artificial zeros

In practice, zero values from observed data can be a mixture of true zeros and artificial zeros due to left
censoring. Berk and Lachenbruch (2002) discussed 2-part mixed models for dealing with this type of data.
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Specifically, following the notation in Section 2.1 and assuming that there is a detection limit d for the
continuous part, the likelihood for the 2-part mixed model with additional artificial zeros is

L =
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

f (yi j | θθθ,βββ, ui , vi , σ
2
e) f (ui , vi | σ 2

u , σ 2
v , ρ)dvi dui

=
N∏

i=1

∫
ui

∫
vi

ni∏
j=1

[{1 − Pr(Zi j = 1 | θθθ, ui )} + Pr(Zi j = 1 | θθθ, ui )F{g(d)}](1−zi j )

×{Pr(Zi j = 1 | θθθ, ui )}zi j [ f {g(yi j ) | βββ, vi , σ
2
e}]zi j f (ui , vi | σ 2

u , σ 2
v , ρ)dvi dui , (2.8)

where F is the cumulative distribution function for g(Yi j ) | Yi j > 0.
The same argument for potential bias as before can be applied to this 2-part mixed model with artificial

zeros when the correlation between random intercepts is ignored. However, the derivation of asymptotic
bias in Section 2.3 is no longer directly applicable. In Section 4, we will investigate bias using Monte Carlo
simulations. It should be noted that there is minimal computational gain from assuming independence
between random effects here as for the model with true zeros only because in this case the likelihood
contributions for the binary and continuous parts cannot be disentangled and higher dimensional numerical
integration is necessary for maximum likelihood estimation.

3. QUANTIFICATION OF ASYMPTOTIC BIAS

3.1 Two-part mixed model with random intercepts

In this section, we quantify the asymptotic bias in the estimation of βββ in the misspecified 2-part mixed
models with random intercepts only assuming that all variance component parameters are known. Let
ti j = 0, 1 denote the 2 measurement times for each subject and Gi = 0, 1 denote a treatment indicator.
We assume that subjects are equally likely to be assigned to the 2 groups and that

(A) logit{Pr(Zi j = 1)} = θ0 + θ1ti j + θ2Gi + Ui ,

(B) conditional on Yi j > 0, [log(Yi j ) | Yi j > 0] ∼ N (β0 + β1ti j + β2Gi + Vi , σ
2
e), and

(C) (Ui , Vi ) follow the bivariate normal distribution (2.3).

Recall that in (2.5), the asymptotic bias for estimating βββ depends on θθθ (or equivalently, the proportion
of nonzero values for a typical subject in the subject groups), the correlation parameter ρ, the between-
subject variability of occurrence variables σ 2

u , the between-subject variability of nonzero values σ 2
v , and

the error variance of nonzero values σ 2
e . Given that the variance components are fixed in this specific

scenario, the bias for βββ is independent of the true value of βββ.
For simplicity, we fix θ1 = −1 and θ2 = log(2). Also, we fix σ 2

e = 0.08 based on the HAQ analysis
reported in Section 5. We then investigate how the asymptotic bias varies as a function of θ0, σ 2

u , σ 2
v , and

the correlation parameter ρ.
Figure 2 presents the contour plots of absolute asymptotic bias in estimation of the intercept term β0

by σ 2
u and the intraclass correlation ψ = σ 2

v /(σ 2
v + σ 2

e) at different combinations of (θ0, ρ). The axes for
σ 2

u and ψ are centered at 4 and 0.4, respectively, based on the HAQ analysis reported in Section 5. It is
apparent from Figure 2 that β0 is overestimated and the magnitude of the bias is positively related to ρ,
σ 2

u , and σ 2
v (or equivalently ψ). On the other hand, as θ0 (the proportion of nonzero values in a control

subject) increases, the bias in the estimation of β0 decreases.
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Fig. 2. Contour plots of asymptotic bias for the intercept term β0 in misspecified 2-part mixed model in Section 3.1

by occurrence random-intercept variance σ 2
u and intraclass correlation ψ = σ 2

v /(σ 2
v + σ e

2), stratified by correlation
between random effects (ρ = (0.2, 0.5, 0.8)) and overall proportion of zeros (i.e. intercept term in the binary part
θ0 = (−0.5, 0.5, 1.5); (θ1, θ2) = (−1, log(2)) are fixed). The error variance is fixed at σ e

2 = 0.08.

We also investigated absolute asymptotic bias in estimating the time effect β1 and treatment effect β2.
A positive bias for β1 and a negative bias for β2 are observed, but the magnitudes of both biases are much
smaller than for β0. Details are given in Section 1.1 of the supplementary material available at Biostatistics
online (http://www.biostatistics.oxfordjournals.org).
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3.2 Two-part mixed model with random intercept and slope

As pointed out by a referee, it may be of interest to go beyond the simple 2-part model with random
intercepts only and investigate the extended model where a random slope for time is included in the
continuous part. Following the notation in Section 2.3, we now assume that

[g(Yi j ) | Yi j > 0] ∼ N (X∗
i jβββ + V0i + V1i ti j , σ

2
e),

where X∗
i j = (1, ti j , Gi , Gi ti j ), V0i , and V1i are random intercept and random time slope, respectively.

Similarly to (2.3), we assume that the random intercepts and additional random slope follow⎡
⎢⎣

Ui

V0i

V1i

⎤
⎥⎦ ∼ N

⎛
⎜⎝

⎡
⎢⎣

0

0

0

⎤
⎥⎦ ,

⎡
⎢⎣

σ 2
u ρ0σuσv0 ρ1σuσv1

ρ0σuσv0 σ 2
v0

ρ01σv0σv1

ρ1σuσv1 ρ01σv0σv1 σ 2
v1

⎤
⎥⎦

⎞
⎟⎠ . (3.1)

In our HAQ example, the correlation ρ1 under this assumption can be interpreted as the presence or
absence of disability at one occasion being related to the rate of change in the disability level over time.
For example, we would expect that patients who usually report no disability are unlikely to have large
changes in the disability level when any disability is actually reported.

To derive the asymptotic bias for βββ, we follow the development in Section 2.3. The regression coeffi-
cients for the continuous part, given that the i th subject in group g has the mth occurrence indicator pattern,
βββm , now changes to β0m = β0 + E(V0i | Mi = m, Gi = 0), β1m = β1 + E(V1i | Mi = m, Gi = 0),
β2m = β2 + E(V0i | Mi = m, Gi = 1) − E(V0i | Mi = m, Gi = 0), and β3m = β3 + E(V1i | Mi =
m, Gi = 1) − E(V1i | Mi = m, Gi = 0). To compute (2.5), we need to evaluate Pr(Mi = m | Gi = g),
E(V0i | Mi = m, Gi = g), and E(V1i | Mi = m, Gi = g). Since the model for the binary part does not
change, Pr(Mi = m | Gi = g) still follows (2.6). In addition, we can show that

E(Vki | Mi = m, Gi = g) =
∫ ∫

vki Pr(Mi = m | Gi = g, Ui = ui ) f (ui , vki )dvki dui∫
Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui

(3.2)

=
∫

E(Vki | Ui = ui )Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui∫
Pr(Mi = m | Gi = g, Ui = ui ) f (ui )dui

, k = 0, 1.

We again use Gaussian quadrature to evaluate these integrals.
We use the same data structure as in Section 3.1 except that [log(Yi j ) | Yi j > 0] ∼ N (β0 + β1ti j +

β2Gi + V0i + V1i ti j , σ
2
e), and the random intercepts and slope (Ui , V0i , V1i ) follow a trivariate normal

distribution as in (3.1). We draw similar contour plots as in Section 3.1 to examine the asymptotic bias
for the intercept term β0, the time effect β1, and the treatment effect β2. We find that there are large
positive biases for β0 and β1 and smaller negative bias for β2 when the positive correlations increase
and θ0 decreases. Details are given in Section 1.2 of the supplementary material available at Biostatistics
online.

4. MONTE CARLO SIMULATION

Simulation studies were done to investigate the performance of different 2-part mixed models in practice.
For semicontinuous data with true zeros only, biases of different magnitude are observed for the regression
coefficients in the continuous part of the model when the positive correlation of the random effects is
ignored. In addition, the variance component in the continuous part is underestimated. For the data with
additional artificial zeros, we observe biases for regression coefficients and variance components in both
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the binary and the continuous parts when the correlation is set to zero. Details are given in Section 2 of
the supplementary material available at Biostatistics online.

5. ANALYSIS OF THE HAQ DATA

The HAQ data described in Section 1.1 can be modeled using a 2-part mixed model. The random-intercept
logistic model (2.1) is used to model a binary indicator of a nonzero HAQ score, and the random-intercept
linear mixed model (2.2) is used for nonzero HAQ scores. For the linear mixed model, residual plots
suggest a symmetric error distribution. Thus, no transformation is applied to the nonzero HAQ scores
and the results are therefore comparable to those in Husted and others (2007), where these data were
modeled with an assumption of independent random intercepts. We refit this simple model and term it the
“misspecified model.”

The same set of explanatory variables is included in both model parts, but the coefficients are allowed
to differ. These include age at onset of PsA (standardized), sex, PsA disease duration in years, total num-
ber of actively inflamed joints, total number of clinically damaged joints, psoriasis area and severity index
(PASI) score (standardized), morning stiffness (coded as either present or absent), standardized erythro-
cyte sedimentation rate (ESR), and highest medication level ever used prior to a visit, grouped based on
a medication pyramid (Gladman and others, 1995; Munro and others, 1998). Since there is particular
interest in differential effects of both the number of actively inflamed joints and the number of clinically
deformed joints on physical functioning over PsA duration, interaction terms for PsA duration with both
variables are included in the model.

Prior to formal model fitting, an empirical check casts doubt on the assumption of independent random
effects. When the empirical Bayes estimates of the random intercepts in the binary part are introduced
as an additional explanatory variable in the linear mixed model for the continuous part, the associated
coefficient is significantly positive (p < 0.001). Thus, we also fit a 2-part mixed model with correlated
random intercepts (referred to as the “full model”). For estimation, the SAS NLMIXED procedure was
used with the maximum number of adaptive Gaussian quadrature points in the quasi-Newton algorithm
held at 31. The results are given in Tables 1 and 2.

As shown in Table 1, the estimated coefficients in the binary part are approximately the same in both
the full and the misspecified models and suggest the same explanatory variables of functional difficulty.
There is no differential effect of actively inflamed joints on functioning difficulty over PsA duration, but
some evidence that the effect of deformed joints increases with disease duration. The parameter estimates
for the random-intercept distribution in the binary part are also similar.

The estimated correlation between random intercepts of the 2 parts of the full model is positive and
close to one (ρ̂ = 0.94). This large estimate suggests that there might be a single unmeasured latent
process which influences the 2 processes of the mixed model, corresponding to perfectly correlated ran-
dom intercepts. Therefore, we also fit a 2-part model such that the correlated random intercepts follow
Vi = αUi and σ 2

v = α2σ 2
u and refer to this model as the “latent process model.” A similar approach

is implemented in the Mplus software (Brown and others, 2005; Muthén and Muthén, 1998–2007). The
estimates from the binary part of this model are listed in the last 2 columns of Table 1 and are similar to
those from the other 2 models.

As expected, the misspecified model overestimates the intercept term and underestimates the time-
invariant sex effect in the continuous part (Table 2). For other time-varying explanatory variables, the esti-
mates are approximately the same except that the coefficients for PASI score and the interaction between
clinically deformed joints and PsA duration are larger in the full model, with correspondingly smaller
p-values. The random-intercept variance of the continuous part in the misspecified model is underesti-
mated and error variance estimates are similar, consistent with our simulation results. Thus, the qualitative
conclusions do not change across models. In particular, the positive effects of actively inflamed joints and
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Table 1. Parameter estimates in the binary part of the model for the HAQ data

Parameters Misspecified model Full model Latent process model

Estimate (SE) p Estimate (SE) p Estimate (SE) p

Intercept −1.0199 (0.4079) 0.0129 −1.0015 (0.3746) 0.0078 −0.9909 (0.3556) 0.0056
Age at onset of PsA 0.6031 (0.1743) 0.0006 0.6266 (0.1611) 0.0001 0.6392 (0.1538) <0.0001
Sex

Male
Female 1.9944 (0.3603) <0.0001 2.0080 (0.3276) <0.0001 2.0037 (0.3149) <0.0001

PsA disease duration −0.0027 (0.0259) 0.9169 0.0156 (0.0232) 0.5027 0.0166 (0.0220) 0.4501
Actively inflamed joints 0.1758 (0.0513) 0.0007 0.1566 (0.0495) 0.0017 0.1380 (0.0465) 0.0032
Clinically deformed joints −0.0161 (0.0321) 0.6165 0.0120 (0.0260) 0.6441 0.0179 (0.0238) 0.4531
PASI score 0.1941 (0.1257) 0.1233 0.1754 (0.1086) 0.1071 0.1543 (0.1017) 0.1299
Morning stiffness

No
Yes 1.5953 (0.2319) <0.0001 1.5777 (0.2112) <0.0001 1.5691 (0.2018) <0.0001

ESR 0.3030 (0.1310) 0.0213 0.2988 (0.1164) 0.0106 0.2971 (0.1103) 0.0074
Medications

None
NSAIDs 0.2998 (0.2743) 0.2751 0.2955 (0.2529) 0.2435 0.2960 (0.2439) 0.2257
DMARDs 0.3074 (0.2508) 0.2211 0.3100 (0.2295) 0.1776 0.3138 (0.2197) 0.1541
Steroids 0.9945 (0.4698) 0.0350 0.9946 (0.4458) 0.0263 0.9927 (0.4355) 0.0232

Interaction of actively inflamed 0.0002 (0.0034) 0.9502 −0.0003 (0.0033) 0.9403 0.0003 (0.0031) 0.9300
joints with arthritis duration

Interaction of clinical deformed 0.0032 (0.0016) 0.0442 0.0022 (0.0013) 0.0844 0.0018 (0.0011) 0.1102
joints with arthritis duration

σ 2
u 4.2519 (0.8549) <0.0001 4.3930 (0.8924) <0.0001 4.2641 (0.9001) <0.0001

ρ (ρ = 0) 0.9423 (0.0373) <0.0001 (ρ = 1)

SE, standard error.
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Table 2. Parameter estimates in the continuous part of the model for the HAQ data

Parameters Misspecified model Full model Latent process model

Estimate (SE) p Estimate (SE) p Estimate (SE) p

Intercept 0.3176 (0.0567) <0.0001 0.2149 (0.0556) 0.0001 0.1748 (0.0555) 0.0018
Age at onset of PsA 0.1011 (0.0242) <0.0001 0.1009 (0.0245) <0.0001 0.0984 (0.0250) 0.0001
Sex

Male
Female 0.1811 (0.0505) 0.0004 0.2225 (0.0512) <0.0001 0.2461 (0.0523) <0.0001

PsA disease duration 0.0039 (0.0033) 0.2272 0.0035 (0.0032) 0.2726 0.0044 (0.0032) 0.1719
Actively inflamed joints 0.0219 (0.0028) <0.0001 0.0239 (0.0027) <0.0001 0.0243 (0.0027) <0.0001
Clinically deformed joints 0.0058 (0.0031) 0.0627 0.0052 (0.0031) 0.0957 0.0051 (0.0031) 0.1034
PASI score 0.0128 (0.0140) 0.3636 0.0247 (0.0134) 0.0667 0.0257 (0.0134) 0.0553
Morning stiffness

No
Yes 0.1502 (0.0274) <0.0001 0.1573 (0.0263) <0.0001 0.1620 (0.0262) <0.0001

ESR 0.0395 (0.0132) 0.0028 0.0388 (0.0127) 0.0024 0.0374 (0.0126) 0.0033
Medications

None
NSAIDs −0.0240 (0.0289) 0.4065 −0.0177 (0.0281) 0.5288 −0.0181 (0.0280) 0.5194
DMARDs 0.0224 (0.0280) 0.4252 0.0235 (0.0272) 0.3889 0.0226 (0.0272) 0.4064
Steroids 0.0457 (0.0453) 0.3135 0.0493 (0.0441) 0.2641 0.0481 (0.0441) 0.2761

Interaction of actively inflamed −0.0004 (0.0002) 0.0290 −0.0004 (0.0002) 0.0072 −0.0005 (0.0002) 0.0042
joints with arthritis duration

Interaction of clinical deformed 0.0002 (0.0001) 0.1122 0.0003(0.0001) 0.0330 0.0003 (0.0001) 0.0351
joints with arthritis duration

σ 2
v 0.1587 (0.0154) <0.0001 0.1732 (0.0166) <0.0001 — —

σv/σu — — — — 0.2074 (0.0210) <0.0001
σ 2

e 0.0785 (0.0040) <0.0001 0.0774 (0.0039) <0.0001 0.0779 (0.0039) <0.0001
ρ (ρ = 0) 0.9423 (0.0373) <0.0001 (ρ = 1)
−2 log-likelihood (both parts) 2116.0 2018.1 2022.2
AIC 2178.0 2082.1 2084.2

SE, standard error.
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clinically deformed joints differ over PsA duration: the effect of the former decreases while the effect of
the latter increases over time.

The deviance and Akalike Information Criterion (AIC) values in Table 2 indicate that the full model
and latent process model provide a better fit to the data. A likelihood ratio test of the hypothesis of zero
correlation generates a p-value less than 0.001.

6. REMARKS ON VARIANCE COMPONENT ESTIMATION IN 2-PART MIXED MODELS

In preliminary analysis, we observed that, with some important explanatory variables omitted (e.g. age at
onset of PsA, sex, and ESR) in the binary part of the model, estimation of the random-intercept variance
σ 2

u becomes unstable. For example, its point estimate can increase from 6.9 in a misspecified model
(ρ = 0) to 10.8 in a full model with estimated correlation ρ close to one. As a result, estimates of subject-
specific regression coefficients θθθ are inflated in the full model. However, the corresponding standard error
estimate of σ 2

u also increases and ratio-based statistics are approximately the same in both models. This
behavior was not evident in our simulation results. We suspect that the reason for this instability is that the
unaccounted variability represented by the variance component is large, and the likelihood surface is flat
for the estimation procedure to locate the maximum. This can be investigated further through examination
of the profile likelihood for σ 2

u under scenarios where σ 2
u is large.

We simulated data with N = 250 subjects, with ni = 2, from the same logistic-lognormal mixture
distribution as in (2.1) and (2.2) of the supplementary material available at Biostatistics online. The true
values for the parameters were set to θθθ = (3, 0, 0, 0) (or θθθ = (0, 0, 0, 0)), βββ = (0.5, 0, 0, 0), σ 2

u = 4.5
(or σ 2

u = 10.5), σ 2
v = 0.2, σ 2

e = 0.08, and ρ = 0.9. In obtaining the profile likelihood for σ 2
u and ρ, we

fixed σ 2
v and σ 2

e at their true values and let θθθ and βββ be estimated.
Figure 3 presents the contour plots of the profile likelihood (in terms of the deviance) for σ 2

u and ρ
from 4 simulated data sets. The top-left panel in Figure 3 displays flat profile likelihoods for σ 2

u at different
levels of ρ when the true between-subject heterogeneity is large (σ 2

u = 10.5) and the proportion of zeros
in the data is small (θ0 = 3). The black dots, which are the corresponding restricted maximum likelihood
estimates for σ 2

u , show an increasing trend as ρ increases. With σ 2
u = 10.5 still, but the proportion of zeros

now increased (θ0 = 0), the profile likelihood surface shows slightly more curvature. The situation im-
proves further when the true variance decreases to σ 2

u = 4.5, but restricted maximum likelihood estimates
for σ 2

u when θ0 = 3 still vary considerably. In contrast, with θ0 = 0, the likelihood appears to be well
behaved and estimates for σ 2

u are relatively constant. Therefore, the sparseness of the occurrence indicator
data also impacts on variance component estimation in the binary part of the mixed model.

These results help to explain the instability observed in our preliminary analyses. With important ex-
planatory variables omitted in the binary part, the unexplained variability in the indicator of a positive
HAQ score was unduly large, estimation of σ 2

u was unstable, and point estimates and standard errors
changed as the correlation ρ increased. Consequently, the estimates for subject-specific regression coeffi-
cients θθθ differed across the models. With a reasonable set of important explanatory variables in the final
HAQ analysis, the estimates for both σ 2

u and θθθ were stabler.
In summary, careful modeling of mean relationships is necessary to avoid unstable estimation of vari-

ance components and subject-specific regression coefficients when fitting 2-part mixed models. When the
number of zeros in longitudinal semicontinuous data is small, caution is advised in fitting 2-part mixed
models. Simpler alternatives, such as standard regression methods for the marginal distribution of out-
comes, either truncated or bounded, should be considered.

7. DISCUSSION

For 2-part mixed modeling of longitudinal semicontinuous data, with true zeros only or with additional
artificial zeros due to left censoring, an incorrect assumption of independence between random effects can
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Fig. 3. Contour plots of profile likelihood (in terms of the deviance) occurrence random-intercept variance σ 2
u and

correlation ρ from 4 simulated data sets (N = 250) with different combinations of true values for σ 2
u and θ0; other

variance components are fixed at their true values σ 2
v = 0.20 and σ e

2 = 0.08; the true value for β0 is set as β0 = 0.5;
the black dots are maximum likelihood estimates of σ 2

u at different values of ρ.

induce bias in the estimation of regression coefficients and variance components in the continuous part of
the model. This arises due to differential representation of nonzero values in the continuous part of the
data. For illustration, we examined linear mixed models for the continuous part of the model, but the same
issues apply to other GLMM. Model fitting with correlated random effects is computationally expensive,
and the availability of more efficient software would therefore be welcome.

As pointed out by an associate editor, the extreme computing time experienced in the HAQ analysis
might be alleviated by adopting a marginal approach for a 2-part model. As shown in Section 6, vari-
ance component estimation in the binary part can be unstable when the unexplained variability is large.
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Computing time can be considerable due to the difficulty of locating the maximum of a flat likelihood
surface. In this case, we may choose marginal 2-part models such as in Moulton and others (2002) and
Hall and Zhang (2004) rather than the mixed model approach. However, we emphasize that for marginal
2-part models of longitudinal or even cross-sectional semicontinuous data, bias can also be induced if im-
portant explanatory variables determining both the binary process and the process of nonzero values are
excluded in the model for the continuous part. These important explanatory variables in marginal models
are similar to the unmeasured explanatory variables represented by correlated random effects in mixed
models. Therefore, the same problem of differential representation of nonzero values in the continuous
part can arise even when these omitted explanatory variables are independent of other included explana-
tory variables in the continuous part. Thus, when building a model for mean structures in these marginal
models, any important explanatory variables in the binary part should be included in the continuous part,
at least initially, to reduce the possibility of bias.

The HAQ data analysis presented in this article is primarily illustrative. Alternative models might be
preferred. The normality assumption of random intercepts was examined using empirical Bayes estimates.
However, as with shared parameter models (Tsonaka and others, 2008), diagnostic checks based on em-
pirical Bayes estimates are unreliable due to shrinkage (Verbeke and Molenberghs, 2001, Section 7.8). In
practice, investigators might be only interested in the continuous part of the data and thus fit regression
models ignoring the zeros. The bias illustrated in this article is then still present due to the differential
representation of nonzero values across patients. The change of the primary inference target from (βββ, θθθ)
to βββ does not solve the problem.
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