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Abstract

Motivation: Many studies have investigated the differential expression of microRNAs (miRNAs)

in disease states and between different treatments, tissues and developmental stages. Given a

list of perturbed miRNAs, it is common to predict the shared pathways on which they act.

The standard test for functional enrichment typically yields dozens of significantly enriched func-

tional categories, many of which appear frequently in the analysis of apparently unrelated diseases

and conditions.

Results: We show that the most commonly used functional enrichment test is inappropriate for the

analysis of sets of genes targeted by miRNAs. The hypergeometric distribution used by the stand-

ard method consistently results in significant P-values for functional enrichment for targets of ran-

domly selected miRNAs, reflecting an underlying bias in the predicted gene targets of miRNAs as a

whole. We developed an algorithm to measure enrichment using an empirical sampling approach,

and applied this in a reanalysis of the gene ontology classes of targets of miRNA lists from 44 pub-

lished studies. The vast majority of the miRNA target sets were not significantly enriched in any

functional category after correction for bias. We therefore argue against continued use of the stand-

ard functional enrichment method for miRNA targets.

Availability and implementation: A Python script implementing the empirical algorithm is freely

available at http://sgjlab.org/empirical-go/.

Contact: sam.griffiths-jones@manchester.ac.uk or janine.lamb@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MicroRNAs (miRNAs) down-regulate abundance and translation of

target mRNAs through complementary binding to target sites.

miRNAs play important roles in regulating gene expression in re-

sponse to stimuli and during development and their expression pat-

terns can be predictive of disease states (Leidinger et al., 2013;

Schratt et al., 2006; Xie et al., 2013). For this reason, a large number

of studies have investigated the expression of miRNAs in a wide

range of biological conditions. Microarray assays, qRT-PCR and

high-throughput sequencing have all been used to identify differen-

tially expressed miRNAs in disease states, between different tissues

and during development (Davidson et al., 2010; Liang et al., 2013;

Wu et al., 2012a). Unfortunately, the interpretation of miRNA

differential expression is not straightforward. The roles of individual

miRNAs in cellular pathways are still poorly understood. Each

miRNA has the potential to target hundreds of different genes,

meaning that perturbation of a single miRNA may affect many bio-

logical functions (Friedman and Farh, 2009). This motivates a broad

view: given a list of differentially expressed miRNAs, we must look

for the functions or pathways on which they converge.

Here, we examine the most common method of miRNA func-

tional enrichment analysis, used in hundreds of published studies.

This method consists of three steps: finding which genes are targeted

by selected miRNAs, annotating target genes for their participation in

pathways and processes, and statistical testing for over-representation

of a biological process in the set of targeted genes (Gusev et al., 2007).
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For the first step, computational target prediction is usually necessary

because experimental datasets covering miRNA–mRNA interactions

on a genome scale are currently lacking. For the second step, annota-

tion by gene ontology (GO) term membership or Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathways is common (Ashburner

et al., 2000; Kanehisa and Goto, 2000). For the final step, the hyper-

geometric distribution, or equivalently Fisher’s exact test, is used to

test for enrichment. The hypergeometric distribution describes the

situation where samples are picked uniformly at random from a finite

population which contains a labelled subset. In the context of func-

tional enrichment, it gives the probability of targeting k genes from a

labelled category when targeting a total of n genes from the genome.

We can then use this distribution to test the null hypothesis that genes

were targeted randomly versus the alternative that genes belonging to

a given annotation were preferentially targeted.

This approach, which we here refer to as the ‘standard method’

because of its preponderance, consistently produces a large number

of significantly enriched processes. However, these are often difficult

to interpret and full lists of significant terms are rarely provided in

published articles. Recurrence of GO terms between apparently un-

related diseases and conditions in the literature is very notable (Lu

et al., 2012). Most worryingly, even random and meaningless

miRNA lists produce significant functional enrichments using the

standard method (Ritchie et al., 2009).

In this study, we show that critical problems with the standard

method arise because of bias in the sets of genes that are predicted

to be targeted by miRNAs in general. This means that the assump-

tion of uniform sampling in the hypergeometric distribution is not

reasonable. We correct for this bias by bringing the statistical test

back from the level of genes to the level of miRNAs and show that

most functions reported as significantly enriched in the literature do

not remain so after correction.

2 Methods

We developed an algorithm to find the empirical distribution of the

number of miRNA target genes within annotated functional catego-

ries. We predicted targets of all miRBase release 20 annotated ma-

ture miRNAs in the 30 UTRs of all Ensembl release 75 human and

mouse genes using miRanda (version 3.3a, free energy<�20 kcal/

mol, score>155) (Enright et al., 2003). Annotated biological pro-

cess GO terms for all human and mouse genes were downloaded

from Ensembl (Ashburner et al., 2000; Kinsella et al., 2011).

Following the standard method, we defined the target genes for a

list of miRNAs as the union of genes predicted to be targeted by

each miRNA. We then calculated GO term overlap as the propor-

tion of target genes which were annotated as belonging to a given

GO term. Our empirical algorithm first counted the GO term over-

lap for targets of an input miRNA list. A set of miRNAs of the same

size as the input list was randomly sampled without replacement

from the set of all annotated miRNAs, with one million iterations.

An empirical P-value for each GO term was calculated using the

proportion of simulations that produced an equal or greater GO

term overlap. We also developed a modified multi-hit version of this

algorithm that did not use the simple union of target genes, but in-

stead gave each gene a score given by the sum of the number of pre-

dicted target binding sites for all input miRNAs. GO term overlap

was then defined as the score for genes annotated with a given GO

term divided by total score for input miRNAs. We repeated all ana-

lyses using KEGG pathways [accessed through the KEGG.db

Bioconductor package, which archives KEGG data from March 15,

2011 (Kanehisa and Goto, 2000)] in place of GO terms. We also

recalculated target predictions based on the intersection of genes re-

turned by three alternative target prediction algorithms: PITA pre-

dictions from the PITA Targets Catalog version 6 (August 2008)

based on mm9 and hg18 for mouse and human, respectively, with

zero flank and all sites included (Kertesz et al., 2007); DIANA-

microT-v4 predictions, which use miRBase annotated miRNAs and

Ensembl 30 UTR sequences (Reczko et al., 2012); and canonical seed

matches between miRBase miRNAs and Ensembl 30 UTR sequences

as in (Bartel, 2009). We used miRBase alias data to match the names

of miRNAs in downloaded prediction sets to their current annota-

tions (Kozomara and Griffiths-Jones, 2011) and Ensembl gene syno-

nyms to match gene names in the target sets to Ensembl GO

classifications.

We investigated the effects of filtering miRNA target predictions

for experimentally supported target sites, similar to the approach of

miRFunction (Li et al., 2014). Thirty-six human and five mouse

AGO pulldown CLIP-seq datasets were downloaded from starBase

(Li et al., 2014). Target predictions from miRanda were mapped to

genomic loci and filtered to include only those supported by at least

one experimental dataset.

We also investigated the use of the standard method in studies of

plant miRNAs. We predicted TIGR genome cDNA (OSA1R5) tar-

gets of miRBase-annotated rice miRNAs using psRNATarget with

default parameters (Dai and Zhao, 2011). We matched the TIGR

loci to GO annotations in tables downloaded from the agriGO data-

base (Du et al., 2010).

We performed a literature survey to identify studies that fol-

lowed the standard method. We used the search functions provided

by Nature Publishing Group and Public Library of Science, as well

as Google Scholar, with the search terms ‘gene ontology’ and

‘microRNA’ for mouse and human and ‘oryza’ and ‘microRNA’ for

rice. Each article was manually checked to confirm that the standard

method was followed. Lists of miRNAs reported to be differentially

expressed (or otherwise flagged) were manually compiled from the

retrieved articles. Where multiple lists of miRNAs were assessed in

the same manuscript, we arbitrarily chose one list for testing. We de-

fine results as significant by default where a<0.05. In the case of

multiple testing, we perform Benjamini–Hochberg adjustment and

report significant items passing the threshold for false discovery

rate<0.05 (Benjamini and Hochberg, 1995).

3 Results

3.1 Assessing the appropriateness of the

hypergeometric distribution
We used our algorithm to investigate whether the null hypothesis

used by the standard method was appropriate by comparing the

hypergeometric distribution with an empirical distribution for the

number of predicted target genes belonging to a GO term for ran-

domly sampled miRNAs. As an illustration, we use the GO term

‘ion transport’ (GO:0006811), which is often reported as signifi-

cantly enriched in the literature (Liu et al., 2010; Sokolov et al.,

2012; Yunta et al., 2012). We predicted the targets of an example

set of 39 miRNAs that were reported as differentially expressed in

one study (Sokolov et al., 2012). These miRNAs were predicted to

target 10 057 genes out of 15 733 genes with at least one assigned

biological process GO term, of which 327 are annotated for ion

transport. These parameters were chosen to mirror the methods

used by the popular tool DAVID (Huang et al., 2009). The expected

distribution of the number of target genes assigned to the
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‘ion transport’ GO term according to the hypergeometric distribu-

tion is shown in Figure 1, alongside the distribution of the number

of target genes of 1 million randomly chosen sets of 39 miRNAs.

The data clearly show that the hypergeometric distribution does not

adequately model the empirical background distribution under these

conditions.

Figure 1 immediately suggests an explanation for the excess of

significant GO terms under the standard method. A typical miRNA

target gene set, with GO membership near the mean of the empirical

distribution, will produce significant P-values for GO term enrich-

ment using the standard method. Indeed, the mean number of tar-

gets involved in ion transport for 39 random miRNAs (250 genes)

gave a P-value of 5.97�10�7 when tested using the hypergeometric

distribution. We compared the hypergeometric with the empirical

distributions for all biological process GO terms. For each GO term,

we constructed the hypergeometric distribution using the same ex-

ample of 39 miRNAs targeting 10 057 genes as predicted by

miRanda, again mirroring a common DAVID analysis (Enright

et al., 2003; Huang et al., 2009). For each GO term, we then gener-

ated an empirical distribution for the number of member genes tar-

geted by 39 randomly selected miRNAs. Supplementary Table S1

lists the one-sided P-value on the hypergeometric distribution of the

mean of the empirical distribution for each GO term. Smaller P-val-

ues represent terms that are more likely to be erroneously reported

as significantly enriched using the standard method. Among the

terms yielding the smallest P-values (Table 1), several are notably

often reported as enriched in the literature, such as ‘regulation of

transcription, DNA-dependent’ (GO:0006355) (Kraemer et al.,

2013; Mizuguchi et al., 2011; Munch et al., 2013; Ziats and

Rennert, 2013).

Other GO terms suffered from an opposite bias, making detec-

tion of a significant enrichment almost impossible under the stand-

ard method. The most extreme of these with more than five

members were ‘defense response to bacterium’, ‘detection of chem-

ical stimulus involved in sensory perception of smell’ and ‘G-protein

coupled receptor signaling pathway’, with P-values close to 1. These

terms were conspicuously absent from published lists of enriched

processes in disease. These results imply that using the hypergeomet-

ric distribution to model miRNA target gene GO term membership

is inappropriate and is liable to produce spurious results.

3.2 Re-analysis of published miRNA lists
We investigated the prevalence of the standard method with a non-

exhaustive manual search of journal articles. We identified 40 pub-

lished studies where the standard method was applied to investigate

functional enrichment of targets of sets of animal miRNAs

(Supplementary Table S2). Among these, a wide range of algorithms

and their combinations were used for target prediction. Six different

organisms were represented in studies ranging from sea cucumber

aestivation to pseudorabies virus in pig cell lines (Chen et al., 2013a;

Wu et al., 2012b). A large number of different web servers provided

tools for functional annotation and statistical testing of enrichment.

The types of functional categories tested included biological process

GO terms with various filters and KEGG pathways (Huang et al.,

2009). The list included recent and high-impact publications (e.g.

Soh et al., 2013). Although functional enrichment analysis was gen-

erally not the central focus of these studies, it was mentioned in 26

out of 40 abstracts. Only a small subset of the published studies we

surveyed provided a full list of significantly enriched functional cate-

gories. Several studies, however, reported in the main manuscript on

a few significant GO terms appealing for interpretation (e.g. Ma

et al., 2013). Readers are likely to be unaware that hundreds of

other GO terms are equally enriched. Although not fundamental to

the standard method, this problem is exacerbated by its unfailing

production of large numbers of significantly enriched terms.

We were able to collect lists of differentially expressed (or otherwise

flagged) miRNAs from 22 studies in humans and 7 studies in mice for

analysis with our empirical algorithm (Supplementary Table S3).

Where a study performed enrichment analysis for multiple miRNA

lists, we arbitrarily selected one list per published study. In order to

Fig. 1. Expected and empirical number of predicted targets of randomly se-

lected microRNAs. For an example 39 miRNAs, we calculate the hypergeo-

metric distribution (blue) for the number of expected targets in the GO term

‘ion transport’ (GO:0006811). The empirical distribution (red) represents the

predicted targets of random samples of 39 miRNAs. The probability for each

5-gene bin is given according to both distributions

Table 1. GO terms with the largest difference between hypergeo-

metric and empirical background distributions

GO term Hypergeometric

P-value of empir-

ical mean

GO:0006351�transcription, DNA-templated 1.21� 10�28

GO:0006355�regulation of transcription, DNA-

dependent

6.99� 10�25

GO:0007165�signal transduction 4.63� 10�18

GO:0006468�protein phosphorylation 4.34� 10�17

GO:0055085�transmembrane transport 1.39� 10�13

GO:0015031�protein transport 1.95� 10�13

GO:0045944�positive regulation of transcription

from RNA polymerase II promoter

3.44� 10�12

GO:0045893�positive regulation of transcription,

DNA-dependent

4.80� 10�12

GO:0048011�neurotrophin TRK receptor signal-

ing pathway

7.67� 10�12

GO:0007264�small GTPase mediated signal

transduction

1.22� 10�11

Using 39 miRNAs targeting 10 057 genes, we calculated the P-value on the

hypergeometric distribution for the rounded mean of the empirical distribu-

tion for each GO term. The 10 processes with the most extreme bias are

shown.
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mirror the approaches in published studies as closely as possible, where

each miRNA was analysed separately, we also applied the empirical al-

gorithm in a single test of only one miRNA. We converted miRNA

names to their current annotations, removing 10 miRNAs whose

miRBase entries had been deleted since publication (Kozomara and

Griffiths-Jones, 2011). For each input miRNA list, we ran our algo-

rithm with miRanda predictions (Enright et al., 2003), biological pro-

cess GO term annotations (Ashburner et al., 2000; Huang et al., 2009)

and one million iterations of randomly selected miRNAs, generating

empirical distributions of GO term target gene overlap for the specified

numbers of input miRNAs and outputting P-values for the enrichment

of GO terms.

After Benjamini–Hochberg correction for multiple testing

(Benjamini and Hochberg, 1995), we observed an enrichment of any

GO term in only 5 out of 22 human and 0 out of 7 mouse studies

(Table 2). In contrast, all of the published studies reported multiple

enriched functional categories. Although our aim is to provide a

controlled comparison of standard and empirical methods, rather

than to attempt to replicate the exact prediction and annotation

methods of the previous studies, these results show that most func-

tional categories reported to be enriched in the literature would not

remain so after correction for bias.

We also investigated the use of the standard method in plant stud-

ies, using miRNA lists from four published rice articles as a test set

(Supplementary Table S4). Following a typical analysis procedure, we

ran our algorithm with these miRNA input lists, target prediction ob-

tained using psRNATarget and GO annotations obtained from

agriGO (Dai and Zhao, 2011; Du et al., 2010). We found significant

enrichments in two out of the four input lists (Table 3), suggesting a

similar general pattern to that in humans and mice.

3.3 Robustness to prediction and annotation methods
Our results are robust to changes within the general framework of

the standard method. Subsets of GO are often used in the literature.

We therefore repeated all analyses using the filtered GO term anno-

tation set BP_FAT downloaded from the DAVID Knowledgebase

(Huang et al., 2009), with very similar results. As an alternative to

biological process GO terms, we also used KEGG pathway annota-

tions. Running the empirical algorithm with the published miRNA

lists, 8 out of 29 miRNA lists produced at least one significantly en-

riched KEGG pathway. It is common to predict targets of miRNAs

using several programs and to use the intersection set of their out-

puts. As an alternative to prediction by miRanda (Enright et al.,

2003) alone, we used the intersection set of target predictions by

PITA (Kertesz et al., 2007), DIANA-microT-v4 (Reczko et al.,

2012) and seed matching using canonical seeds (Bartel, 2009). These

downloaded prediction sets did not include all currently annotated

miRNAs; in particular 134 of the miRNAs from input lists were

missing and so had to be excluded. Using this prediction method, 3

of the 29 miRNA lists from published studies produced significantly

enriched biological process GO terms. We also filtered target predic-

tion sets to include only miRanda target loci supported by CLIP-seq

data (see Section 2), similar to the miRFunction approach (Li et al.,

2014). This had the effect of drastically reducing the number of pre-

dicted targets per miRNA. A similar pattern was observed, with no

significant enrichments for 18 out of 22 human and 7 out of 7

mouse miRNA lists (Supplementary Table S2). The lack of enrich-

ment is, therefore, robust to the number of predicted targets.

We tested whether our algorithm was able to detect functional

enrichment when the input miRNAs were artificially selected for

their targeting of a given process. We manually selected as an input

set the eight miRNAs with the most predicted targets in the process

‘regulation of axonogenesis’ (GO:0050770). As expected, the algo-

rithm found that the same GO term was significantly enriched, as

well as other related and unrelated terms (Supplementary Table S5).

Table 2. Results of empirical algorithm applied to published

miRNA lists

References Species MicroRNA

list

extracted

Significa-

nt GO

terms

with basic

empirical

algorithm

Significant

GO terms

with

multi-hit

empirical

algorithm

Arndt et al. (2009) Human 1 0 0

Chartoumpekis et al.

(2012)

Mouse 10 0 17

Chen et al. (2010) Human 176 6017 1193

Chen et al. (2013b) Human 15 0 6

Cheng et al. (2009) Mouse 1 0 0

Collino et al. (2010) Human 11 0 0

Davidson et al. (2010) Human 1 0 0

Flavin et al. (2009) Human 2 0 0

He et al. (2013) Mouse 8 0 0

Hunter et al. (2008) Human 1 0 0

Jiang et al. (2008) Human 18 0 0

Keck-Wherley et al.

(2011)

Mouse 12 0 0

Kraemer et al. (2013) Human 9 0 0

Liang et al. (2013) Mouse 37 0 0

Liu et al. (2010) Mouse 27 0 1

Mizuguchi et al.

(2011)

Human 3 0 0

Munch et al. (2013) Human 10 0 22

Presneau and

Eskandarpour

(2013)

Human 5 0 0

Raponi et al. (2009) Human 15 0 239

Romero-Cordoba

et al. (2012)

Human 130 5573 206

Sanchez-Diaz et al.

(2013)

Human 26 2502 28

Schonrock et al.

(2010)

Mouse 1 0 0

Soh et al., (2013) Human 1 0 0

Sokolov et al. (2012) Human 39 0 337

Tanic and Andrés

(2013)

Human 46 3353 317

Wu et al. (2011) Human 25 2480 138

Yan et al. (2012) Human 1 0 0

Zhang et al. (2013) Human 1 0 0

Ziats and Rennert

(2013)

Human 25 0 0

Table 3. Results of empirical algorithm applied to published

miRNA lists in rice studies

References Species MicroRNA

list

extracted

Significant GO

terms with basic

empirical

algorithm

Abrouk et al. (2012) Rice 69 34

Peng et al. (2011) Rice 90 0

Wei et al. (2011) Rice 68 0

Yi et al. (2013) Rice 142 49
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3.4 Testing for multi-hit convergence on processes
The standard method in its simplest form counts each gene once,

whether it is targeted by one or many differentially expressed

miRNAs, losing key information on functional convergence (Gusev,

2008; Lee et al., 2012). Filters on target gene sets or on output GO

terms have been proposed previously to resolve this problem

(Gusev, 2008; Hu et al., 2014). These filters require the proportion

of miRNAs targeting a gene and the proportion of miRNAs with at

least one target in a GO term to pass defined thresholds. Another al-

ternative is to apply the statistical test on miRNA–mRNA pair con-

nections (Lee et al., 2012). We therefore modified our algorithm to

address this issue while maintaining our simple hypothesis testing

approach and the principled comparison with the empirical distribu-

tion. The set of target genes for an input miRNA list was previously

defined as the union of predicted target genes. In our modified algo-

rithm, each gene is assigned a score for strength of interaction with

miRNAs based on the total number of predicted binding sites,

including multiple sites for the same miRNA. The score for a GO

term is then the sum of gene scores for its members, divided by the

total number of binding sites for the miRNAs. As above, we run one

million iterations with randomly sampled miRNAs and compare the

GO term scores for differentially expressed miRNAs with this em-

pirical distribution.

Results from our modified algorithm applied to previously iden-

tified miRNA lists are shown in Table 2. Significant enrichments

were found for all the input lists that had positive results for the ori-

ginal basic algorithm, albeit with more modest numbers of signifi-

cant GO terms. Enrichments were also detected from six lists where

previously they were not found.

4 Discussion

Our comparison of the hypergeometric and empirical distributions

showed that certain functional categories are preferentially targeted

by miRNAs, regardless of whether those miRNAs are differentially

expressed in a biological state or not. It is not helpful to report a GO

term as enriched for targets of differentially expressed miRNAs if an

equally strong enrichment would be obtained for randomly picked

miRNAs. This justifies an empirical sampling approach, which

measures enrichment relative to other miRNAs, in comparison to

the standard method, which does not take into account the back-

ground level of targeting of a GO term. There are several possible

explanations for the phenomenon of preferential targeting by

miRNAs, including bias in target prediction algorithms, similarities

among seed sequences, correlations between genes that are regulated

together and genuine preference for control of certain biological

processes by different mechanisms. One clear source of bias is aver-

age 30 UTR length of genes annotated to specific GO terms. When

we use the P-value of the mean of the empirical distribution on the

hypergeometric distribution (Table 1) as a measure for bias of a GO

term, we observe a strong negative correlation with average 30 UTR

length of genes assigned to that GO term (Pearson’s r¼�0.36;

P¼5.3�10�287). We also note that many GO terms were invari-

ably returned together as enriched. This may reflect underlying cor-

relations between targeting of processes as well as the hierarchical

structure of the GO.

The simplest use of functional enrichment tests examines a set of

genes with a common characteristic—for example, a set of differen-

tially expressed genes, or a set of genes with particular genomic

properties. The test described here is subtly different: a set of

miRNAs is defined by differential expression and that set is one step

removed (by miRNA target prediction) from the set of genes whose

functional enrichment is tested. The bias in the underlying expected

distribution of functional categories comes from the process of link-

ing miRNAs with their target genes. While we have examined only a

specific use of the functional enrichment test, similar biases

may affect other genomic enrichment tests (Slowikowski et al.,

2014). For example, ChIP-seq identification of transcription factor-

binding sites followed by functional enrichment of the target gene

set is analogous to the analyses described here. Further investigation

is therefore required to determine the appropriateness of the hyper-

geometric distribution for other types of functional enrichment

studies.

In our literature survey, we identified 44 journal articles that

used the standard method. However, our list was not exhaustive

and excluded studies with relatively minor deviations from the

standard method, such as those that implemented more complex fil-

ters for selection of target genes (Cho et al., 2013) and those that

performed tests based on combined targeting by miRNAs (Lee et al.,

2012). Altogether, we estimate that hundreds of published articles

are likely to be affected by the bias described here. In the application

of the empirical algorithm to miRNA lists from these studies, we do

not attempt to directly replicate methods used and instead show a

pattern in results that strongly suggests that most reported enrich-

ments would not be found with correction for bias. We also do not

directly compare the significant enrichments output by our algo-

rithm with those reported, as the specific types of functional catego-

ries assayed, such as GO term collections assembled by DAVID

(Huang et al., 2009), vary greatly and full lists of significant terms

are rarely published.

Our results do not imply that differentially expressed miRNAs

do not converge on functions of interest. It is notable that the num-

ber of significantly enriched GO terms increased with the number of

miRNAs input to our algorithm. This may be because noise domin-

ates for smaller lists, whereas a larger number of input miRNAs pro-

vides more signal of convergence on a process. While modest

enrichment of a function for a single miRNA is undetectable, the

combination of many small enrichments for a larger collection of

miRNAs passes significance thresholds. Five of the largest input

miRNA lists (Chen et al., 2010; Romero-Cordoba et al., 2012;

Sanchez-Diaz et al., 2013; Tanic and Andrés, 2013; Wu et al., 2011)

had extremely convergent miRNA target sets (for example (Chen

et al., 2010) had a predicted target set significantly smaller than ex-

pected [P<10�5]). Convergent target sets mean that any GO term

hit by chance will contain a higher proportion of the target set, caus-

ing more significant GO terms to be returned. There have been other

proposals to try to harness the convergence of miRNAs and to im-

prove enrichment analysis. The miRSystem tool gives a P-value

based on the tendency for the standard method to consistently find

the same significant GO terms (Lu et al., 2012). By comparing the

order of enrichment for a new sample with the order for random

miRNAs, outstanding changes can be identified. Although use of a

pre-computed distribution limits the flexibility of miRSystem, the

approach escapes the problem of bias reported here (Lu et al.,

2012). In general, however, there remains an unfulfilled need for

more powerful and accurate bioinformatic tools to link miRNAs to

functions.

5 Conclusion

We have highlighted critical problems with the most common

general approach to functional enrichment analysis of miRNA
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target genes. We have shown that testing with the hypergeometric

distribution sampling from all GO annotated genes in the genome is

inappropriate. Our literature survey showed that a large number of

studies reported significant results that are unlikely to stand after

correction for the bias in the distribution of targets of randomly

sampled miRNAs. We believe that our results provide a strong argu-

ment against continued use of the standard method.
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