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Abstract

Background: In epidemiological studies researchers use logistic regression as an analytical tool to
study the association of a binary outcome to a set of possible exposures.

Methods: Using a simulation study we illustrate how the analytically derived bias of odds ratios
modelling in logistic regression varies as a function of the sample size.

Results: Logistic regression overestimates odds ratios in studies with small to moderate samples
size. The small sample size induced bias is a systematic one, bias away from null. Regression
coefficient estimates shifts away from zero, odds ratios from one.

Conclusion: If several small studies are pooled without consideration of the bias introduced by
the inherent mathematical properties of the logistic regression model, researchers may be mislead
to erroneous interpretation of the results.

Background
Logistic regression models yields odds-ratio estimations
and allow adjustment for confounders. With a represent-
ative random sample from the targeted study population
we know that odds ratio reflects the incidence ratio
between the exposed and unexposed and we assume logis-
tic regression models odd ratio without bias.

Decreased validity of the effect measure in epidemiologi-
cal studies can be regarded as introduced in four hierarchi-
cal steps – confounding, misrepresentation,
misclassification and analytical alteration of the effect
measure [1].

Inherent mathematical properties in a model used may
bias an effect measure such as an odds ratio modelled by
logistic regression.

Logistic regression analyses have analytically attractive
proprieties. As the sample size increases, the distribution
function of the odds ratio converges to a normal distribu-
tion centered on the estimated effect. The log transformed
odds ratio, the estimated regression coefficients, con-
verges more rapidly to normal distribution [2]. However,
as we will show below, especially for small studies, logistic
models yields biased odds ratio.

Analytically derived bias causation can be traced back to
the method of finding the point estimator. Logistic regres-
sion operates with maximum likelihood estimators. Odds
ratios and beta coefficients both estimate the effect of an
exposure on the outcome, the later one being the natural
logarithm of the former one. For illustrative purposes,
here we use beta coefficients instead of odds ratios but
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conclusions drawn stands for odds ratios as for beta coef-
ficients.

The asymptotic bias of a maximum likelihood estimator,
bias(β), can be summarized as

where bi(β) depends on the estimated beta coefficient, β.
From this point of view bias is an additive term that
depends on sample size n (or some other measure of
information rate). Researchers aim to remove of the first
order term, O(n-1), namely the first term of the aforemen-
tioned equation.

Methods
With help of the following simulation study we demon-
strate how the sample size determines the size of bias in
logistic regression parameter estimates. Assume an illness
caused by one continuous exposure (e.g. BMI) and one
discrete exposure variable (smoking, yes or no). The tar-
geted population consists of 100000 individuals. The
population parameter value for the continuous and dis-
crete exposure variable is 2 and -0.9, respectively [see
Additional file 1 for further details]. From this targeted
population the researches randomly draw a sample with
size determined by circumstances and resource limita-
tions. Here we draw repeated samples with a priori deter-
mined sample sizes that varied from 100 to 1500 with
increment 5. For each sample size we draw 1000 samples
to assure a robust estimation. Then we fitted an ordinary
least squares regression model to estimate b1(β). We esti-
mated the relationship between n-1 and the logistic regres-
sion coefficients for the given sample size by fitting the
following equation based on the additive definition of the
bias

As the sample size increases, n → ∞, the bias converges to
zero (limn→∞ b1(β)n-1 = 0), thus the intercept corresponds
to unbiased estimate of the population parameter value.
As an external validating measure we compared the esti-
mated parametric curve with nonparametric estimation of
the regression function and calculated its derivatives with
kernel regression estimators and automatically adapted
local plug-in bandwidth function. The derivatives were
used as an empirical validation to our conclusions about
the convergence rate.

Results and discussion
Table 1 summarizes the estimated empirical bias in esti-
mated regression coefficients. With increasing sample size

the estimated coefficients asymptotically approaches the
population value (Figure 1). The fit is better for continu-
ous variables (R2 = 0.963) than for discrete one (R2 =
0.836). This translates to a greater variability in logistic
regression estimates for discrete variables. For both the
continuous and discrete exposure variables the asymp-
totic bias converges to zero as the sample size increase, but
the convergence intensity differs. Also the sampling den-
sity function is rather skewed in smaller samples and
approaches to a symmetric distribution with increasing
sample size (Figure. 2). Skewed sampling distribution
more frequently result in extreme value estimates, the pro-
portion of which decreases with increasing sample sizes
(Figure 3).

Thus we can conclude that studies employing logistic

regression as analytical tool to study the association of

exposure variables and the outcome overestimate the

effect in studies with small to moderate samples size. The

magnitude of this analytically derived bias depends on the

sample size and on the data structure. The small sample

size induced bias is a systematic one, bias away from null.

Regression coefficient estimates shifts away from zero,

odds ratios from one. This analytic bias is an acknowl-

edged statistical phenomenon [3-8], but partly is

unknown among practitioners and partly ignored. Justifi-

cation for the ignorance lies in the assumption that the

bias is much smaller than the estimate's standard error

[9]. Consistent estimators can be biased in finite samples

and corrective measures are required. However, caution is

advised as bias correction might inflate the variance and

mean squared error of an estimate [10]. Several corrective

measures have been suggested in the literature; like the

bias corrected estimate  or the jack-

knife [4]. Bootstrapping, especially the quadratic boot-

strap method, have proved to be a feasible corrective

measure [11]. Jewell proposes alternatives to the maxi-

mum likelihood estimator, but concludes that the slight
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Table 1: Empirical Estimation of the Magnitude of the 

Asymptotic Bias of Logistic Regression Coefficients.

Estimate SE t-value Pr(>|t|)

Continuous variable

Intercept 2.011 0.00072 2785.9 <0.0001
n-1 23.9 0.276 86.48 <0.0001

Discrete variable

Intercept -0.898 0.00065 -1369.34 <0.0001
n-1 -9.524 0.251 -37.92 <0.0001
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Coefficient estimates and its sample size dependent systematic bias in logistic regression estimatesFigure 1
Coefficient estimates and its sample size dependent systematic bias in logistic regression estimates. The devi-
ance from the true population value (2 respectively -0.9 in this case) represents the analytically induced bias in regression esti-
mates.

Sampling distribution of logistic regression coefficient estimates at different sample sizesFigure 2
Sampling distribution of logistic regression coefficient estimates at different sample sizes.
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gain in precision might not be worth the increased com-

plexity [5]. Bias-corrected maximum likelihood estimates

can be obtained with the help of supplementary weighted

regression [7] or by suitable modification of the score

function [3]. A proper and well designed sampling strat-

egy can improve the small sample performance of the esti-

mate [12].

Studies conducted on the same topic with varying sample
sizes will have varying effect estimates with more pro-
nounced estimates in small sample studies, or studies
with highly stratified data. In small or even in moderately
large sample sizes their distributions are highly skewed
and odds ratios are overestimated. Here we can't give strict
guidelines about how large an adequate sample should be
this is largely study specific. Long [13] states that it is risky
to use maximum likelihood estimates in samples under
100 while samples above 500 should be adequate. How-
ever this varies greatly with the data structure at the hand.
Studies with very common or extremely rare outcome
generally require larger samples. The number of exposure
variables and their characteristics strongly influences the
required sample size. Discrete exposures generally neces-
sitate larger sample sizes than continuous exposures.
Highly correlated exposures need larger samples as well.

Small study effect, the phenomenon of small studies
reporting larger effects than large studies, repeatedly has

been described [14]. A selective publication of "positive
studies" may partly explain this phenomenon. We have
however illustrated that odds ratios are overestimated in
small samples due to the inherent properties of logistic
regression models. This bias might in a single study not
have any relevance for the interpretation of the results
since it is much lower than the standard error of the esti-
mate. But if a number of small studies with systematically
overestimated effect sizes are pooled together without
consideration of this effect we may misinterpret evidence
in the literature for an effect when in the reality such does
not exist.

Conclusion
Studies with small to moderate samples size employing
logistic regression overestimate the effect measure. We
advice caution when small studies with systematically
overestimated effect sizes are pooled together.
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