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This study examined bias in the sample correlation coefficient, r, and its 
correction by unbiased estimators. Computer simulations revealed that the 
expected value of correlation coefficients in samples from a normal 
population is slightly less than the population correlation, ρ, and that the 
bias is almost eliminated by an estimator suggested by R.A. Fisher and is 
more completely eliminated by a related estimator recommended by Olkin 
and Pratt. Transformation of initial scores to ranks and calculation of the 
Spearman rank correlation, rS, produces somewhat greater bias. Type I error 
probabilities of significance tests of zero correlation based on the Student t 
statistic and exact tests based on critical values of rS obtained from 
permutations remain fairly close to the significance level for normal and 
several non-normal distributions. However, significance tests of non-zero 
values of correlation based on the r to Z transformation are grossly distorted 
for distributions that violate bivariate normality. Also, significance tests of 
non-zero values of rS based on the r to Z transformation are distorted even 
for normal distributions. 

 
This paper examines some unfamiliar properties of the Pearson 

product-moment correlation that have implications for research in 
psychology, education, and various social sciences. Some characteristics of 
the sampling distribution of the correlation coefficient, originally discovered 
by R.A. Fisher (1915), were largely ignored throughout most of the 20th 
century, even though correlation is routinely employed in many kinds of 
research in these disciplines. It is known that the sample correlation 
coefficient is a biased estimator of the population correlation, but in practice 
researchers rarely recognize the bias and attempt to correct for it.  

                                                 
' Send correspondence to: Professor Bruno D. Zumbo. University of British Columbia. 
Scarfe Building, 2125 Main Mall. Department of ECPS. Vancouver, B.C. CANADA  V6T 
1Z4. e-mail: bruno.zumbo@ubc.ca Phone: (604) 822-1931. Fax: (604) 822-3302. 
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 There are other gaps in the information available to psychologists 
and others about properties of correlation. Although the so-called r to Z 
transformation is frequently used in correlation studies, relatively little is 
known about the Type I error probabilities and power of significance tests 
associated with this transformation, especially when bivariate normality is 
violated. Furthermore, not much is known about how properties of 
significance tests of correlation, based on the Student t test and on the 
Fisher r to Z transformation, extend to the Spearman rank-order correlation 
method. For problems with bias in correlation in the context of tests and 
measurements, see Muchinsky (1996) and Zimmerman and Williams 
(1997). The present paper examines these issues and presents results of 
computer simulations in an attempt to close some of the gaps. 

 
The Sample Correlation Coefficient as a Biased Estimator of the 

Population Correlation 
 The sample correlation coefficient, r, is a biased estimator of the 

population correlation coefficient, ρ, for normal populations. It is not widely 
recognized among researchers that this bias can be as much as .03 or .04 
under some realistic conditions and that a simple correction formula is 
available and easy to use in practice. This discrepancy may not be crucial if 
one is simply investigating whether or not a correlation exists. However, if 
one is concerned with an accurate estimate of the magnitude of a non-zero 
correlation in test and measurement procedures, then the discrepancy may 
be of concern. 

 Fisher (1915) proved that the expected value of correlation 
coefficients based on random sampling from a normal population is 
approximately 2[ ] (1 ) / 2 ,E r nρ ρ ρ= − − and that a more exact result is 
given by an infinite series containing terms of smaller magnitude. Solving 
this equation for ρ provides an approximately unbiased estimator of the 
population correlation, 

2(1 )ˆ 1 ,
2

rr
n

ρ  −= + 
 

                    (1) 

which we shall call the Fisher approximate unbiased estimator. Further 
discussion of its properties can be found in Fisher (1915), Kenny and 
Keeping (1951), and Sawkins (1944). Later, Olkin and Pratt (1958) 
recommended using 2ˆ 1 (1 ) / 2( 3)r r nρ  = + − −    as a more nearly unbiased 

estimator of ρ.        
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 From the above equations, it is clear that the bias, [ ]E r ρ− , 
decreases as sample size increases and that it is zero when the population 
correlation is zero. For n = 10 or n = 20, it is of the order .01 or .02 when 
the correlation is about .20 or .30, and about .03 when the correlation is 
about .50 or .60. Differentiating 2(1 ) / 2nρ ρ−  with respect to ρ, setting the 
result equal to zero, and solving for ρ, shows that .577 and −.577 are the 
values for which the bias is a maximum. The bias depends on n, while the 
values .577 and −.577 are independent of n.  

 It should be emphasized that this bias is a property of the mean of 
sample correlation coefficients and is distinct from the instability in the 
variance of sample correlations near 1.00 that led Fisher to introduce the so-
called r to Z transformation. Simulations using the high speed computers 
available today, with hundreds of thousands of iterations, make it possible 
to investigate this bias with greater precision than formerly, not only for 
scores but also for ranks assigned by the Spearman rank correlation method. 

 
Transformation of Sample Correlation Coefficients to Stabilize 

Variance 
 In order to stabilize the variance of the sampling distribution of 

correlation coefficients, Fisher also introduced the r to Z transformation, 

1 1ln ,
2 1

rZ
r

+ =  − 
 (2) 

where ln denotes the natural logarithm and r is the sample correlation. It is 
often interpreted as a non-linear transformation that normalizes the 
sampling distribution of r.  Although sometimes surrounded by an aura of 
mystery in its applications in psychology, the formula is no more than an 
elementary transcendental function known as the inverse hyperbolic tangent 
function. 

 Apparently, Fisher discovered in serendipitous fashion, without a 
theoretical basis, that this transformation makes the variability of r values 
which are close to +1.00 or to –1.00 comparable to that of r values in the 
mid-range. At the end of his 1915 paper, Fisher had some doubts about its 
efficacy and wrote: “In these respects, the function … tanh–1 ρ is not a little 
attractive, but so far as I have examined it, it does not simplify the analysis, 
and approaches relative constancy at the expense of the constancy 
proportionate to the variable, which the expressions in τ exhibit” (p. 521). 
Later, Fisher (1921) was more optimistic, and he proved that sampling 
distributions of Z are approximately normal. Inspection of graphs of the 
inverse hyperbolic tangent function in calculus texts makes this result 
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appear reasonable. With computers available, the extensive r to Z tables 
in introductory statistics textbooks are unnecessary, because most computer 
programming languages include this function among their built-in 
functions. Less frequently studied, and not often included in statistical 
tables in textbooks, the inverse function, that is, the Z to r transformation, is 

,
Z Z

Z Z
e er
e e

−

−

−=
+

                      (3) 

where e is the base of natural logarithms (for further discussion, see Charter 
and Larsen, 1983). In calculus, this function is known as the hyperbolic 
tangent function, and in statistics it is needed for finding confidence 
intervals for r and for averaging correlation coefficients1.  

 
Rank Transformations and Correlation 
Another transformation of the correlation coefficient, introduced by 

Spearman (1904), has come to be known as the Spearman rank-order 
correlation. One applies this transformation, not to the correlation 
coefficient computed from initial scores, but rather to the scores themselves 
prior to the computation. It consists simply of replacing the scores of each 
of two variables, X and Y, by the ranks of the scores. This uncomplicated 
procedure has been obscured somewhat in the literature by formulas 
intended to simplify calculations. If scores on each of two variables, X and 
Y, are separately converted to ranks, and if a Pearson r is calculated from the 
ranks replacing the scores, the result is given by the familiar formula 

2

1
2

6
1 ,

( 1)

n

i
i

S

D
r

n n
== −

−

∑
 (4) 

where D = XR – YR is the difference between the ranks XR and YR 
corresponding to X and Y, and n is the number of pairs of scores. If there are 
no ties, the value found by applying this formula to any data is exactly equal 
to the value found by calculating a Pearson r on ranks replacing the scores. 

 These relations can be summarized by saying that, if the initial 
scores are ranks, there is no difference between a Pearson r and a Spearman 
rS, except for an algebraic detail of computation. They can also be expressed 
by saying that rS is by definition a Pearson correlation coefficient obtained 
when scores have been converted to ranks before performing the usual 
calculations. Derivation of a simple equation containing only the sum of 
                                                 
1 Most programming languages include a command such as Tanh(Z) or Tanh[Z] , which 
returns the desired value with far greater accuracy and convenience than interpolating in r 
to Z statistical tables and reading them backwards. 
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squared difference scores, D2, and the number of pairs, n, is made possible 
by the fact that the variances of the two sets of ranks are equal and are given 
by (n2 – 1)/12. 

 For present purposes, it is important to note the following properties 
of the sampling distributions of these statistics. If initial data are ranks, there 
is only one sampling distribution to be considered—that of rS. It is 
conceivable that sampling is not from a population of numerical values, but 
rather from a population of non-numerical objects that can be compared and 
ranked. If initial data are scores on continuous variables, X and Y, then r 
computed from ranks corresponding to X and Y is the same as rS. However, 
the sampling distribution of r computed from initial scores is not necessarily 
the same as that of rS. That is, transformation of scores to ranks before 
calculating a statistic can alter the sampling distribution of that statistic. 

 If initial scores are numerical values rather than ranks, the Spearman 
rS and the Pearson ρ are related by the formula 

[ ] 1 16 sin ( 2)sin
( 1) 2SE r n
n

ρρ
π

− − = + − +  
    (5) 

(Daniels, 1950, 1951; Durbin and Stuart, 1951; Hoeffding, 1948;  Kendall 
and Gibbons, 1990). This relation indicates the bias introduced by using the 
Spearman rS obtained from ranks as an estimate of the population 
correlation between variables underlying the ranks. In other words, it 
indicates the bias introduced by transforming scores to ranks before 
estimating the population correlation. We find 

[ ] 1lim (6 / ) sin ( / 2) ,Sn
E r π ρ−

→∞
 =    so that substantial bias exists for large 

sample sizes. Differentiating [ ]lim Sn
E r ρ

→∞
−  and setting the result equal to 0 

indicates that in the limit this bias is a maximum when the absolute value of 
ρ is .594.  Figure 1 plots the theoretical bias of rS as a function of ρ for n = 
10, 20, 40, 80, and ∞ (corresponding to the curves from bottom to top).  

 Several authors have recommended using the r to Z transformation 
to test non-null hypotheses about the Spearman rank correlation (David and 
Mallows, 1961; Fieller, Hartley, and Pearson, 1957; Fieller and Pearson, 
1961) in the same way as done for the Pearson correlation. These authors 
have found, however, that a more precise estimate of the standard deviation 
of the Z values obtained from ranks is 1.060 /( 3)n −  instead of  

1/( 3)n −  typically used in significance tests with the r to Z 
transformation. Apparently, there is not much evidence of the advantages or 
disadvantages of using these formulas in practice.   
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Figure 1. Theoretical bias of sample rank correlation as a function of 
population correlation for sample sizes.  (The vertical axis measures 
bias and the values of rho are on the horizontal axis; the  curves, from 
bottom to top trace n=10, 20, 40, 80, infinity) 
 

COMPUTER SIMULATION METHOD2 
In a simulation study, ordered pairs of scores of each of two normally 

distributed variables, X and Y, were transformed to have various population 
distributions and further transformed to have specified correlations. Normal 
deviates were generated by the method of Box and Muller (1958), where 

1/ 2
1 2( 2 log ) cos(2 )X U Uπ= −  and 1/ 2

1 2( 2 log ) sin(2 )Y U Uπ= − , and where 
U1 and U2 are pseudorandom numbers on the interval (0,1). As a check, 
normal deviates were also generated by the rejection method of Marsaglia 
and Bray (1964).  

                                                 
2 Author Notes:  The computer program was written in PowerBASIC, version 3.2, 
PowerBASIC, Inc., Carmel, CA. A listing of the program can be obtained by writing to 
Donald W. Zimmerman, 1978 134A Street, South Surrey, B.C., Canada, V4A 6B6, E-mail: 
zimmerma@direct.ca. Calculation of theoretical values in Table 1 and Figures 1 and 3 was 
done with MATHEMATICA, version 4.0, Wolfram Research, Champaign, IL. 
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 The exponential component of the non-normal distributions to be 
described below was obtained by X = – log(U) – 1, where U is uniform on 
(0,1). The lognormal component was Y = [exp(X – 1) – .607]/.796, where X 
is N(0,1), and the rectangular component  was X = (U − .5)/.289, where U is 
uniform on (0,1), the constants insuring that the distributions have mean 0 
and standard deviation 1. For further details concerning simulation of 
variates see Devroye (1986) and Morgan (1984). 

  The random number generator used in the present study was devised 
by Marsaglia, Zaman, and Tsang (1990), and was described in detail by 
Pashley (1993, pp. 395-415). In addition, random numbers were obtained 
from the PowerBASIC compiler used in the present study. The algorithms 
were tested by the above methods of generating random numbers and 
obtaining normal deviates, and differences among the methods turned out to 
be insignificant. 

 Correlations were induced by adding a multiple of a random 
variable, U, to both X and Y, the multiplicative constant, c, being chosen to 
produce the desired correlation. The algorithm was 2( ) /(1 )X X cU c′ = + +  

and 2( ) /(1 )Y Y cU c′ = + + , where (1 )c r r= − . If X and Y are independent 
with mean 0 and variance 1, then ( , )X Y rρ ′ ′ = . The simulations consisted 
of at least 20,000 iterations and sometimes as many as 100,000 iterations for 
each condition investigated. In trial runs we attempted to locate the number 
of iterations that would yield stable calculated values. 

 Significance tests of the hypothesis of zero correlation employed the 
formula  

2

2 ,
1

r nt
r

−=
−

         (6) 

where the Student t statistic was evaluated at n – 2 degrees of freedom. 
Typically, this formula is used for significance testing of both Pearson and 
Spearman correlation (Glasser and Winter, 1961; Kendall, Kendall, and 
Smith, 1939). Equation (2) was used for Fisher r to Z transformations. 
Scores of  X and Y were separately converted to ranks, and significance tests 
were performed on the ranks replacing the scores. Additional significance 
tests of the Spearman rS used critical values obtained from permutations, 
given in tables in Siegel and Castellan (1988). The study employed the .01, 
.05, and .10 significance levels. In various parts of the study, sample sizes 
were n = 10, 20, and 40, where n denotes the number of ordered pairs of 
scores. All tests were two-tailed. 
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RESULTS 

Table 1. Means and standard deviations of sample correlations (r) and 
Fisher approximate unbiased estimates of population correlation 
(estimated ρρρρ) obtained from sample scores (Pearson r) and ranks of 
sample scores (Spearman rS) for various population correlations (ρρρρ) 
and sample sizes (n). 
 

     ρ 
 

  

n   .10 .30 .50 .70 .90 
 

10 
 

 
scores 
 
 
 
 
 
ranks 
 

 
Mean r 
Predicted mean r 
Mean estimated ρ 
SD r 
SD estimated ρ 
 
Mean r 
Mean estimated ρ 
SD r 
SD estimated ρ 
 

 
.094 
.095 
.097 
.331 
.342 

 
.086 
.089 
.331 
.343 

 
.284 
.286 
.293 
.310 
.319 

 
.261 
.270 
.314 
.324 

 
.479 
.481 
.494 
.267 
.272 

 
.443 
.456 
.279 
.284 

 
.679 
.682 
.694 
.195 
.194 

 
.631 
.647 
.217 
.217 

 
.889 
.891 
.897 
.084 
.080 

 
.842 
.853 
.118 
.112 

 
20 

 
 

 
scores 
 
 
 
 
 
ranks 
 

 
Mean r 
Predicted mean r 
Mean estimated ρ 
SD r 
SD estimated ρ 
 
Mean r 
Mean estimated ρ 
SD r 
SD estimated ρ 
 

 
.098 
.098 
.100 
.228 
.233 

 
.091 
.093 
.228 
.233 

 
.294 
.293 
.300 
.211 
.215 

 
.275 
.281 
.215 
.219 

 
.491 
.491 
.499 
.177 
.179 

 
.462 
.470 
.187 
.188 

 
.690 
.691 
.699 
.126 
.125 

 
.656 
.664 
.142 
.141 

 
.895 
.896 
.899 
.049 
.048 

 
.866 
.871 
.068 
.066 

 
40 

 

 
scores 
 
 
 
 
 
ranks 
 
 

 
Mean r 
Predicted mean r 
Mean estimated ρ 
SD r 
SD estimated ρ 
 
Mean r 
Mean estimated ρ 
SD r 
SD estimated ρ 
 

 
.099 
.099 
.100 
.159 
.160 

 
.094 
.095 
.159 
.161 

 
.297 
.297 
.300 
.147 
.148 

 
.281 
.284 
.149 
.151 

 
.495 
.495 
.499 
.123 
.124 

 
.471 
.476 
.130 
.131 

 
.695 
.696 
.699 
.085 
.084 

 
.669 
.673 
.096 
.096 

 
.898 
.898 
.900 
.032 
.032 

 
.878 
.881 
.043 
.042 
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Bias of the sample correlation coefficient and correction by unbiased 
estimators. 

The simulation results presented in Table 1 reveal the bias of the 
sample correlation coefficient and confirm the accuracy of the Fisher 
approximate unbiased estimator. First, it is clear that the mean value of r, 
over 100,000 samples, is consistently below the value of ρ, although the 
difference is slight. The bias is greater in the mid-range of ρ, especially .50 
and .70. and also is greater for small sample sizes. 

 The second row of each section of the table (predicted mean r) gives 
the expected value of r predicted from Fisher’s derivation, that is, the value 
of 2(1 ) / 2nρ ρ ρ− − . It is apparent that in all cases the Fisher estimator 
(third row of each section), based on this predicted value, almost completely 
eliminates the bias, although the mean of the Fisher estimates still is very 
slightly below ρ. This small difference, which occurs consistently,  can be 
attributed to the fact that the Fisher formula is an approximation. The 
standard deviations of r values and estimated ρ values in the table are 
consistent with the well-known truncation of the sampling distribution in 
the upper range. 

 
Bias of the Spearman rank correlation. 
The table also indicates that the Spearman rank correlation is 

characterized by a similar bias. In fact, the bias in all cases becomes 
somewhat larger when scores are converted to ranks. In the mid-range from 
.50 to .70, for n = 10, the mean of correlation coefficients based on ranks is 
as much as .05 to .07 below the population correlation. Even for the larger 
sample size, n = 40, the mean of rS  remains considerably less than ρ. The 
Fisher estimator applied to these rank correlations increases their value 
slightly, but does not nearly restore them to the population values.                    

Figure 2 provides a somewhat more detailed picture of the bias and its 
correction by the Fisher estimator and the Olkin-Pratt estimator and of the 
result of transforming scores to ranks, for sample sizes of 10 and 20. The 
bias, defined as the mean of sample r values minus the population ρ, is 
plotted as a function of ρ. Each data point is based on 100,000 iterations. 
These curves show clearly that the bias is greatest in the mid-range of about 
.50 to .80 and that the Fisher estimator, over many samples, almost, but not 
entirely, restores the mean r to ρ. They also show that bias is considerably 
greater for ranks than for scores. The pattern of results is the same for the 
two sample sizes, and the bias is greater for the smaller sample size. 
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Figure 2.  Bias of sample correlation and correction by approximately 
unbiased estimators as a function of population correlation, for scores 
and ranks. 
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Figure 3.  Bias of sample correlation and correction by approximately 
unbiased estimators as a function of sample size. 
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Figure 3 plots the bias for both scores and ranks as a function of 
sample size, varying from 5 to 50 in increments of 5, for ρ = .30 and ρ = 
.60. The upper curve in each section (labeled theoretical) is the bias 
predicted from Fisher’s equation—the value of 2(1 ) / 2nρ ρ− − .The figure 
reveals that, even for larger sample sizes, the correlation based on ranks 
remains biased and apparently does not approach zero asymptotically, as 
does the correlation based on scores. 

 
Significance tests of hypotheses about correlation. 
Table 2 presents Type I error probabilities and power of various 

significance tests of correlation. The table gives results for three 
significance levels— .01, .05, and .10 (two-tailed). Tests of H: ρ = 0 
performed on both scores and ranks were based on the Student t-statistic, 
using equation (5). These results are presented in the first two columns of 
each section of the table, labeled t-scores and t-ranks. As the actual value of 
ρ ranges from 0 to .80 in increments of .20, the columns indicate Type I 
error probabilities and power of the tests. In addition, tests of the same 
hypothesis were performed using critical values of the Spearman rank 
correlation obtained from permutations, and these results are presented in 
the third column, labeled rS.  

 Tests of H: ρ = .40 and H: ρ = .80 were based on the Fisher r to Z 
transformation, For the first hypothesized value, the actual value of ρ 
ranged from .40 to .90 in increments of .10, and for the second hypothesized 
value, ρ ranged from .80 to .95 in increments of .05, so that the columns 
again indicate both Type I error probabilities and power. In the columns 
labeled scores and ranks, the estimated standard deviation of Z in the test 
statistic was 1/( 3)n − , and in the column labeled ranks-1, the estimate 

was the more accurate value 1.060 /( 3)n − suggested by Fieller and 
Pearson (1961). 

 For ρ = 0, for all three significance levels, and for all sample sizes, 
the test based on the Student t-statistic on scores was somewhat more 
powerful than the test on ranks, and the t-test on ranks was slightly more 
powerful than the rS test based on permutations.  For ρ = .40 and ρ = .80 
and for all three significance levels, the test based on the r to Z 
transformation of correlation obtained from scores was more powerful than 
the test based on the r to Z transformation of correlation obtained from 
ranks. The power difference becomes somewhat larger as sample size 
increases. Also, the Type I error probability of the test based on ranks is 
inflated as ρ increases. Figure 4 compares in more detail the Type I error 



Bias and correlation 

 

145 

probabilities of the r to Z transformation in the non-null case both the 
unmodified and the modified standard deviations of Z. 

 

Table 2. Type I error probability and power of tests of the hypothesis ρρρρ 
= 0, based on the Student t test on scores and ranks and on critical 
values of rS obtained from permutations, and the hypotheses ρρρρ = .40 
and ρρρρ = .80, based on the Fisher r to Z transformation (αααα = .01,.05, and 
.10). 
 
H0: ρ = 0, α = .05 
 

 n = 10 
 

n = 20 n = 40 

ρ t-scores t-ranks rS t-scores t-ranks rS t-scores t-ranks rS 
 

0 
.20 
.40 
.60 
.80 

 

 
.049 
.084 
.207 
.488 
.870 

 
.054 
.083 
.185 
.417 
.773 

 
.048 
.075 
.170 
.396 
.760 

 
.052 
.132 
.427 
.830 
.995 

 
.053 
.126 
.376 
.764 
.986 

 
.045 
.118 
.371 
.760 
.985 

 
.050 
.235 
.741 
.988 

1.000 

 
.050 
.217 
.688 
.976 

1.000 

 
.051 
.213 
.687 
.978 

1.000 

 
 
H0: ρ = .40, α = .05  (using r to Z) 

 
 n = 10 

 
n = 20 n = 40 

ρ scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1 
 

.40 

.50 

.60 

.70 

.80 

.90 

 
.050 
.068 
.122 
.243 
.482 
.846 

 
.055 
.066 
.105 
.186 
.356 
.668 

 
.051 
.064 
.104 
.186 
.356 
.668 

 
 

 
.050 
.086 
.214 
.481 
.826 
.994 

 
.054 
.076 
.171 
.382 
.702 
.965 

 
.048 
.069 
.158 
.363 
.685 
.961 

 
.050 
.123 
.390 
.787 
.987 

1.000 

 
.056 
.101 
.309 
.677 
.957 
1.00 

 
.049 
.091 
.290 
.656 
.951 

1.000 

 
 
H0:ρ = .80, α = .05  (using r to Z) 
 

 n = 10 
 

n = 20 n = 40 

ρ scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1 
 

.80 

.85 

.90 

.95 
 

 
.049 
.081 
.196 
.556 

 
.076 
.091 
.156 
.357 

 
.055 
.056 
.099 
.248 

 
.051 
.114 
.373 
.885 

 
.072 
.085 
.227 
.650 

 
.066 
.079 
.216 
.637 

 
.050 
.173 
.649 
.995 

 
.081 
.119 
.449 
.949 

 
.073 
.109 
.431 
.944 

Table 2 (continued) 
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H0: ρ = 0, α = .01 
 

 n = 10 
 

n = 20 n = 40 

ρ t-scores t-ranks rS t-scores t-ranks rS t-scores t-ranks rS 
 

0 
.20 
.40 
.60 
.80 

 

 
.010 
.019 
.064 
.226 
.655 

 
.013 
.023 
.061 
.188 
.518 

 
.007 
.012 
.042 
.134 
.427 

 
.011 
.040 
.200 
.623 
.979 

 
.012 
.039 
.171 
.533 
.944 

 
.008 
.032 
.159 
.513 
.934 

 
.010 
.088 
.506 
.950 

1.000 

 
.010 
.078 
.443 
.916 

1.000 

 
.010 
.076 
.435 
.916 

1.000 

 
 
 
H0:ρ = .40, α  =  .01   (using r to Z) 
 

 n = 10 
 

n = 20 n = 40 

ρ scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1 
 

.40 

.50 

.60 

.70 

.80 

.90 
 

 
.012 
.019 
.038 
.096 
.246 
.645 

 
.015 
.021 
.037 
.078 
.175 
.441 

 
.014 
.020 
.037 
.078 
.175 
.441 

 
.011 
.024 
.078 
.251 
.619 
.970 

 
.013 
.022 
.066 
.190 
.481 
.892 

 
.010 
.019 
.057 
.171 
.450 
.878 

 
.010 
.037 
.183 
.570 
.947 

1.000 

 
.012 
.030 
.140 
.452 
.872 
.999 

 
.010 
.026 
.124 
.424 
.856 
.998 

 
 
 
H0:ρ  = .80,  α = .01   (using r to Z) 
 

 n = 10 
 

n = 20 n = 40 

ρ scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1 
 

.80 

.85 

.90 

.95 
 

 
.012 
.023 
.070 
.305 

 

 
.019 
.027 
.056 
.163 

 
.018 
.026 
.055 
.163 

 
.011 
.034 
.173 
.715 

 
.019 
.029 
.102 
.450 

 
.016 
.023 
.088 
.415 

 
.011 
.059 
.406 
.976 

 
.021 
.039 
.246 
.860 

 
.018 
.034 
.225 
.847 
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Table 2 (continued) 
 
 
H0: ρ = 0, α = .10 
 

 n = 10 
 

n = 20 n = 40 

ρ t-scores t-ranks rS t-scores t-ranks rS t-scores t-ranks rS 
 

0 
.20 
.40 
.60 
.80 

 

 
.100 
.149 
.320 
.631 
.928 

 
.104 
.150 
.289 
.554 
.865 

 
.085 
.126 
.256 
.516 
.845 

 
.103 
.223 
.560 
.899 
.997 

 
.101 
.207 
.508 
.855 
.994 

 
.095 
.199 
.504 
.850 
.994 

 
.098 
.345 
.834 
.995 

1.000 

 
.099 
.319 
.790 
.989 

1.000 

 
.101 
.320 
.790 
.990 

1.000 

 
 
 
H0: ρ = .40, α = .10 (using r to Z) 
 

 n = 10 
 

n = 20 n = 40 

ρ scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1 
 

.40 

.50 

.60 

.70 

.80 

.90 
 

 
.097 
.122 
.201 
.356 
.616 
.910 

 
.105 
.120 
.178 
.290 
.490 
.784 

 
.092 
.105 
.158 
.263 
.457 
.760 

 
.100 
.152 
.319 
.609 
.894 
.997 

 
.106 
.137 
.259 
.504 
.800 
.983 

 
.096 
.124 
.241 
.482 
.784 
.981 

 
.100 
.203 
.518 
.868 
.994 

1.000 

 
.108 
.168 
.423 
.776 
.978 

1.000 

 
.098 
.155 
.405 
.763 
.976 

1.000 

 
 
 
H0:ρ = .80, α = .10 (using r to Z) 
 

 n = 10 
 

n = 20 n = 40 

ρ scores ranks ranks-1 scores ranks ranks-1 scores ranks ranks-1 
 

.80 

.85 

.90 

.95 
 

 
.093 
.143 
.299 
.683 

 
.136 
.147 
.224 
.451 

 
.103 
.105 
.161 
.358 

 
.099 
.188 
.500 
.936 

 
.134 
.149 
.323 
.752 

 
.121 
.134 
.302 
.731 

 
.100 
.269 
.759 
.998 

 
.143 
.190 
.562 
.972 

 
.132 
.178 
.546 
.969 
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Figure 4.  Type I error probability and power of tests of hypotheses 
about correlation based on the Student t statistic and on the r to Z 
transformation, for scores and ranks. 
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Figure 4 presents more detailed power functions of significance tests, 
based on scores  and ranks, for a normal distribution, with n = 40 and α = 
.05. These functions represent tests of hypotheses of successive correlations 
ranging from 0 to .80 in increments of .20, as the population correlation 
assumes values ranging from the hypothesized value to .90 in increments of 
.10. Tests of the hypothesis of zero correlation were made by both the t-test 
method and the r to Z method; all other hypotheses employed the r to Z 
method. For values of ρ greater than zero, the curves of the tests on scores 
dominate the curves of the tests on ranks. However, the results of the tests 
of  H: ρ = 0 based on the t-statistic are almost identical to those of the test of 
the same hypothesis based on the r to Z transformation, for both scores and 
ranks. 

 Figure 5 shows the probability of Type I errors as a function of ρ for 
scores and ranks, using the r to Z transformation with the estimate of the 
standard deviation of Z based on 1/( 3)n −  and for ranks with the estimate 

based on 1.060 /( 3).n −                           

 
Estimation and significance testing under violation of bivariate 

normality. 
 Table 3 presents means and standard deviations of sample 

correlation coefficients obtained from distributions that violate bivariate 
normality. Table 4 presents Type I error probabilities of the significance 
tests described previously, for significance levels of .01, .05, and .10 and for 
sample sizes of 10, 20, and 40. Tests were performed on scores and on 
ranks. Tests of the hypothesis ρ = 0 employed the Student t test, as well as 
the test of rS based on permutations, and tests of the hypothesis ρ = .50 
employed the r to Z transformation. 

 Four distribution shapes were examined. These comprised skewed 
distributions of the kind often encountered in practice and mixed 
distributions that are models of outliers in research data. First, a mixture of a 
normal and exponential distribution, sometimes called an ex-Gaussian 
distribution, was included. This highly skewed distribution, N(0,1) + 
E(0,15), is the sum of a normal component with mean 0 and standard 
deviation 1 and an exponential component with mean 0 and standard 
deviation 15. Second, a similar mixture of a normal distribution and a 
lognormal distribution, both with mean 0 and standard deviation 1, was 
included. Third, a contaminated-normal, or mixed-normal distribution, 
frequently used as a model of outliers, consisted of samples taken from 
N(0,1) with probability .98 and from N(0,10) with probability .02. Finally, a 
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mixture of N(0,1) and a rectangular, or uniform, distribution with mean 0 
and standard deviation 1 was examined.  

 
Figure 5. Probability of Type I errors of tests of non-null hypotheses 
about ρρρρ for scores and ranks using r to Z transformation. 

 
 



Bias and correlation 

 

151 

Table 3. Means and standard deviations of sample correlation 
coefficients based on scores and ranks under violation of the 
assumption of bivariate normality (ρρρρ = .50). 
 
  n = 10 

 
n = 20 n = 40 

Distribution  scores ranks scores ranks scores ranks 
 
Mixture of normal and 
exponential (ex-Gaussian) 
 

 
M 
SD 

 
.497 
.271 

 
.476 
.274 

 
.500 
.185 

 
.496 
.184 

 
.501 
.128 

 
.507 
.126 

 
Mixture of normal and  
lognormal 
 

 
M 
SD 

 
.540 
.267 

 
.527 
.259 

 
.534 
.192 

 
.547 
.174 

 
.527 
.143 

 
.559 
.120 

 
Contaminated normal— 
mixture of N(0,1) and N(0,10). 
 

 
M 
SD 

 
.554 
.260 

 
.532 
.255 

 
.549 
.193 

 
.554 
.170 

 
.537 
.151 

 
.565 
.116 

 
Mixture of normal and 
rectangular 
 

 
M 
SD 

 
.473 
.265 

 
.432 
.279 

 
.488 
.175 

 
.451 
.187 

 
.494 
.121 

 
.461 
.129 

 

 
The data in Table 2 indicates that the outcome of significance tests of 

zero correlation for the various non-normal densities is similar to results 
found in studies of Type I error probabilities in t-tests and F-tests of 
difference in location. The significance levels of the t tests on scores are 
slightly disrupted, except for the case of the mixture of the normal and 
rectangular distribution, while those of the tests on ranks are not affected to 
the same extent. Previous studies have shown that the significance levels of 
tests of location on rectangular distributions, are not distorted.  

 On the other hand, the significance levels of the tests of the 
hypothesis ρ = .50, based on the r to Z transformation, are severely distorted 
for these heavy-tailed distributions. In many cases, the tests on ranks are 
distorted to a greater extent than the tests on scores. In the case of the 
lognormal and contaminated normal distributions, inflation of the Type I 
error probability is extreme, and it becomes more severe as sample size 
increases. All evidence appears to indicate that the r to Z transformation is 
not robust to non-normality. 

 Further insight into how non-normality influences correlation is 
obtained from Figures 6 and 7, which give relative frequency distributions 
of values of r and Z for population correlations of .25 and .85. The samples 
represented in Figure 6 were obtained from a normal distribution, and those 
in Figure 7 were obtained from a contaminated normal distribution, as 
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defined previously. Table 5 gives the means and standard deviations of the 
sample distributions. Under violation of bivariate normality, it appears that 
the form of the sample distributions of r and Z are not appreciably altered, 
but that the means of the distributions are changed enough to substantially 
modify the probability of Type I and Type II errors.  

 

Table 4. Type I error probabilities of tests of the hypotheses ρρρρ = 0 and ρρρρ 
= .50 under violation of bivariate normality. 
  
 
 

 n = 10 
 

n = 20 n = 40 

Distribution α t-
scores 

t-
ranks 

rS t-
scores 

t-
ranks 

rS t-
scores 

t-
ranks 

rS 

 
Mixture of normal 
and exponential 
(ex-Gaussian) 
 

 
.01 
.05 
.10 

 
.014 
.050 
.095 

 
.012 
.053 
.105 

 
.007 
.048 
.088 

 
.014 
.049 
.094 

 
.011 
.050 
.101 

 
.010 
.049 
.099 

 
.012 
.049 
.096 

 
.009 
.051 
.099 

 
.009 
.050 
.099 

 
Mixture of normal 
and lognormal 
 

 
.01 
.05 
.10 

 

 
.024 
.060 
.098 

 
.013 
.056 
.108 

 
.008 
.050 
.091 

 
.024 
.055 
.088 

 
.011 
.050 
.101 

 
.010 
.049 
.099 

 
.021 
.050 
.082 

 
.010 
.051 
.101 

 
.009 
.050 
.101 

 
Contaminated 
normal—mixture of 
N(0,1) and N(0,10) 
 

 
.01 
.05 
.10 

 
.012 
.052 
.101 

 
.013 
.054 
.105 

 
.007 
.048 
.088 

 
.013 
.051 
.098 

 
.011 
.051 
.100 

 
.010 
.049 
.099 

 
.014 
.049 
.094 

 
.011 
.051 
.101 

 
.010 
.050 
.101 

 
Mixture of normal 
and rectangular 
 

 
.01 
.05 
.10 

 

 
.011 
.052 
.101 

 
.013 
.054 
.105 

 
.007 
.049 
.088 

 
.011 
.050 
.102 

 
.011 
.051 
.100 

 
.010 
.049 
.099 

 
.011 
.050 
.099 

 
.011 
.050 
.098 

 
.010 
.049 
.098 

 
  n = 10 

 
n = 20  n = 40 

Distribution α Z-scores Z-ranks Z-scores Z-ranks Z-scores Z-ranks 
 
Mixture of normal and 
exponential (ex- 
Gaussian) 
 

 
.01 
.05 
.10 

 
.027 
.085 
.144 

 

 
.029 
.081 
.140 

 
.028 
.089 
.151 

 
.035 
.098 
.159 

 
.026 
.089 
.153 

 
.041 
.114 
.180 

 
Mixture of normal and 
lognormal 
 

 
.01 
.05 
.10 

 

 
.089 
.192 
.273 

 
.085 
.180 
.259 

 
.111 
.224 
.307 

 
.144 
.268 
.357 

 
.131 
.251 
.334 

 
.245 
.409 
.511 

 
Contaminated 
normal—mixture of 
N(0,1) and N(0,10) 
 

 
.01 
.05 
.10 

 
.070 
.188 
.285 

 
.059 
.147 
.230 

 
.141 
.297 
.400 

 

 
.124 
.265 
.364 

 
.218 
.370 
.459 

 
.263 
.457 
.565 

 
Mixture of normal and 
rectangular 
 

 
.01 
.05 
.10 

 

 
.011 
.045 
.089 

 
.015 
.052 
.100 

 
.009 
.043 
.088 

 
.012 
.054 
.104 

 
.009 
.044 
.090 

 
.014 
.062 
.118 
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Figure 6. Relative frequency distributions of values of r and Z for 
scores and ranks and for population correlations of .25 and .85 (normal 
distribution). 
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Figure 7. Relative frequency distributions of values of r and Z for 
scores and ranks and for population correlations of .25 and .85 
(contaminated normal distribution). 
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Table 5. Means and standard deviations of sample values (r) and 
transformed values (Z) of correlation coefficients obtained from normal 
and contaminated-normal populations (ρρρρ = .25 and ρρρρ = .85). 
 

Scores 

 
 

 ρ = .25 
 

ρ = .85 

Distribution  r Z r Z 
 

Mean 
 

.238 
 

.272 
 

.835 
 

1.311 
 
 

Normal 
 

SD .317 .376 .116 
 

   .367 

 
 

Mean 

 
 

.406 

 
 

.489 

 
 

.878 

 
 

1.628 

 
 

Contaminated 
Normal 

 
SD 

 
.311 .410 .159    .530 

 

Ranks 

  ρ = .25 
 

ρ = .85 

Distribution  r Z r Z 
 

Mean 
 

.219 
 

.252 
 

.786 
 

1.182 
 
 

Normal 
 

SD 
 

.320 .381 .148    .418 

 
 

Mean 

 
 

.416 

 
 

.500 

 
 

.862 

 
 

1.503 

 
 

Contaminated 
Normal 

 
SD 

 
.287 .389 .131    .530 

 

Some Practical Implications for Psychological Measurement 
These findings have some practical implications for research in 

psychology, education, and other fields. First, if one is troubled by the slight 
bias in the correlation coefficient for normal populations, it is clear that it 
can be largely eliminated by the Fisher approximate unbiased estimator or 
by the Olkin and Pratt estimator. It is a simple matter to employ one of these 
formulas routinely in calculating correlation coefficients. 

 For many purposes in educational and psychological research, the 
bias revealed in the present study may not be large enough to cause concern. 
If one’s research involves simply establishing the existence of correlation, 
the bias probably is not excessive. However, if one is concerned with the 
accuracy of specific degrees of non-zero correlation, especially higher 
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degrees of correlation, then correcting for the bias may be desirable. In the 
past, investigators in some areas have paid close attention to precise 
numerical values of correlation coefficients, and in these circumstances bias 
of  −.03 or −.04 could be misleading. This is especially true if sample sizes 
are small and at the same time the correlation is high. 

 If sample sizes are large, the bias is relatively small. For example, in 
studies of test reliability, where reliability coefficients of .80 or higher are 
common, it is likely that bias is negligible, because the estimates are usually 
based on thousands of examinees. The same is true for validity coefficients 
in large samples. On the other hand, if the validity or reliability of a 
dependent variable in an experimental study with a small number of 
subjects is found to be .60, it could be .63 or .64 in a larger population. 
Even in cases where the bias is smaller, however, nothing is lost by using an 
unbiased estimator. It certainly is possible to incorporate these estimators 
without undue difficulty into computer programs, and there is no reason 
why statistical software could not routinely obtain the more accurate 
estimates. 

 Another implication of the present findings is that, in practice, the r 
to Z transformation can be expected to be sensitive to violation of bivariate 
normality. This fact is relevant to hypotheses testing, finding confidence 
intervals, and averaging correlation coefficients. In these applications, 
neither large samples nor conversion to ranks affords protection. For 
example, significance tests of hypotheses about validity and reliability 
coefficients or differences between them require an assumption of bivariate 
normality despite large sample sizes.  

 Researchers certainly should be aware of this assumption before 
using the r to Z transformation in data analysis. If it is not tenable, estimates 
of non-zero values of correlation coefficients can be extremely biased, and 
significance tests can be invalid.  These consequences appear to be more 
severe than ones typically associated with non-normality in t and F tests of 
differences in location. 

 Spearman rank correlation frequently is used when research data 
initially is in the form of ranks, and numerical measures underlying the 
ranks are unavailable or meaningless. For such data, it is immaterial 
whether one uses the Pearson formula to calculate the correlation between 
the ranks, or the Spearman computational formula instead. On the other 
hand, if the initial data is numerical, but the assumption of bivariate 
normality is not satisfied, transformation to ranks is desirable in order to 
avoid distortion of significance tests because of the distributional properties 
of the scores. In this case, the correlation between the ranks is not 
necessarily the same as the correlation between the scores. It is still possible 
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to test the hypothesis of zero correlation, although the probabilities of Type 
I and Type II errors of the test on ranks are not necessarily the same as those 
of the test on scores. 

In this situation, unfortunately, there is no effective method for testing 
hypotheses about non-zero values of correlation, and further research on this 
problem is needed. Another topic for further research is suggested by Figure 
3. Note that the bias of the rank correlation asymptotically approaches a 
negative value, about −.02 when ρ is .30 and about .03 when is ρ is .60. 
These values of the bias could be calculated and tabulated more 
systematically for a range of correlations and used as correction factors in 
large-sample research, when n is large enough for the bias to be close to the 
asymptotic value. 
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