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This study examined bias in the sample correlation coefficient, r, and its
correction by unbiased estimators. Computer simulations revealed that the
expected value of correlation coefficients in samples from a normal
population is slightly less than the population correlation, p, and that the
bias is almost eliminated by an estimator suggested by R.A. Fisher and is
more completely eliminated by a related estimator recommended by Olkin
and Pratt. Transformation of initial scores to ranks and calculation of the
Spearman rank correlation, rg, produces somewhat greater bias. Type I error
probabilities of significance tests of zero correlation based on the Student ¢
statistic and exact tests based on critical values of rg obtained from
permutations remain fairly close to the significance level for normal and
several non-normal distributions. However, significance tests of non-zero
values of correlation based on the r to Z transformation are grossly distorted
for distributions that violate bivariate normality. Also, significance tests of
non-zero values of rg based on the r to Z transformation are distorted even
for normal distributions.

This paper examines some unfamiliar properties of the Pearson
product-moment correlation that have implications for research in
psychology, education, and various social sciences. Some characteristics of
the sampling distribution of the correlation coefficient, originally discovered
by R.A. Fisher (1915), were largely ignored throughout most of the 20th
century, even though correlation is routinely employed in many kinds of
research in these disciplines. It is known that the sample correlation
coefficient is a biased estimator of the population correlation, but in practice
researchers rarely recognize the bias and attempt to correct for it.
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There are other gaps in the information available to psychologists
and others about properties of correlation. Although the so-called r to Z
transformation is frequently used in correlation studies, relatively little is
known about the Type I error probabilities and power of significance tests
associated with this transformation, especially when bivariate normality is
violated. Furthermore, not much is known about how properties of
significance tests of correlation, based on the Student 7 test and on the
Fisher r to Z transformation, extend to the Spearman rank-order correlation
method. For problems with bias in correlation in the context of tests and
measurements, see Muchinsky (1996) and Zimmerman and Williams
(1997). The present paper examines these issues and presents results of
computer simulations in an attempt to close some of the gaps.

The Sample Correlation Coefficient as a Biased Estimator of the
Population Correlation

The sample correlation coefficient, r, is a biased estimator of the
population correlation coefficient, p, for normal populations. It is not widely
recognized among researchers that this bias can be as much as .03 or .04
under some realistic conditions and that a simple correction formula is
available and easy to use in practice. This discrepancy may not be crucial if
one is simply investigating whether or not a correlation exists. However, if
one is concerned with an accurate estimate of the magnitude of a non-zero
correlation in test and measurement procedures, then the discrepancy may
be of concern.

Fisher (1915) proved that the expected value of correlation
coefficients based on random sampling from a normal population is

approximately E[r]=p— p(1-p°)/2n,and that a more exact result is
given by an infinite series containing terms of smaller magnitude. Solving

this equation for p provides an approximately unbiased estimator of the
population correlation,

/3=7{1+(1;’:2)} (1)

which we shall call the Fisher approximate unbiased estimator. Further
discussion of its properties can be found in Fisher (1915), Kenny and
Keeping (1951), and Sawkins (1944). Later, Olkin and Pratt (1958)

recommended using P = r[l +(1=7r*)/2(n- 3)] as a more nearly unbiased

estimator of p.
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From the above equations, it is clear that the bias, E[r]-p,

decreases as sample size increases and that it is zero when the population
correlation is zero. For n = 10 or n = 20, it is of the order .01 or .02 when
the correlation is about .20 or .30, and about .03 when the correlation is

about .50 or .60. Differentiating p(1— p*)/2n with respect to p, setting the

result equal to zero, and solving for p, shows that .577 and —.577 are the
values for which the bias is a maximum. The bias depends on n, while the

values .577 and —.577 are independent of n.

It should be emphasized that this bias is a property of the mean of
sample correlation coefficients and is distinct from the instability in the
variance of sample correlations near 1.00 that led Fisher to introduce the so-
called r to Z transformation. Simulations using the high speed computers
available today, with hundreds of thousands of iterations, make it possible
to investigate this bias with greater precision than formerly, not only for
scores but also for ranks assigned by the Spearman rank correlation method.

Transformation of Sample Correlation Coefficients to Stabilize
Variance

In order to stabilize the variance of the sampling distribution of
correlation coefficients, Fisher also introduced the r to Z transformation,

1 1+r
Z=—In| —|, 2
2 [l—r} @)

where [n denotes the natural logarithm and r is the sample correlation. It is
often interpreted as a non-linear transformation that normalizes the
sampling distribution of r. Although sometimes surrounded by an aura of
mystery in its applications in psychology, the formula is no more than an
elementary transcendental function known as the inverse hyperbolic tangent
function.

Apparently, Fisher discovered in serendipitous fashion, without a
theoretical basis, that this transformation makes the variability of r values
which are close to +1.00 or to —1.00 comparable to that of r values in the
mid-range. At the end of his 1915 paper, Fisher had some doubts about its
efficacy and wrote: “In these respects, the function ... tanh™ pis not a little
attractive, but so far as I have examined it, it does not simplify the analysis,
and approaches relative constancy at the expense of the constancy
proportionate to the variable, which the expressions in 7 exhibit” (p. 521).
Later, Fisher (1921) was more optimistic, and he proved that sampling
distributions of Z are approximately normal. Inspection of graphs of the
inverse hyperbolic tangent function in calculus texts makes this result
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appear reasonable. ~ With computers available, the extensive r to Z tables
in introductory statistics textbooks are unnecessary, because most computer
programming languages include this function among their built-in
functions. Less frequently studied, and not often included in statistical
tables in textbooks, the inverse function, that is, the Z to r transformation, is
et — ot

g e+ e’ )
where e is the base of natural logarithms (for further discussion, see Charter
and Larsen, 1983). In calculus, this function is known as the hyperbolic
tangent function, and in statistics it is needed for_finding confidence
intervals for r and for averaging correlation coefficients

Rank Transformations and Correlation

Another transformation of the correlation coefficient, introduced by
Spearman (1904), has come to be known as the Spearman rank-order
correlation. One applies this transformation, not to the correlation
coefficient computed from initial scores, but rather to the scores themselves
prior to the computation. It consists simply of replacing the scores of each
of two variables, X and Y, by the ranks of the scores. This uncomplicated
procedure has been obscured somewhat in the literature by formulas
intended to simplify calculations. If scores on each of two variables, X and
Y, are separately converted to ranks, and if a Pearson r is calculated from the
ranks replacing the scores, the result is given by the familiar formula

6> D}
rg=1——E—) 4
s n(n®*=1) )
where D = Xp — Yy i1s the difference between the ranks Xy and Yz
corresponding to X and Y, and » is the number of pairs of scores. If there are
no ties, the value found by applying this formula to any data is exactly equal
to the value found by calculating a Pearson r on ranks replacing the scores.

These relations can be summarized by saying that, if the initial
scores are ranks, there is no difference between a Pearson r and a Spearman
rs, except for an algebraic detail of computation. They can also be expressed
by saying that rg is by definition a Pearson correlation coefficient obtained
when scores have been converted to ranks before performing the usual
calculations. Derivation of a simple equation containing only the sum of

' Most programming languages include a command such as Tanh(Z) or Tanh[Z] , which
returns the desired value with far greater accuracy and convenience than interpolating in »
to Z statistical tables and reading them backwards.
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squared difference scores, DZ, and the number of pairs, n, is made possible
by the fact that the variances of the two sets of ranks are equal and are given
by (n” — 1)/12.

For present purposes, it is important to note the following properties
of the sampling distributions of these statistics. If initial data are ranks, there
is only one sampling distribution to be considered—that of rs It is
conceivable that sampling is not from a population of numerical values, but
rather from a population of non-numerical objects that can be compared and
ranked. If initial data are scores on continuous variables, X and Y, then r
computed from ranks corresponding to X and Y is the same as rs. However,
the sampling distribution of » computed from initial scores is not necessarily
the same as that of rg. That is, transformation of scores to ranks before
calculating a statistic can alter the sampling distribution of that statistic.

If initial scores are numerical values rather than ranks, the Spearman
rs and the Pearson p are related by the formula

6 . )

2] [sm p+(n—2)sin 2} (5)
(Daniels, 1950, 1951; Durbin and Stuart, 1951; Hoeffding, 1948; Kendall
and Gibbons, 1990). This relation indicates the bias introduced by using the
Spearman rg obtained from ranks as an estimate of the population
correlation between variables underlying the ranks. In other words, it
indicates the bias introduced by transforming scores to ranks before
estimating the population correlation. We find

limE[ry]=(6/ ﬂ)[sinfl(p/ 2)], so that substantial bias exists for large

E[r]=

sample sizes. Differentiating lim E[r,]— p and setting the result equal to 0

indicates that in the limit this bias is a maximum when the absolute value of
pis .594. Figure 1 plots the theoretical bias of rg as a function of p for n =
10, 20, 40, 80, and oo (corresponding to the curves from bottom to top).
Several authors have recommended using the r to Z transformation
to test non-null hypotheses about the Spearman rank correlation (David and
Mallows, 1961; Fieller, Hartley, and Pearson, 1957; Fieller and Pearson,
1961) in the same way as done for the Pearson correlation. These authors
have found, however, that a more precise estimate of the standard deviation

of the Z values obtained from ranks is /1.060/(n—3) instead of

1/(n—3) typically used in significance tests with the r to Z

transformation. Apparently, there is not much evidence of the advantages or
disadvantages of using these formulas in practice.
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Figure 1. Theoretical bias of sample rank correlation as a function of
population correlation for sample sizes. (The vertical axis measures
bias and the values of rho are on the horizontal axis; the curves, from
bottom to top trace n=10, 20, 40, 80, infinity)

COMPUTER SIMULATION METHODEI

In a simulation study, ordered pairs of scores of each of two normally
distributed variables, X and Y, were transformed to have various population
distributions and further transformed to have specified correlations. Normal
deviates were generated by the method of Box and Muller (1958), where

X =(=2logU,)"* cos(2zU,) and Y =(-2logU,)"*sin(2zU,), and where
U; and U, are pseudorandom numbers on the interval (0,1). As a check,

normal deviates were also generated by the rejection method of Marsaglia
and Bray (1964).

2 Author Notes: The computer program was written in PowerBASIC, version 3.2,
PowerBASIC, Inc., Carmel, CA. A listing of the program can be obtained by writing to
Donald W. Zimmerman, 1978 134A Street, South Surrey, B.C., Canada, V4A 6B6, E-mail:
zimmerma@direct.ca. Calculation of theoretical values in Table 1 and Figures 1 and 3 was
done with MATHEMATICA, version 4.0, Wolfram Research, Champaign, IL.
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The exponential component of the non-normal distributions to be
described below was obtained by X = — log(U) — 1, where U is uniform on
(0,1). The lognormal component was Y = [exp(X — 1) — .607]/.796, where X
is N(0,1), and the rectangular component was X = (U — .5)/.289, where U is
uniform on (0,1), the constants insuring that the distributions have mean 0
and standard deviation 1. For further details concerning simulation of
variates see Devroye (1986) and Morgan (1984).

The random number generator used in the present study was devised
by Marsaglia, Zaman, and Tsang (1990), and was described in detail by
Pashley (1993, pp. 395-415). In addition, random numbers were obtained
from the PowerBASIC compiler used in the present study. The algorithms
were tested by the above methods of generating random numbers and
obtaining normal deviates, and differences among the methods turned out to
be insignificant.

Correlations were induced by adding a multiple of a random
variable, U, to both X and Y, the multiplicative constant, ¢, being chosen to

produce the desired correlation. The algorithm was X’ = (X +cU)/(1+c%)

and Y'=(Y +cU)/(1+c*), where ¢ =4/r(1—r) . If X and Y are independent
with mean 0 and variance 1, then p(X’,Y”)=r. The simulations consisted

of at least 20,000 iterations and sometimes as many as 100,000 iterations for
each condition investigated. In trial runs we attempted to locate the number
of iterations that would yield stable calculated values.

Significance tests of the hypothesis of zero correlation employed the

formula
z=%’“‘f, (©)
—-r

where the Student 7 statistic was evaluated at n — 2 degrees of freedom.
Typically, this formula is used for significance testing of both Pearson and
Spearman correlation (Glasser and Winter, 1961; Kendall, Kendall, and
Smith, 1939). Equation (2) was used for Fisher r to Z transformations.
Scores of X and Y were separately converted to ranks, and significance tests
were performed on the ranks replacing the scores. Additional significance
tests of the Spearman rg used critical values obtained from permutations,
given in tables in Siegel and Castellan (1988). The study employed the .01,
.05, and .10 significance levels. In various parts of the study, sample sizes
were n = 10, 20, and 40, where n denotes the number of ordered pairs of
scores. All tests were two-tailed.



140

Table 1. Means and standard deviations of sample correlations () and
Fisher approximate unbiased estimates of population correlation
(estimated p) obtained from sample scores (Pearson r) and ranks of

D.W. Zimmerman et al.

RESULTS

sample scores (Spearman rs) for various population correlations (p)
and sample sizes (n).

P
n .10 .30 .50 .70 .90
10  scores | Mean r .094 284 479 .679 .889
Predicted mean r .095 286 481 .682 .891
Mean estimated p .097 293 494 .694 .897
SD r 331 310 267 195 .084
SD estimated p 342 319 272 .194 .080
ranks Mean 7 .086 .261 443 .631 .842
Mean estimated p .089 270 456 .647 .853
SD r 331 314 279 217 118
SD estimated p 343 324 284 217 112
20  scores | Mean r .098 294 491 .690 .895
Predicted mean r .098 .293 491 .691 .896
Mean estimated p .100 .300 499 .699 .899
SD r 228 211 177 126 .049
ranks Mean 7 .091 275 462 .656 .866
Mean estimated p .093 281 470 .664 871
SD r 228 215 187 142 .068
SD estimated p 233 219 .188 141 .066
40  scores | Mean r .099 297 495 .695 .898
Predicted mean r .099 297 495 .696 .898
Mean estimated p .100 .300 499 .699 .900
SD r 159 147 123 .085 .032
SD estimated p .160 .148 124 .084 .032
ranks Mean 7 .094 281 471 .669 .878
Mean estimated p .095 284 476 673 .881
SD r .159 .149 .130 .096 .043
161 151 131 .096 .042

SD estimated p
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Bias of the sample correlation coefficient and correction by unbiased
estimators.

The simulation results presented in Table 1 reveal the bias of the
sample correlation coefficient and confirm the accuracy of the Fisher
approximate unbiased estimator. First, it is clear that the mean value of r,
over 100,000 samples, is consistently below the value of p, although the
difference is slight. The bias is greater in the mid-range of p, especially .50
and .70. and also is greater for small sample sizes.

The second row of each section of the table (predicted mean r) gives
the expected value of r predicted from Fisher’s derivation, that is, the value
of p—p(1—p*)/2n. It is apparent that in all cases the Fisher estimator
(third row of each section), based on this predicted value, almost completely
eliminates the bias, although the mean of the Fisher estimates still is very
slightly below p. This small difference, which occurs consistently, can be
attributed to the fact that the Fisher formula is an approximation. The
standard deviations of r values and estimated p values in the table are
consistent with the well-known truncation of the sampling distribution in
the upper range.

Bias of the Spearman rank correlation.

The table also indicates that the Spearman rank correlation is
characterized by a similar bias. In fact, the bias in all cases becomes
somewhat larger when scores are converted to ranks. In the mid-range from
.50 to .70, for n = 10, the mean of correlation coefficients based on ranks is
as much as .05 to .07 below the population correlation. Even for the larger
sample size, n = 40, the mean of rs remains considerably less than p. The
Fisher estimator applied to these rank correlations increases their value
slightly, but does not nearly restore them to the population values.

Figure 2 provides a somewhat more detailed picture of the bias and its
correction by the Fisher estimator and the Olkin-Pratt estimator and of the
result of transforming scores to ranks, for sample sizes of 10 and 20. The
bias, defined as the mean of sample r values minus the population p, is
plotted as a function of p. Each data point is based on 100,000 iterations.
These curves show clearly that the bias is greatest in the mid-range of about
.50 to .80 and that the Fisher estimator, over many samples, almost, but not
entirely, restores the mean r to p. They also show that bias is considerably
greater for ranks than for scores. The pattern of results is the same for the
two sample sizes, and the bias is greater for the smaller sample size.
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Figure 2. Bias of sample correlation and correction by approximately
unbiased estimators as a function of population correlation, for scores
and ranks.
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Figure 3. Bias of sample correlation and correction by approximately
unbiased estimators as a function of sample size.
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Figure 3 plots the bias for both scores and ranks as a function of
sample size, varying from 5 to 50 in increments of 5, for p = .30 and p =
.60. The upper curve in each section (labeled theoretical) is the bias

predicted from Fisher’s equation—the value of —p(1— p*)/2n.The figure

reveals that, even for larger sample sizes, the correlation based on ranks
remains biased and apparently does not approach zero asymptotically, as
does the correlation based on scores.

Significance tests of hypotheses about correlation.

Table 2 presents Type I error probabilities and power of various
significance tests of correlation. The table gives results for three
significance levels— .01, .05, and .10 (two-tailed). Tests of H: p = 0
performed on both scores and ranks were based on the Student z-statistic,
using equation (5). These results are presented in the first two columns of
each section of the table, labeled t-scores and ¢-ranks. As the actual value of
p ranges from O to .80 in increments of .20, the columns indicate Type I
error probabilities and power of the tests. In addition, tests of the same
hypothesis were performed using critical values of the Spearman rank
correlation obtained from permutations, and these results are presented in
the third column, labeled rs.

Tests of H: p = .40 and H: p = .80 were based on the Fisher r to Z
transformation, For the first hypothesized value, the actual value of p
ranged from .40 to .90 in increments of .10, and for the second hypothesized
value, p ranged from .80 to .95 in increments of .05, so that the columns
again indicate both Type I error probabilities and power. In the columns
labeled scores and ranks, the estimated standard deviation of Z in the test

statistic was /1/(n—3), and in the column labeled ranks-1, the estimate

was the more accurate value /1.060/(n—3) suggested by Fieller and
Pearson (1961).

For p =0, for all three significance levels, and for all sample sizes,
the test based on the Student z-statistic on scores was somewhat more
powerful than the test on ranks, and the t-test on ranks was slightly more
powerful than the rg test based on permutations. For p = .40 and p = .80
and for all three significance levels, the test based on the r to Z
transformation of correlation obtained from scores was more powerful than
the test based on the r to Z transformation of correlation obtained from
ranks. The power difference becomes somewhat larger as sample size
increases. Also, the Type I error probability of the test based on ranks is
inflated as p increases. Figure 4 compares in more detail the Type I error
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probabilities of the r to Z transformation in the non-null case both the
unmodified and the modified standard deviations of Z.

Table 2. Type I error probability and power of tests of the hypothesis p
= 0, based on the Student ¢ test on scores and ranks and on critical
values of rs obtained from permutations, and the hypotheses p = .40
and p = .80, based on the Fisher r to Z transformation (o = .01,.05, and

10).

Hy: p=0, a= .05

n=10 n=20 n=40
p t-scores  t-ranks rs t-scores  t-ranks ry t-scores  t-ranks rs
0 .049 .054 .048 .052 .053 .045 .050 .050 .051
.20 .084 .083 .075 132 126 118 235 217 213
40 207 185 170 427 .376 371 741 .688 .687
.60 488 417 .396 .830 764 760 988 976 978
.80 .870 773 760 995 .986 985 1.000 1.000 1.000
Hy: p= .40, = .05 (using rto Z)
n=10 n=20 n=40
p scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1
.40 .050 .055 .051 .050 .054 .048 .050 .056 .049
.50 .068 .066 .064 .086 .076 .069 123 101 .091
.60 122 .105 .104 214 171 158 .390 309 290
.70 243 186 186 481 382 .363 787 .677 .656
.80 482 .356 .356 .826 702 .685 987 957 951
.90 .846 668 668 994 965 961 1.000 1.00 1.000
Hy:p= .80, o= .05 (using r to Z)
n=10 n=20 n=40
p scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1
.80 .049 .076 .055 .051 .072 .066 .050 .081 .073
.85 .081 .091 .056 114 .085 .079 173 119 .109
.90 .196 156 .099 373 227 216 .649 449 431
95 .556 357 248 885 .650 .637 995 949 944

Table 2 (continued)
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n=10 n=20 n=40
p t-scores  t-ranks rg t-scores  t-ranks rg t-scores  t-ranks rg
0 .010 .013 .007 .011 012 .008 .010 .010 .010
.20 .019 .023 .012 .040 .039 .032 .088 .078 .076
40 .064 .061 .042 .200 171 159 .506 443 435
.60 226 188 134 623 533 513 950 916 916
.80 .655 518 427 979 944 934 1.000 1.000 1.000
Hp:p=.40, = .01 (usingrto 2)
n=10 n=20 n=40
P scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1
.40 .012 .015 .014 011 .013 .010 .010 .012 .010
.50 .019 .021 .020 .024 .022 .019 .037 .030 .026
.60 .038 .037 .037 .078 .066 .057 183 140 124
.70 .096 .078 .078 251 .190 171 570 452 424
.80 246 175 175 .619 481 450 .947 872 856
.90 .645 441 441 970 .892 878 1.000 .999 .998
Hp:p =.80, a=.01 (usingrto 2)
n=10 n=20 n=40
p scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1
.80 012 .019 .018 011 .019 .016 011 .021 .018
.85 .023 .027 .026 .034 .029 .023 .059 .039 .034
.90 .070 .056 .055 173 102 .088 406 246 225
.95 .305 163 .163 715 450 415 976 .860 .847
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Table 2 (continued)

Hy: p=0, a=.10

n=10 n=20 n=40
P t-scores  t-ranks rg t-scores  t-ranks rg t-scores  t-ranks rg
0 .100 104 .085 .103 101 .095 .098 .099 101
.20 149 150 126 223 207 .199 .345 319 320
.40 .320 289 256 .560 .508 504 .834 .790 .790
.60 .631 554 516 .899 .855 .850 995 .989 .990
.80 928 .865 .845 .997 .994 .994 1.000 1.000 1.000

Ho: p= .40, a= .10 (using r to Z)

n=10 n=20 n=40
P scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1
40 .097 .105 .092 .100 .106 .096 .100 .108 .098
.50 122 120 .105 152 137 124 203 168 155
.60 201 178 158 319 259 241 518 423 405
.70 .356 .290 .263 .609 .504 482 .868 776 763
.80 .616 490 457 .894 .800 784 .994 978 976
.90 910 784 .760 997 983 981 1.000 1.000 1.000

Ho:p = .80, o= .10 (using r to Z)

n=10 n=20 n=40
P scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1
.80 .093 .136 .103 .099 134 121 .100 .143 132
.85 143 147 .105 .188 .149 .134 .269 .190 178
.90 299 224 .161 .500 323 302 759 562 .546
.95 .683 451 358 .936 752 731 998 972 .969
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Figure 4. Type I error probability and power of tests of hypotheses
about correlation based on the Student ¢ statistic and on the r to Z
transformation, for scores and ranks.
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Figure 4 presents more detailed power functions of significance tests,
based on scores and ranks, for a normal distribution, with n = 40 and o =
.05. These functions represent tests of hypotheses of successive correlations
ranging from O to .80 in increments of .20, as the population correlation
assumes values ranging from the hypothesized value to .90 in increments of
.10. Tests of the hypothesis of zero correlation were made by both the #-test
method and the r to Z method; all other hypotheses employed the r to Z
method. For values of p greater than zero, the curves of the tests on scores
dominate the curves of the tests on ranks. However, the results of the tests
of H: p=0 based on the #-statistic are almost identical to those of the test of
the same hypothesis based on the r to Z transformation, for both scores and
ranks.

Figure 5 shows the probability of Type I errors as a function of p for
scores and ranks, using the r to Z transformation with the estimate of the

standard deviation of Z based on /1/(n—3) and for ranks with the estimate

based on /1.060/(n —3).

Estimation and significance testing under violation of bivariate
normality.

Table 3 presents means and standard deviations of sample
correlation coefficients obtained from distributions that violate bivariate
normality. Table 4 presents Type I error probabilities of the significance
tests described previously, for significance levels of .01, .05, and .10 and for
sample sizes of 10, 20, and 40. Tests were performed on scores and on
ranks. Tests of the hypothesis p = 0 employed the Student 7 test, as well as
the test of rg based on permutations, and tests of the hypothesis p = .50
employed the r to Z transformation.

Four distribution shapes were examined. These comprised skewed
distributions of the kind often encountered in practice and mixed
distributions that are models of outliers in research data. First, a mixture of a
normal and exponential distribution, sometimes called an ex-Gaussian
distribution, was included. This highly skewed distribution, N(0,1) +
E(0,15), is the sum of a normal component with mean O and standard
deviation 1 and an exponential component with mean O and standard
deviation 15. Second, a similar mixture of a normal distribution and a
lognormal distribution, both with mean O and standard deviation 1, was
included. Third, a contaminated-normal, or mixed-normal distribution,
frequently used as a model of outliers, consisted of samples taken from
N(0,1) with probability .98 and from N(0,10) with probability .02. Finally, a
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mixture of N(0,1) and a rectangular, or uniform, distribution with mean 0
and standard deviation 1 was examined.
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Figure 5. Probability of Type I errors of tests of non-null hypotheses
about p for scores and ranks using r to Z transformation.
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Table 3. Means and standard deviations of sample correlation
coefficients based on scores and ranks under violation of the
assumption of bivariate normality (p = .50).

n=10 n=20 n=40
Distribution scores ranks scores ranks scores ranks
Mixture of normal and M 497 476 .500 496 501 507
exponential (ex-Gaussian) SD 271 274 185 .184 128 126
Mixture of normal and M .540 527 534 .547 527 .559
lognormal SD 267 259 192 174 143 120
Contaminated normal— M 554 532 .549 554 537 565
mixture of N(0,1) and N(0,10). SD 260 255 193 .170 151 116
Mixture of normal and M 473 432 488 451 494 461
rectangular SD 265 279 175 .187 121 129

The data in Table 2 indicates that the outcome of significance tests of
zero correlation for the various non-normal densities is similar to results
found in studies of Type I error probabilities in #-tests and F-tests of
difference in location. The significance levels of the ¢ tests on scores are
slightly disrupted, except for the case of the mixture of the normal and
rectangular distribution, while those of the tests on ranks are not affected to
the same extent. Previous studies have shown that the significance levels of
tests of location on rectangular distributions, are not distorted.

On the other hand, the significance levels of the tests of the
hypothesis p = .50, based on the r to Z transformation, are severely distorted
for these heavy-tailed distributions. In many cases, the tests on ranks are
distorted to a greater extent than the tests on scores. In the case of the
lognormal and contaminated normal distributions, inflation of the Type I
error probability is extreme, and it becomes more severe as sample size
increases. All evidence appears to indicate that the r to Z transformation is
not robust to non-normality.

Further insight into how non-normality influences correlation is
obtained from Figures 6 and 7, which give relative frequency distributions
of values of r and Z for population correlations of .25 and .85. The samples
represented in Figure 6 were obtained from a normal distribution, and those
in Figure 7 were obtained from a contaminated normal distribution, as
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defined previously. Table 5 gives the means and standard deviations of the
sample distributions. Under violation of bivariate normality, it appears that
the form of the sample distributions of r and Z are not appreciably altered,
but that the means of the distributions are changed enough to substantially
modify the probability of Type I and Type II errors.

Table 4. Type I error probabilities of tests of the hypotheses p=0 and p
= .50 under violation of bivariate normality.

n=10 n=20 n=40
Distribution o t- t- rs t- t- rs t- t- rs
scores ranks scores ranks scores ranks

Mixture of normal .01 014 012 .007 014 011 .010 .012 .009 .009
and exponential .05 .050 .053 .048 .049 .050 .049 .049 .051 .050
(ex-Gaussian) .10 .095 .105 .088 .094 101 .099 .096 .099 .099
Mixture of normal .01 .024 .013 .008 .024 011 .010 .021 .010 .009
and lognormal .05 .060 .056 .050 .055 .050 .049 .050 .051 .050

.10 .098 .108 .091 .088 101 .099 .082 101 101
Contaminated .01 .012 .013 .007 .013 011 .010 014 011 .010
normal—mixture of | .05 .052 .054 .048 .051 .051 .049 .049 .051 .050
N(0,1) and N(0,10) | .10 101 .105 .088 .098 .100 .099 .094 101 101
Mixture of normal .01 011 .013 .007 011 011 .010 011 011 .010
and rectangular .05 .052 .054 .049 .050 .051 .049 .050 .050 .049

.10 101 .105 .088 102 .100 .099 .099 .098 .098

n=10 n=20 n =40
Distribution o Z-scores Z-ranks Z-scores Z-ranks Z-scores Z-ranks
Mixture of normal and | .01 .027 .029 .028 .035 .026 .041
exponential (ex- .05 .085 .081 .089 .098 .089 114
Gaussian) .10 144 140 151 159 153 .180
Mixture of normal and | .01 .089 .085 11 144 131 245
lognormal .05 192 .180 224 268 251 409
.10 273 259 307 357 334 Sl
Contaminated .01 .070 .059 141 124 218 263
normal—mixture of .05 .188 147 297 265 .370 457
N(0,1) and N(0,10) .10 285 230 400 .364 459 .565
Mixture of normal and | .01 011 .015 .009 .012 .009 .014
rectangular .05 .045 .052 .043 .054 .044 .062
.10 .089 .100 .088 104 .090 118
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Contaminated Normal Distribution n=10
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Table 5. Means and standard deviations of sample values (r) and
transformed values (Z) of correlation coefficients obtained from normal
and contaminated-normal populations (o= .25 and p = .85).

Scores
p=.25 p=.85
Distribution r A r Z
Mean 238 272 .835 1.311
Normal SD 317 376 .116 .367
Contaminated Mean 406 489 .878 1.628
Normal SD 311 410 .159 .530
Ranks
p=.25 p=.85
Distribution r Z r Z
Mean 219 252 786 1.182
Normal SD .320 381 .148 418
Contaminated Mean 416 .500 .862 1.503
Normal SD 287 .389 131 .530

Some Practical Implications for Psychological Measurement

These findings have some practical implications for research in
psychology, education, and other fields. First, if one is troubled by the slight
bias in the correlation coefficient for normal populations, it is clear that it
can be largely eliminated by the Fisher approximate unbiased estimator or
by the Olkin and Pratt estimator. It is a simple matter to employ one of these
formulas routinely in calculating correlation coefficients.

For many purposes in educational and psychological research, the
bias revealed in the present study may not be large enough to cause concern.
If one’s research involves simply establishing the existence of correlation,
the bias probably is not excessive. However, if one is concerned with the
accuracy of specific degrees of non-zero correlation, especially higher
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degrees of correlation, then correcting for the bias may be desirable. In the
past, investigators in some areas have paid close attention to precise
numerical values of correlation coefficients, and in these circumstances bias
of —.03 or —.04 could be misleading. This is especially true if sample sizes
are small and at the same time the correlation is high.

If sample sizes are large, the bias is relatively small. For example, in
studies of test reliability, where reliability coefficients of .80 or higher are
common, it is likely that bias is negligible, because the estimates are usually
based on thousands of examinees. The same is true for validity coefficients
in large samples. On the other hand, if the validity or reliability of a
dependent variable in an experimental study with a small number of
subjects is found to be .60, it could be .63 or .64 in a larger population.
Even in cases where the bias is smaller, however, nothing is lost by using an
unbiased estimator. It certainly is possible to incorporate these estimators
without undue difficulty into computer programs, and there is no reason
why statistical software could not routinely obtain the more accurate
estimates.

Another implication of the present findings is that, in practice, the r
to Z transformation can be expected to be sensitive to violation of bivariate
normality. This fact is relevant to hypotheses testing, finding confidence
intervals, and averaging correlation coefficients. In these applications,
neither large samples nor conversion to ranks affords protection. For
example, significance tests of hypotheses about validity and reliability
coefficients or differences between them require an assumption of bivariate
normality despite large sample sizes.

Researchers certainly should be aware of this assumption before
using the r to Z transformation in data analysis. If it is not tenable, estimates
of non-zero values of correlation coefficients can be extremely biased, and
significance tests can be invalid. These consequences appear to be more
severe than ones typically associated with non-normality in 7 and F tests of
differences in location.

Spearman rank correlation frequently is used when research data
initially is in the form of ranks, and numerical measures underlying the
ranks are unavailable or meaningless. For such data, it is immaterial
whether one uses the Pearson formula to calculate the correlation between
the ranks, or the Spearman computational formula instead. On the other
hand, if the initial data is numerical, but the assumption of bivariate
normality is not satisfied, transformation to ranks is desirable in order to
avoid distortion of significance tests because of the distributional properties
of the scores. In this case, the correlation between the ranks is not
necessarily the same as the correlation between the scores. It is still possible



Bias and correlation 157

to test the hypothesis of zero correlation, although the probabilities of Type
I and Type II errors of the test on ranks are not necessarily the same as those
of the test on scores.

In this situation, unfortunately, there is no effective method for testing
hypotheses about non-zero values of correlation, and further research on this
problem is needed. Another topic for further research is suggested by Figure
3. Note that the bias of the rank correlation asymptotically approaches a
negative value, about —.02 when p is .30 and about .03 when is p is .60.
These values of the bias could be calculated and tabulated more
systematically for a range of correlations and used as correction factors in
large-sample research, when n is large enough for the bias to be close to the
asymptotic value.
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