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It is now widely recognized that un-
der relatively simple models of stochastic
change, phylogenetic inference methods can
actively mislead investigators attempting to
estimate evolutionary trees from molecu-
lar sequences and other data. One instance
of this phenomenon is “long-branch attrac-
tion,” in which some pairs of taxa have
a higher probability of sharing the same
character state because of parallel or con-
vergent changes along long branches than
do taxa that are more closely related be-
cause they have retained some same state
from a common ancestor. Methods that sys-
tematically underestimate the actual amount
of divergence may then become statisti-
cally inconsistent or “positively misleading”
(Felsenstein, 1978; Hendy and Penny, 1989),
estimating an incorrect tree with an increas-
ing certainty as the amount of character data
increases. Although usually associated with
parsimony methods, long-branch attraction
can also af�ict maximum likelihood and dis-
tance analyses when the assumed substitu-
tion models of these methods are strongly
violated (e.g., Huelsenbeck and Hillis,
1993; Huelsenbeck, 1995; Waddell, 1995:377–
404; Gaut and Lewis, 1995; Chang, 1996a;
Lockhart et al., 1996; Sullivan and Swofford,
1997). In this case, although the methods
are explicitly designed to deal with superim-
posed substitutions (multiple hits), the un-
derlying models predict fewer of these than
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actually occur and thus do not go far enough
in correcting for the problem. Inconsistency
can also arise under parsimony, even when
all branches have the same length (Kim,
1996), although in this case there must still
be particular imbalances in the total lengths
of the paths from internal nodes to tips of the
tree; “long-path attraction” would describe
this phenomenon.

Long-branch attraction has been widely
used, and abused, in justifying choices of
methods and in explaining anomalous re-
sults. Critics of the relevance of long-branch
attraction and related artifacts have generally
taken two tacks. The �rst (e.g., Farris, 1983)
claims that the demonstration of long-branch
attraction requires simple and unrealistic
models of evolutionary change. As pointed
out by Kim (1996), this argument lacks force
because conditions that lead to inconsistency
are much more general and complex than
those outlined by Felsenstein (1978); further
relaxation of Felsenstein’s conditions simply
exacerbates the problem. The second line
of argument (e.g., Siddall and Kluge, 1997)
follows from the fact that “truth” is unknow-
able in science generally; because it is not
possible to be certain that the analysis of a
real data set has been compromised by long-
branch attraction, the ability of a method to
converge, in principle, to the correct solution
with increasing amounts of data is irrelevant.
In this view, “‘accuracy’ is rendered empty
as an empirical claim” (Siddall and Kluge,
1997:318). Proponents of model-based (or
statistical) methods that seek to avoid
inconsistency attributable to long-branch or
long-path artifacts have not been dissuaded
by this argument. They certainly appreciate
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526 SYSTEMATIC BIOLOGY VOL. 50

the elusiveness of “truth” but understand
that all methods are susceptible to failure
under certain conditions. Consequently,
these proponents seek methods and models
that will succeed under a wide range of
plausible conditions and that are less likely
to yield misleading results purely because of
artifacts. Historically, the different perspec-
tives have led to a schism between those who
would approach phylogenetics from a statis-
tical perspective and those who place strong
faith in one particular approach over all oth-
ers. In many areas of science, the statistical
modeling viewpoint tends to become more
predominant as a subject matures. However,
proponents of model-based methods in phy-
logenetics have not always helped their case
by making overly assertive and sometimes
misleading claims about the superiority of
these methods (see Sidow, 1994; Hillis et al.,
1994).

Against this backdrop of confusing and
often acrimonious debate, Siddall (1998) of-
fered a new challenge to the position that con-
siderations of long-branch attraction favor
model-based methods. Siddall’s position,
which seems reasonable at least on the sur-
face, can be summarized simply: Although
maximum likelihood and corrected-distance
methods outperform parsimony methods in
the so-called Felsenstein zone (four-taxon
tree with two long, but unrelated, termi-
nal branches and all other branches short),
parsimony is better able to infer the cor-
rect tree topology in what Siddall calls the
Farris zone, where the two long terminal
branches instead lead to sister taxa (or are
adjacent on an unrooted tree). Thus, if an
unrooted phylogeny contains two long (ter-
minal) branches plus three short branches,
and the long branches are expected to lead
to sister taxa about as often as they lead to
nonsister taxa, then one might argue that
there is no compelling reason for preferring
one method over another on the basis of
long-branch attraction. Waddell (1995) too
had earlier referred to the Farris zone, call-
ing it the “anti-Felsenstein” zone. Neither
of these designations seems entirely appro-
priate, and we will use the term “inverse-
Felsenstein zone” here. Siddall refers to the
poor performance of maximum likelihood in
the inverse-Felsenstein zone as “long-branch
repulsion,” a term used by Waddell (1995) for
the signi�cantly different problem of perfor-
mance in the inverse-Felsenstein zone when

the model is misspeci�ed (e.g., overcorrec-
tion for among-site rate variation). However,
we will use this term in Siddall’s context for
the present purposes.

We—and undoubtedly others—realized
long ago that when long-branch attraction fa-
vors the correct unrooted tree for four taxa
rather than one of the two incorrect trees,
parsimony would outperform maximum
likelihood in choosing a topology. Parsimony
“succeeds” in the inverse-Felsenstein zone
because it is a strongly biased method, the
direction of the bias favoring the correct
tree rather than an incorrect one, in con-
trast to the situation in the Felsenstein zone.
This point was obvious enough not to merit
publication on its own, although we have
mentioned it in various other contexts (e.g.,
Swofford et al., 1995; Waddell, 1995). How-
ever, the portrayal by Siddall (1998) of this
observation as a victory for parsimony meth-
ods demands closer scrutiny. Properly in-
terpreted, the results of Siddall’s simula-
tions actually support the superiority of
model-based methods for dealing with long-
branch artifacts just as strongly as did those
from earlier studies that concentrated on the
Felsenstein zone. We emphasize at the out-
set, however, that the following analysis is
not intended as a general criticism of the par-
simony method. Rather, we show that results
such as those of Siddall (1998) should not be
taken as a vindication of parsimony with re-
spect to one particular problem—sensitivity
to long-branch-attraction artifacts.

PERFORMANCE OF MAXIMUM
LIKELIHOOD IN THE

INVERSE-FELSENSTEIN ZONE

Siddall’s (1998) simulation results are sum-
marized in Figure 1. Siddall’s branch-length
parameters were de�ned (Siddall, 1998:212)
as the “expected percentage change of the : : :
branches.” This refers to the expected per-
centage of sites for which the nucleotide at
one end of a branch (internode or edge) dif-
fers from the nucleotide at the other end. To
avoid ambiguity, we prefer to call this quan-
tity the expected percentage difference. Un-
der the model used for his simulations, this
value, expressed as a proportion p, is a lower
bound on the expected number of changes
(substitutions) per site including multiple
hits, which we will call d. The two measures
are related by using the familiar distance
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FIGURE 1. (a) Four-taxon model tree used by Siddall (1998). The probability of a difference in character states
between the nodes incident to branches labeled a and b is given by pa and pb , respectively. (b) Parameter-space
investigated by Siddall, showing relative performance of parsimony and likelihood (under the Jukes–Cantor model)
in various regions of this space.

equation of Jukes and Cantor (1969):
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Thus, the longest branch length simulated by
Siddall, p D 0.75, corresponds to an in�nitely
long branch, and the next longest, p D 0.675,
corresponds to a mean of about 1.7 substitu-
tions per site along the branch.

Close examination of Siddall’s (1998) sim-
ulation results immediately reveals some
anomalies. The �rst involves his claim
(1998:213 and his Fig. 4) that parsimony
achieved high accuracy when all branch
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lengths were p D 0.75, in which case each
sequence was fully randomized with re-
spect to all others. A method that could
successfully reconstruct the true topology
most of the time from completely random
data would be a powerful one indeed, but
parsimony is not this method. We repeated
these simulations using a research version
of PAUP¤4.0d65 written by the �rst au-
thor. (With the long, biologically implausible,
branches on trees simulated here, the likeli-
hood surface with respect to branch-length
parameters becomes extremely �at, so con-
vergence of these parameters to their opti-
mal values is very slow. To adjust for this,
the limit on the maximum number of passes
over the tree, MaxPass, was increased from
the default value of 20 to 1,000, thus min-
imizing the possibility that failure of like-
lihood to converge to an optimal solution
might affect accuracy rates.) Our results,
shown in Table 1, are in complete accord
with the prediction that given random data,
parsimony can do no better than picking
a tree at random, with a 1 in 3 chance of
choosing the correct tree. For long but �nite
branch lengths (p D 0.675), parsimony per-
forms somewhat better than a random tree
selection, but even for 1,000 sites parsimony
has a <50% chance of correctly inferring
the tree. Thus, Siddall’s statement that “with
1000 characters free to vary, [parsimony] re-
constructed the correct model tree more than
95% of the time across the whole parame-
ter” space is clearly untrue. Note that with
long but �nite branch lengths, maximum
likelihood slightly outperforms parsimony
(Table 1, p D 0:675 columns). This result is
also at variance with Siddall’s (1998:213)

TABLE 1. Performance of parsimony and likelihood (under the Jukes–Cantor model) when all �ve branch lengths
are equal and long.

Branch lengths

p D 0:75 p D 0:675
Number
of sites Method Prop. correcta Prop. correctb Prop. correcta Prop. correctb

100 Parsimony 0.403 0.3375 0.446 0.3770
Likelihood 0.477 0.3395 0.513 0.3808

500 Parsimony 0.352 0.3205 0.472 0.4368
Likelihood 0.426 0.3478 0.511 0.4453

1000 Parsimony 0.363 0.3405 0.487 0.4632
Likelihood 0.389 0.3258 0.530 0.4828

aProportion of correctly estimated trees in 1,000 simulation replicates using Siddall’s system for handling tied trees. When more
than one optimal tree is found, the result is considered fully correct if the true tree is contained in this set.

bProportion of correctly estimated trees in 1,000 simulation replicates using our preferred system for handling tied trees. One-half
credit is given if the true tree is one of two optimal trees, one-third credit is given if all three trees have equal scores.

statement that “likelihood methods also re-
covered the correct topology with somewhat
lower accuracies than parsimony when all
branch rates were equal but high.” Siddall
claimed that this “same phenomenon” was
evident in Huelsenbeck’s (1995) simulation
study but was “not noted.” However, re-
examination of Huelsenbeck’s Appendix 1,
where the relevant comparisons are pre-
sented (Huelsenbeck, 1995:37, rows 1 and 5),
reveals no qualitative difference in the rel-
ative performance of parsimony and like-
lihood in the upper right corner of the
graphs.

A second anomaly in Siddall’s (1998) pre-
sentation is the suggestion that in the inverse-
Felsenstein zone, the accuracy of likelihood
methods declines irreversibly with increas-
ing sequence length: “: : : as the number
of characters was increased to 500 or 1000,
the relative accuracies of all implementa-
tions of likelihood varied around 33% which
is equivalent to randomly picking one of
the three possible topologies for four taxa”
(Siddall, 1998:213). This result is in direct
opposition to theoretical predictions. Chang
(1996b) and Rogers (1997) have indepen-
dently proved that on binary trees with
�nite branch lengths, maximum likelihood
is guaranteed to be statistically consistent
when characters evolve according to a com-
mon mechanism under the assumptions of
the model. These proofs establish that when
assumptions of the model are met, as they are
in these simulations, maximum likelihood
methods should converge toward 100% ac-
curacy with increasing sequence length at
any point in the inverse-Felsenstein zone (or
any other zone), except for points involving
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in�nite-length branches. Our own simula-
tions are in accord with this prediction (as
was acknowledged in Siddall’s “note added
in proof”), although the success rate does
not monotonically approach perfect accu-
racy. For example, Figure 2 shows the re-
sults of our simulations for one fairly extreme
inverse-Felsenstein-zone point evaluated by
Siddall (1998). The accuracy of likelihood is
higher for 100 sites than for 500 or 1,000 sites,
so in the absence of relevant theory, one could
not fault an investigator for guessing that the
accuracy of the likelihood method might con-
tinue to decline with still longer sequences.
However, the relevant theory does exist, and
consistent with its prediction, increasing se-
quence length enables likelihood to eventu-
ally turn the corner and begin moving gradu-
ally toward 100% accuracy. In this example,
the phylogenetic problem is simply so dif-
�cult that it is unreasonable to expect any
relatively unbiased method to perform well
without an extremely large amount of data,
and the simulations con�rm this intuition.

FIGURE 2. Performance of parsimony and likelihood with increasing sequence length for one point in the inverse-
Felsenstein zone (pa D 0:675, pb D 0:15). Accuracy is measured as the proportion of correctly estimated trees in 1,000
simulation replicates. Parsimony achieves nearly perfect accuracy with only 50 sites. The accuracy of likelihood
with very short sequences is helped by a bias favoring the correct tree. As sequence length increases, the bias exerts
less in�uence and accuracy initially declines, but eventually moves toward the predicted 100% accuracy.

Rather than considering the possibility of
an error in his simulations, Siddall (1998)
adopts the position that Felsenstein’s (1978)
claim for the consistency of maximum likeli-
hood estimation of phylogenetic trees, based
on earlier work of Wald (1949), is not valid.
Siddall (1998:215), following Farris (1997,
1999) and possibly Yang (1996), asserts that

among Wald’s (1949) criteria for consistency were re-
quirements for independence and identical distribu-
tions, which sequenced nucleotides cannot have, and
that the likelihood function is everywhere continuous
and continuously differentiable with respect to the pa-
rameter of interest. Cladograms being discrete, it has
yet to be explained how that condition can be satis�ed
or indeed what it would mean in this case.

Neither part of this statement is true. In
principle, the sites of a nucleotide distri-
bution certainly can be independently and
identically distributed, whether or not they
actually are so distributed in any particu-
lar case. Siddall and Kluge’s (1997) earlier
assertion that nucleotide characters cannot
logically be independent is based on a
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fundamental misunderstanding of the na-
ture and application of the independence as-
sumption. In any case, correlation between
sites does not preclude consistency as long
as the strength of the correlation decays at
some very minor rate (Waddell et al., 1997).
With regard to the claim of a requirement of
continuity and differentiability of the likeli-
hood function, Wald (1949:595) states explic-
itly that his proof “make[s] no differentiabil-
ity assumptions (thus, not even the existence
of the likelihood equation is postulated).”
Furthermore, Chang (1996b) explicitly treats
tree topology as a parameter in his proof of
the consistency of maximum likelihood for
estimating trees, which he refers to as a “cus-
tomized variant” of Wald’s proof. For L(µ),
the likelihood function with respect to a pa-
rameter µ , the “likelihood equation” referred
to by Wald (1949) is

@L(µ)
@µ

D 0,

(Kendall and Stuart, 1979:39). If such an
equation exists, the optimal value of µ can
be solved for as one of the roots, either ex-
plicitly or by iterative procedures such as
Newton’s method. This simpli�es �nding
the optimal value of µ , but it is not a re-
quirement for the consistency of the maxi-
mum likelihood method. In the case of an
unordered, discrete-valued parameter such
as tree topology, this simply means we must
use some other method for searching the
parameter space (e.g., a tree-searching al-
gorithm such as exhaustive search, branch-
and-bound, or branch swapping) to attempt
to �nd the optimal “value” of this param-
eter. Although clumsier and more time-
consuming than conventional mathemati-
cal solution procedures, this requirement is
merely a practical problem for the method,
not a theoretical one.

Confusion over this latter point may arise
from Wald’s declaration of his Assumption
1— “F(x, µ) is either discrete for all µ or is
absolutely continuous for all µ .” As Wald ex-
plains in the preceding sentence, F(x, µ) is
the cumulative distribution function of the
random variable x, which in the case of se-
quence data is the nucleotide site pattern, a
discrete variable. So, in this case the distri-
bution of the random variable is discrete and
the second part of Assumption 1 does not

apply. However, even in the case of contin-
uous distribution functions, the required ab-
solute continuity is with regard to the ran-
dom variable x, not to the parameters µ: In
the continuous case, continuity is required so
that the probability density function f(x, µ ),
which is related to the distribution function
by the equation

f(x, µ ) D
@F(x, µ)

@x
,

will always exist for all values of x. In the
discrete case, as Wald notes, f (x, µ) is the
probability of x, not the probability density,
so the requirement of differentiability does
not arise at all.

BIAS IN MAXIMUM LIKELIHOOD
ESTIMATION

An estimator is biased if its expected
value differs from its true (population) value.
Even when maximum likelihood is consis-
tent, it is not guaranteed to be unbiased. A
well-known example is the maximum like-
lihood estimator of a population variance
when the data are drawn from a normal
distribution,

s2 D
X

(X X̄)2=n,

where n must be replaced by n 1 to obtain
an unbiased estimator. (In this case, X is
a continuous random variable, but see
Kuhner and Felsenstein (1994) for one
approach to quantifying bias on discrete tree
topologies.) When two terminal branches on
a four-taxon tree are extremely long and the
remaining three branches are short, max-
imum likelihood tree inference under the
Jukes–Cantor model is affected by bias. The
presence of bias is suggested by the results
shown in Figure 2, where the performance
of likelihood declines initially and then
improves as sequence length increases. In
this case, although estimates of underlying
parameters (branch lengths) are biased,
maximum likelihood manages to obtain a
correct tree topology more often than either
of the incorrect topologies at all sequence
lengths. This is not always the case. Figure 3
shows that in the Felsenstein zone where
the two long branches are not adjacent on
the tree, a bias in likelihood causes the
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FIGURE 3. Performance of parsimony and likelihood with increasing sequence length for the point in the
Felsenstein zone analogous to the one used for the inverse-Felsenstein zone simulations of Figure 2. Accuracy
is measured as the proportion of correctly estimated trees in 1,000 simulation replicates. At 50 or fewer sites, like-
lihood actually does slightly worse than picking a tree at random (because of bias), but with increasing sequence
length the bias decays and the correct tree is recovered with increasing certainty.

accuracy rate for likelihood for very short
sequences to be lower than randomly pick-
ing a tree. However, as the consistency proofs
guarantee, the bias is eventually overcome
and the accuracy of likelihood increases to-
ward 100% with longer sequences. The only
conditions under which Siddall’s conclusion
of equal preference for all three possible
trees is realized involve in�nitely long
branches (whereas the consistency proofs
require �nite branch lengths). Because
in�nite branch lengths are not reasonable
biologically, the performance of a method
under these conditions is not highly relevant
to the choice between methods, although one
would hope that a method would not return
a strong preference for any one four-taxon
tree when two of the four sequences are
completely random (see below).

BIAS IN PARSIMONY ANALYSIS

Despite the errors in Siddall’s simula-
tion results and their interpretation, his pri-
mary conclusion is correct—in the inverse-

Felsenstein zone of four-taxon branch-length
space, parsimony estimates a phylogeny cor-
rectly more often than does maximum like-
lihood. We think it informative to examine
the reason for the superior performance by
parsimony under these conditions.

For the simple model of evolution simu-
lated by Siddall, one can calculate the proba-
bility that an apparent synapomorphy unit-
ing the two long-branch taxa is in fact due to
homoplasy. (Here, we use the term synapo-
morphy in an unrooted sense; it will cor-
respond to its traditional meaning if any
one of the four terminal taxa is designated
as an outgroup.) In the extreme end of the
inverse-Felsenstein zone, an overwhelming
number of apparent synapomorphies link
the two long-branch taxa together. However,
the synapomorphies uniting the two long
branches can arise in many different ways.
Figure 4 illustrates a few of the different char-
acter histories that can lead to an apparent
synapomorphy linking the long-branch taxa.
For this example, the nucleotides observed at
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FIGURE 4. Different scenarios that will lead to an ap-
parent synapomorphy. (a) A “true” synapomorphy. (b,c)
Two scenarios in which an apparent synapomorphy is
actually the result of misinterpreted homoplasy.

the tips of the tree are C for the long-branch
taxa and A for the remaining two taxa. All
of the examples except that shown in Fig-
ure 4a involve more than one change. In all
cases, however, the parsimony method inter-
prets the history of the character as a sin-
gle change that occurred along the internal
branch of the tree. In other words, except for
the single example of Figure 4a, parsimony
misinterprets homoplasy as evidence of rela-
tionship (in this case, as a relationship unit-
ing the two long-branch taxa). This would
not be a problem for the parsimony method
if the probability is small that homoplasy
underlies the apparent synapomorphies. In
the inverse-Felsenstein zone, however, a vast
majority of the apparent synapomorphies
uniting the long-branch taxa are due to ho-
moplasy. Consider the point in the parame-
ter space analyzed in Figure 2, where the ex-

pected numbers of changes on long and short
branches are 1.727 and 0.167, respectively.
The probability that a single change will oc-
cur along the internal branch but no change
will occur along the remaining branches for
this tree is

Pr[True Synapomorphy]

D Pr[No change on long terminal branches]

£ Pr[No change on short terminal

branches]

£ Pr[single change on internal branch]

¼ (e 1:727)2(e 0:167)2(0:167e 0:167)

¼ 0:0032

On the other hand, the probability of observ-
ing a pattern of nucleotides in which the two
taxa on one side of the central branch share
the same nucleotide and that nucleotide is
different from a nucleotide shared by the two
taxa on the opposite side of the central branch
is 0.1172 (obtained as the sum of the single-
site likelihoods for all xxyy-type patterns,
e.g., AACC, AAGG, : : :, TTCC). Thus, about
(0:1172 0:0032)/0.1172, or 97%, of all ap-
parent synapomorphies will actually be mis-
interpreted homoplasies. At more extreme
points of the parameter space examined by
Siddall, the misinterpretation becomes even
more pronounced. For example, at the sec-
ond most extreme point simulated by Siddall
(pa D 0.675, pb D 0.0075), »99.8% of appar-
ent synapomorphies supporting the true tree
will in fact be misinterpreted homoplasies!

Figures 5 and 6 summarize the rel-
ative contribution of actual synapomor-
phies (those apparent synapomorphies that
arise from a single change along the in-
ternal branch of the tree) versus mis-
interpreted homoplasy for the full pa-
rameter space explored by Siddall (1998).
Figure 5a shows the expected proportion of
parsimony-informative sites for which the
two internal nodes have a different state
and each pair of adjacent taxa have the
same state (this includes both true synapo-
morphies as well as sites for which mul-
tiple substitutions have occurred along a
branch but parsimony correctly reconstructs
the ancestral states). The expected propor-
tion of parsimony-informative sites that are
apparent synapomorphies resulting from
homoplasy in the long-branch taxa is shown
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FIGURE 5. Contour plots showing the proportion of parsimony-informative sites for which (a) parsimony cor-
rectly reconstructs the states at the internal nodes, and this reconstruction suggests an apparent synapomorphy,
and (b) parsimony misinterprets parallel changes in the terminal branches as a synapomorphy. See Figure 1 for
de�nition of pa and pb .
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FIGURE 6. Contour plots showing the proportion of parsimony-informative sites that represent true synapomor-
phies (a single change along the internal branch) with no changes in the terminal branch. In the extreme regions
of the inverse-Felsenstein zone (upper left corner), nearly all of the parsimony-informative characters support the
true tree, but almost none of them will be true synapomorphies. See Figure 1 for de�nition of pa and pb .

in Figure 5b. Figure 6 illustrates the bottom
line; almost all of the good performance by
parsimony in the inverse-Felsenstein zone is
due to sites with more than one substitution.
Siddall (citing Farris, 1983) was apparently
aware that parsimony’s performance was be-
ing boosted by misinterpreted homoplasy,
as suggested by the following statement
(Siddall, 1998:216): “the reason [that parsi-
mony does well in the inverse-Felsenstein
zone] is that the number of synapomorphies
recovered for a pair of sister taxa need not
all actually be homologies for the method to
have behaved correctly.” We would not dis-
pute this statement in the least. However, we
would add that most researchers would be
worried if they knew that 99% (or more) of
the apparent support for an “optimal” tree
came from an inherent bias in the method
used rather than from actual phylogenetic
signal. Surprisingly, Siddall seems entirely
comfortable with this possibility, referring to
parsimony as “positively leading” (1998:216)
in the inverse-Felsenstein zone.

The ultimate cause of the bias toward trees
that group “long-branch” taxa is that parsi-
mony severely underestimates the true num-
ber of substitutions that occur along the long
branches. It is important to remember that
likelihood methods can have similar prob-
lems when their models are strongly vio-
lated. In general, if the violation of the model
is such that the assumed model is too simple
(e.g., if high transition/transversion ratios
or among-site rate variations are ignored),
underestimation of the actual number of
substitutions can lead to inconsistency of
likelihood in the Felsenstein zone (Waddell,
1995:377–385; Gaut and Lewis, 1995; Chang,
1996a; Sullivan and Swofford, 1997) and
overcon�dence in the inverse-Felsenstein
zone (Waddell, 1995:385–398; Bruno and
Halpern, 1999). However, attempting to ac-
count for multiple substitutions by using an
oversimpli�ed model is a step in the right
direction, whereas ignoring them entirely is
to accept ignorance. Maximum likelihood
methods are much more robust to artifacts

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/50/4/525/1637151 by guest on 21 August 2022



2001 SWOFFORD ET AL.—BIAS AND CHOICE OF PHYLOGENETIC METHODS 535

of long-branch attraction than are parsimony
methods, even when their assumed models
are inadequate.

LONG-BRANCH REPULSION OR ABSENCE
OF LONG-BRANCH ATTRACTION?

If the true unrooted tree for four taxa has
an internal branch length close enough to
zero that the information in the resulting se-
quences is insuf�cient to reliably choose one
of the trees over the others, then the tree is ef-
fectively a star tree. In this case, if a method
is unbiased, it should choose equivocally—it
might favor all three trees equally, or it might
choose one tree at random (and, ideally, dis-
cover as well that the other trees were not
signi�cantly different). By this argument, if a
method correctly chooses the true tree one-
third of the time, then it is successful, even
though it chooses an incorrect topology the
other two-thirds of the time. On the other
hand, if a biased method is used when the
true tree is effectively a star tree, one topol-
ogy will be preferred over the others. If there
are exactly three choices and the available
information is inadequate to decide among
them, then the method is failing if it deviates
strongly from a 1 in 3 preference for each
choice. In this case, a method obviously is
failing if it preferentially chooses the wrong
tree, but perhaps less obviously, it is also fail-
ing if it always favors the correct tree.

Siddall (1998) focused on a near-star tree
in the inverse-Felsenstein zone for which
there was little or no information in the
sequences to distinguish among the three
possible trees and found that parsimony
nonetheless chooses the correct tree topol-
ogy most of the time. A similar situation
exists for a near-star tree in the Felsenstein
zone, except that parsimony usually chooses
the same topology, which is now incorrect.
In both cases, parsimony is failing rather
than succeeding, its failure following directly
from its bias. Likelihood, on the other hand,
is succeeding in both of these cases because
its choice is much closer to a random one
in both zones. Virtually any method for as-
sessing reliability, including bootstrapping
(Felsenstein, 1985), jackkni�ng (Penny and
Hendy, 1986; Felsenstein, 1988; Farris et al.,
1996), or the test of Kishino and Hasegawa
(1989), will fail to �nd signi�cant support for
any of the three possible topologies under
the likelihood criterion. In this case, it is not

appropriate to say the likelihood is failing be-
cause of “long-branch repulsion;” rather, it is
succeeding in remaining uncommitted when
the data do not decisively support any single
topology. If indeed likelihood were affected
by long-branch repulsion, then it would ob-
tain the correct topology signi�cantly less
than one-third of the time, which it does not
do.

This basic notion can be encapsulated in
the simulation results shown in Figure 7.
This simulation evaluates the relative perfor-
mance of parsimony and likelihood for three
sequence lengths as the tree approaches a
star tree from the inverse-Felsenstein zone,
becomes an exact star tree, and then moves
into the Felsenstein zone. Likelihood meth-
ods do well in both zones when the cen-
tral branch length is at least 0.04 substitu-
tions per site and the number of sites is
not small. Parsimony is inconsistent in the
Felsenstein zone for all branch lengths in
the range of 0–0.05 substitutions per site
(and even higher), doing better for shorter
sequences than longer ones. As the central
branch length shrinks toward zero in both
zones, the accuracy of likelihood decreases,
reaching the expected 1 in 3 accuracy rate
when the central branch is extremely small
in either zone. Bootstrap (as well as jack-
knife) support is low for all three trees (de-
tails not shown). Parsimony, on the other
hand, abruptly shifts from nearly perfect ac-
curacy to complete inaccuracy on either side
of the zero point. When the central branch is
extremely short, parsimony simply chooses
the tree that groups the long-branch taxa,
regardless of what the true tree might be,
with high bootstrap support for either the
correct or the incorrect result. This behavior
of parsimony in the extreme regions of the
Felsenstein and inverse-Felsenstein zones is
analogous to an oracle who responds to any
question by responding “0.492.” If the ques-
tion asked is, “What is the sum of 0.450 and
0.042?” or “What is 3 times 0.164?” the or-
acle will answer correctly, but presumably
once interrogators realized that the answer
was always the same regardless of the ques-
tion, they would not be ready to give up their
electronic calculators. There are times when
“I don’t know” is a better answer than a con-
�dent guess that has a high probability of
being incorrect.

It is interesting, and somewhat amusing,
to examine the performance of a phenetic
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FIGURE 7. Results of simulation comparing the behavior of parsimony with likelihood in the transition between
the inverse-Felsenstein and Felsenstein zones. The lengths of the terminal branches, in expected substitutions per
site, are 0.5 (long branches) and 0.05 (short branches). Accuracy is measured as the proportion of correctly estimated
trees in 1,000 simulation replicates. (a) Parsimony shifts abruptly from nearly perfect accuracy to nearly complete
inaccuracy as the true tree goes from being a near-star tree in the inverse-Felsenstein zone to a near-star tree in
the Felsenstein zone, especially for sequence lengths of 1,000 or longer. (b) When the internal branch length is not
extremely small or the sequence length is not too short, likelihood achieves reasonable accuracy in both the inverse-
Felsenstein and Felsenstein zones. As the internal branch becomes progressively shorter, likelihood is less able to
infer the tree correctly, appropriately re�ecting the lack of resolving power in the data. In both plots, the points just
to the left and right of the zero on the abscissa represent branches of in�nitesimal length in the inverse-Felsenstein
and Felsenstein zones, respectively.
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FIGURE 8. Performance of UPGMA in the transition between the inverse-Felsenstein and Felsenstein zones
mimics that of parsimony (see Fig. 7a), reinforcing the position that the high “accuracy” of parsimony in the
inverse-Felsenstein zone is purely the result of bias.

clustering method, UPGMA, under the same
conditions (Fig. 8). Because UPGMA deter-
mines a rooted tree, we can disregard the
position of the root in order to compare its
performance fairly with that of the intrin-
sically unrooted parsimony and maximum
likelihood methods. UPGMA demonstrates
almost exactly the same behavior as parsi-
mony. It �nds the correct tree 100% of the
time in the inverse-Felsenstein zone, at the
price of missing it nearly 100% of the time
in the Felsenstein zone. Application of UP-
GMA as a phylogenetic method requires the
assumption of a “molecular clock” (equal
rates of substitution in all lineages), but vi-
olation of this assumption does not necessar-
ily lead to reduced accuracy—the method’s
inherent bias works in its favor if the taxa
that are most similar are in fact close rela-
tives. Reasoning analogous to Siddall’s could
then be used to argue that UPGMA is be-
having properly (even outperforming par-
simony) by avoiding “long-branch repul-
sion” in the inverse-Felsenstein zone when
the clock assumption is violated. We doubt,
however, that many proponents of parsi-
mony methods would �nd this argument
compelling.

CONCLUSIONS
The demonstration that parsimony anal-

ysis can, under speci�c conditions, achieve
greater accuracy than maximum likelihood
fails to rescue parsimony from the criticism
that potential biases can lead it to support or
reject alternative topologies strongly when
information is insuf�cient for reaching a
de�nitive conclusion. Although the property
of providing strong support for a correct, but
near-star, tree in the inverse-Felsenstein zone
seems desirable, this advantage is negated if
the method also provides strong support for
an incorrect, but near-star, tree in the Felsen-
stein zone. Whatever good properties parsi-
mony might have—and we do not deny their
existence—strong commitment to a topology
purely on the basis of the length of a tree’s
terminal branches is not one of them.

It is often suggested that the conditions
under which maximum likelihood outper-
forms parsimony are extreme, whereas un-
der more “typical” conditions this advantage
disappears. Siddall has taken a different po-
sition, claiming to have found a “limiting
case” for which likelihood methods, rather
than parsimony, “more often than notwill fail
to converge on the correct model topology”
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(Siddall, 1998:211). We have shown that this
claim is simply false and further suggest that
most scientists would prefer to use methods
that are honest about how strongly a result is
supported than to use amethod thatpretends
that a result is strongly supported when the
majority of that support is a consequence
of bias. When interpreted properly, simula-
tion studies such as those of Siddall (1998)
merely reinforce arguments for the utility of
model-based methods, including maximum
likelihood, for phylogenetic analysis of
molecular sequence data. These methods ac-
knowledge the inevitability of multiple sub-
stitutions and explicitly accommodate them
as a fundamental component of their oper-
ation. The parsimony method is useful and
powerful in many situations, but its ability to
obtain a “correct” result for reasons that are
clearly inappropriate should not be used as
an argument in its favor.
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