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Bias in Robust Estimation Caused by
Discontinuities and Multiple Structures

Charles V. Stewart, Member, IEEE

Abstract —When fitting models to data containing multiple structures, such as when fitting surface patches to data taken from a
neighborhood that includes a range discontinuity, robust estimators must tolerate both gross outliers and pseudo outliers. Pseudo
outliers are outliers to the structure of interest, but inliers to a different structure. They differ from gross outliers because of their
coherence. Such data occurs frequently in computer vision problems, including motion estimation, model fitting, and range data
analysis. The focus in this paper is the problem of fitting surfaces near discontinuities in range data.

To characterize the performance of least median of the squares, least trimmed squares, M-estimators, Hough transforms,
RANSAC, and MINPRAN on this type of data, the “pseudo outlier bias” metric is developed using techniques from the robust
statistics literature, and it is used to study the error in robust fits caused by distributions modeling various types of discontinuities.
The results show each robust estimator to be biased at small, but substantial, discontinuities. They also show the circumstances
under which different estimators are most effective. Most importantly, the results imply present estimators should be used with care,
and new estimators should be developed.

Index Terms —Robust estimation, outliers, parameter estimation, discontinuities, multiple structures, bias.

——————————   ✦   ——————————

1 INTRODUCTION

OBUST estimation techniques have been used with in-
creasing frequency in computer vision applications

because they have proven effective in tolerating the gross
errors (outliers) characteristic of both sensors and low-level
vision algorithms. Most often, robust estimators are used
when fitting model parameters—e.g., the coefficients of
either a polynomial surface, an affine motion model, a pose
estimate, or a fundamental matrix—to a data set. For these
applications, robust estimators work reliably when the data
contain measurements from a single structure, such as a
single surface, plus gross errors.

Sometimes, however, the data are measurements from
multiple structures and still corrupted by gross outliers. As
two examples, these structures may be different surfaces in
depth measurements or multiple moving objects in motion
estimation. A difficulty arises because robust estimators are
designed to extract a single fit. Thus, to accurately estimate
parameters modeling one of the structures—which one is
not important—they must treat the points from all other
structures as outliers. After successfully estimating the fit
parameters of one structure, the robust estimator may be re-
applied to estimate subsequent fits after removing the in-
liers of the first fit from the data.

An example using synthetic range data illustrates the
potential problems caused by multiple structures. Fig. 1
shows (nonrobust) linear least-squares fits to data from a
single surface and to data from a pair of surfaces forming a

step discontinuity. In the single surface example, the least-
squares fit is skewed slightly by the gross outliers, but the
fit estimated by a robust version of least-squares will not be
significantly corrupted by these outliers. In the multiple
surface example, the least-squares fit is skewed so much
that it crosses (or “bridges”) the point sets from both sur-
faces, placing the fit in close proximity to both point sets.
Since robust estimators use fit proximity to distinguish in-
liers and outliers and downgrade the influence of outliers,
this raises two concerns about the accuracy of robust fits.
First, an estimator that iteratively refines an initial least
squares fit will have a local, and potentially global, mini-
mum fit not far from the initial, skewed fit: Points from
both surfaces will have both small and large residuals,
making it difficult for the estimator to “pull away” from
either. Second, and more important, for the robust esti-
mate be the correct fit, the estimator’s objective function
must be lower for the smaller inlier set of the correct fit
than the larger inlier set of the bridging fit. By varying
both the proximity of the two surfaces and the relative
sizes of their point sets, all robust estimators studied here
can be made to “fail” on this data, producing fits that are
heavily skewed.

Motivated by the foregoing discussion, the goal of this
paper is to study how effectively robust estimators can es-
timate fit parameters given a mixture of data from multiple
structures. Stating this “pseudo outliers problem” ab-
stractly, to obtain an accurate fit a robust technique must
tolerate two different types of outliers: gross outliers and
pseudo outliers. Gross outliers are bad measurements,
which may arise from specularities, boundary effects,
physical imperfections in sensors, or errors in low-level
vision computations such as edge detection or matching
algorithms. Pseudo outliers are measurements from one or
more additional structures. (Without losing generality,
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inliers and pseudo outliers are distinguished by assuming
the inliers are points from the structure contributing the
most points, and pseudo outliers are points from the other
structures.) The coherence of pseudo outliers distinguishes
them from gross outliers. Because data from multiple
structures are common in vision applications, the perform-
ance of robust estimators on this type of data must be un-
derstood to use them effectively.

To study the pseudo outliers problem, this paper de-
velops a measure of “pseudo outlier bias” using tools
from the robust statistics literature [10, pp. 81-95] [12, p.
11]. Pseudo outlier bias will measure the distance between
a robust estimator’s fit to a “target” distribution and its fit
to an outlier corrupted distribution. The target distribu-
tion will model the distribution of points drawn from a
single structure without outliers, and the outlier cor-
rupted mixture distribution [28] will combine distribu-
tions modeling the different structures and a gross outlier
distribution. The optimal fit is found by applying the
functional form of an estimator to these distributions
rather than by applying the standard form of an estimator
to particular sets of points generated from these distribu-
tions. This gives a theoretical measure, avoids the need for
extensive simulations, and, most importantly, shows the
inherent limitations of robust estimators by studying their
objective functions independent of their search tech-
niques. The bias of a number of estimators—M-estimators
[12, Chapter 7], least median of squares (LMS) [16], [21],
least trimmed squares (LTS) [21], Hough transforms [13],
RANSAC [7], and MINPRAN [26]—will be studied as the
target and mixture distributions vary.

The application for studying the pseudo outliers prob-
lem is fitting surfaces to range data taken from the neigh-
borhood of a surface discontinuity. Since the pseudo out-
liers problem arises in other applications as well—
essentially, any application where the data could contain
multiple structures—the results obtained here should be
used as qualitative predictions of potential difficulties in
these applications. In the context of the range data appli-
cation, three idealized discontinuity models are used to
develop mixture distributions: step edges, crease edges,

and parallel surfaces. Step edges model depth discontinui-
ties, where points from the upper surface of the step are
pseudo outliers to the lower surface. Crease edges model
surface orientation discontinuities, where points from one
side of the crease are pseudo outliers to the other. Finally,
parallel surfaces model transparent or semitransparent sur-
faces, where a background surface appears through
breaks in the foreground surface, and data from the back-
ground are pseudo outliers to the foreground.

A final introductory comment is important to assist in
reading this paper. The paper defines the notion of
“pseudo outlier bias” using techniques common in
mathematical statistics but not in computer vision, most
importantly, the “functional form” of a robust estimator.
The intuitive meaning of functional forms and their use
in pseudo outlier bias are discussed at the start of Section
4, which then proceeds with the main derivations. Read-
ers uninterested in the mathematical details should be
able to skip Sections 4.2 through 4.6 and still follow the
analysis results.

2 Robust Estimators
This section defines the robust estimators studied. These
definitions are converted to functional forms suitable for
analysis in Section 4. Because the goal of the paper is to
expose inherent limitations of robust estimators, the fo-
cus in defining the estimators is their objective functions,
rather than their optimization techniques. Special cases
of iterative optimization techniques where local minima
are potentially problematic will be discussed where ap-
propriate.

The data are 
r
x zi i,c h, where 

r
xi  is an image coordinate

vector—the independent variable(s)—and zi is a range
value—the dependent variable. Each fit is a function
z x= q ra f , often restricted to the class of linear or quadratic

polynomials. The notation $q r
xa f indicates the fit that mini-

mizes an estimator’s objective function, with $q  called the
“estimate.” Each estimator’s objective function evaluates
hypothesized fits, q

r
xa f, via the residuals, r z xi i i,q q= - rc h .

    

                                                        (a)                                                                                                                (b)

Fig. 1. Examples demonstrating the effects of (a) gross outliers and (b) both gross outliers and data from multiple structures on linear least-
squares fits.
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2.1 M-Estimators
A regression M-estimate [12, Chapter 7] is

$ arg min $,q r s
q

q= Â ri
i

d i ,                              (1)

where $s  is an estimate of the true scale (noise) term, V, and
U(u) is a robust “loss” function which grows subquad-
ratically for large |u| to reduce the effect of outliers.
(Often, as discussed below, $q  and $s  are estimated jointly.)
M-estimators are categorized into three types [11] by the
behavior of y ru ua f a f= ¢  (the “influence function”); one
estimator of each type is studied. Monotone M-estimators
(Fig. 2a), such as Huber’s [12, Chapter 7], have nonde-
creasing, bounded \(u) functions. Hard redescenders (Fig. 2b),
such as Hampel et al.’s [9], [10, p. 150], force \(u)   0 for
|u| > c; hence, c is a rejection point, beyond which a resid-
ual has no influence. Soft redescenders (Fig. 2c), such as the
maximum likelihood estimator of Student’s t-distribution
[5], do not have a finite rejection point, but force \(u) � 0
as |u| � �. The three robust loss functions are shown in
Fig. 2, and, in order, they are
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and

rs u f u fa f b g e j= + +
1
2 1 1 2log                       ���

The U function constants are usually set to optimize as-
ymptotic efficiency relative to a given target distribution
[11] (e.g., Gaussian residuals).

M-estimators typically minimize r sqri , $d iÂ  using it-

erative techniques [11] [12, Chapter 7]. The objective
functions of hard and soft redescending M-estimators are
nonconvex and may have multiple local minima.

In general, $s  must be estimated from the data. Hard-
redescending M-estimators often use the median absolute
deviation (MAD) [11] computed from the residuals to an
initial fit, $q 0 :

$
$ $s
q q

= -
RST

UVW
k r r

i i j j
median median

, ,0 0
{ } ,                (5)

where k   1.4826 for consistency at the normal distribution and
k   1.14601 for consistency at Student’s t-distribution (when
f   1.5). Other M-estimators jointly estimate $s  and $q  as

$ , $ arg min ,
,

,q s r s
q s

qe j d i= Â ri
i

.                         (6)

In particular, Huber [12, Chapter 7] uses

r s r s sq qm i m ir r a, ,,d i d i= + ,                        (7)

where r sqm ir , ,d i is from (2) and a is a tuning parameter;

Mirza et al. [5] use

r s s r sq qs i s ir r, ,, lnd i d i= + ,                        (8)

where r sqs ir , ,d i  is from (4).

When fitting surfaces to range data, a different option
for obtaining $s  is often used [3]. If V depends only on the
properties of the sensor, then $s  may be estimated once
and fixed for all data sets. Theoretically, when $s  is fixed,
the M-estimators described by (1) are no longer true M-
estimators since they are not scale equivariant [10, p. 259].
To reflect this, when $s  is fixed a priori, they are called
“fixed-scale M-estimators.” Both standard M-estimators
and fixed-scale M-estimators are studied here.

                                                          Monotone                                          Hard                                               Soft

r ua f          

y ua f          

                                                                  (a)                                                 (b)                                                  (c)

Fig. 2. U(u) and \(u) functions for three M-estimators.
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2.2 Fixed-Band Techniques:
Hough Transforms and RANSAC

Hough transforms [13], RANSAC [4], [7], and Roth’s primi-
tive extractor [20] are examples of “fixed-band” techniques
[20]. For these techniques, $q  is the fit maximizing the num-
ber of points within q ± rb , where rb  is an inlier bound
which generally depends on $s  (i.e. r cb = $s  for some con-
stant c). Equivalently, viewing fixed-band techniques as
minimizing the number of outliers, they become a special
case of fixed-scale M-estimators with a simple, discontinu-
ous loss function

r f u
u c

u c
a f =

£
>

RST
0
1

,
,

                                  ���

Fixed-band techniques search for $q  using either random
sampling or voting techniques.

2.3 LMS and LTS
Least median of squares (LMS), introduced by
Rousseeuw [21], finds the fit minimizing the median of
squared residuals. (See [16] for a review.) Specifically,
the LMS estimate is

$ arg min ,q
q

q= RST
UVW

RST
UVWmedian

i ird i2
.                     (10)

Most implementations of LMS use random sampling tech-
niques to find an approximate minimum.

Related to LMS and also introduced by Rousseeuw [21] is
the least trimmed squares estimator (LTS). The LTS estimate is

$ arg min
:

q
q

q=
=
Â r

j N
j

h
2

1
e j .                             (11)

where the ( ) :r j Nq
2  are the (nondecreasing) ordered squared

residuals of fit T. Usually h = Í(N + 1)/2Ý. LTS implementa-
tions also use random sampling.

2.4 MINPRAN
MINPRAN searches for the fit minimizing the probability
that a fit and a collection of inliers to the fit could be due
to gross outliers [24], [26]. It is derived by assuming that
relative to any hypothesized fit T(x) the residuals of gross
outliers are uniformly distributed1 in the range ±Z0 .
Based on this assumption, the probability that a particular
gross outlier could be within q

r
x ric h ±  for 0 � r � Z0 is r/Z0.

Furthermore, if all n points are gross outliers, the prob-
ability k or more of them could be within q

r
x ra f ±  is

) r k n n
j r Z r Z

j k

n
j n j

, ,b g c h c h= F
H

I
K -

=

-Â 0 01 .������������(12)

Given n data points containing an unknown number of
gross outliers, MINPRAN evaluates hypothesized fits q

r
xa f

by finding the inlier bound, r, and the associated number of
points (inliers), kr ,q , within ±r of q

r
xa f, minimizing the

probability that the inliers could actually be gross outliers.
Thus MINPRAN’s objective function in evaluating a par-
ticular fit is

1. MINPRAN has been generalized to any known outlier distribution [26].

min , ,,r rr k n) qd i
and MINPRAN’s estimate is

$ arg min min , ,,q
q

q= L
NM

O
QPr rr k n) d i .                  (13)

MINPRAN is implemented using random sampling tech-
niques (see [26]).

3 MODELING DISCONTINUITIES

The important first step in developing the pseudo outlier
bias analysis technique is to model the data taken from near
a discontinuity as a probability distribution. Attention here
is restricted to discontinuities in one-dimensional struc-
tures, since this will be sufficient to demonstrate the limita-
tions of robust estimators.

3.1 Outlier Distributions
To set the context, consider the one-dimensional, outlier
corrupted distributions used to study robust location esti-
mators [10, p. 97] [12, p. 11]:

F = (1 ��H) F1 + H G

Here, F1 is an inlier distribution (a “target distribution”),
such as a unit variance Gaussian, and G is an outlier distri-
bution, such as a large variance Gaussian or a uniform dis-
tribution over a large interval. The parameter H�  is the out-
lier proportion. A set A of N points sampled from this dis-
tribution will contain, on average, HN outliers. Robust loca-
tion estimators may be analyzed using distribution F, rather
than using a series of point sets sampled from F.

3.2 Mixture Distributions Modeling Discontinuities
The present paper analyzes robust regression estimators by
examining their behavior on distributions modeling discon-
tinuities. These mixture distributions [28] will be of the form

H = (1 ��Ho)[Hs H1 + (1 ��Hs) H2] + Ho Ho.                (14)

H1, H2, and Ho will be inlier, pseudo outlier, and gross out-

lier distributions, respectively, and Hs and Ho will control the
proportion of points drawn from the three distributions.

To formulate H1, H2, and Ho, and to set Hs and Ho, consider
a set, S, of data points taken from the vicinity of a disconti-
nuity. For example, S might contain the points in Fig. 3
whose x coordinates fall in the interval [x0, x1]. H1 is mod-
eled as a two-dimensional distribution of points (x, z) with
x values in an interval [x0, xd]—assuming, without losing
generality, more points are from the left side of the discon-
tinuity location than the right. (Using a two-dimensional
distribution might be counterintuitive since the x values,
which may be thought of as image positions at which
measurements are recorded, are usually fixed.) Here, x is
treated as uniform in the interval [x0, xd], modeling the uni-
form spacing of image positions.2 The measurement for an

2. For any point set sampled from this distribution, the x values will not be
uniformly spaced, in general, but the expected values of their order statistics
are. This expected behavior is captured when using the distribution itself in
the analysis rather than points sets sampled from the distribution.
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inlier is z = E1(x) + e, where e is independent noise con-

trolled by the Gaussian density g(0; V2). The pseudo outlier

distribution, H2, may be defined similarly, with x values

uniform in [xd, x1] and measurements z = E2(x) + e. Thus, for

both distributions H1 and H2, the densities of x and z can be
combined to give the joint density

h x z
g z x

x x x x x
i

i

i i
i i,

;
,

, ,
, ,a f

a fe j
=

-
- £ £

R
S|

T|
b s 2

1 0
0 1

0, otherwise.

          (15)

where i ° {1, 2} and xi,0 and xi,1 bound the uniform distribu-
tion on the x interval.

For Ho, the distribution of gross outliers in S, again x
values are uniformly distributed, but this time over the en-
tire interval [x0, x1], and z values are governed by density
go(z), which will be uniform over a large range. This gives
the joint density for a gross outlier:

h x z
g z

x x x x x
o

o
, ,a f

a f
= - £ £
R
S|
T|

1 0
0 1

0, otherwise.
                     (16)

The mixture proportions Hs and Ho in (14) are easily speci-
fied. Ho is just the fraction of gross outliers. Hs is the “relative
fraction” of inliers, i.e., the fraction points that are not gross
outliers and that are from the inlier side of the discontinu-
ity. Assuming the density of x values does not change
across the discontinuity, Hs is determined by xd:

e s
dx x

x x=
-
-

0

1 0
�                                    (17)

Equivalently, given Hs, xd = x0 + Hs (x1 � x0). (To distinguish
inliers and pseudo outliers, assume Hs > 0.5.) Notice that the
“actual fraction” of inliers is H1 = (1 �� Ho)Hs. Depending on
which estimator is being analyzed, either the relative or the
actual fraction or both will be important.

Using these mixture proportions, the above densities
can be combined into a single, mixed, two-dimensional
density:

h(x, z) = (1 ��Ho)[Hsh1(x, z) + (1 ��Hs) h2(x, z)] + Hoho(x, z).  (18)

Observe that the “target density” is just h1(x, z) and the
“target distribution” is H1(x, z). The mixture distribution
H(x, z) and the target distribution H1(x, z) can be calcu-
lated from h(x, z) and h1(x, z), respectively.

Using mixture density h(x, z), data can be generated to
form step edges and crease edges. The appropriate model is
determined by the two curve functions E1 and E2. For ex-
ample, a step edge of height 'z is modeled by setting E1(x)
= c and E2(x) = c + 'z, for some constant c. A crease edge is
modeled when E1 and E2 are linear functions and E1(xd) =
E2(xd). Parallel lines with overlapping x domains can be
created by using E1 and E2 from step edges, but setting x1,0 =
x2,0 = x0 and x1,1 = x2,1 = x1, and letting Hs represent the pro-
portion of points from the lower line. In this case, the mix-
ture proportions are divorced from the location of the dis-
continuity, which has no meaning. Thus, all three desired
discontinuities can be modeled.

4 FUNCTIONAL FORMS AND MIXTURE MODELS

To analyze estimators on distributions H, each estimator
must be rewritten as a functional, T—a mapping from the
space of probability distributions to the space of possible es-
timates.

This section derives functional forms of the robust esti-
mators defined in Section 2. It starts, in Section 4.1, by giv-
ing intuitive insight. Then, Section 4.2 introduces functional
forms and empirical distributions on a technical level, using
univariate least-squares location estimates as an example.
Next, Section 4.3 derives several important distributions
needed in the functionals. The remaining sections derive
the required functionals. Readers uninterested in the tech-
nical details should read only Section 4.1 and then skip
ahead to Section 5.

4.1 Intuition
To illustrate what it means for a functional T to be applied
to a distribution H, consider least-squares regression. When
applied to a set containing points (xi, zi), the least-squares
objective function is

 ( ) =  z x ri i
i

i
i

-Â Âq q
2 2

, ,

which is proportional to the second moment of the residu-
als conditioned on T. The least squares estimate is the fit $q
minimizing this conditional second moment. A similar sec-
ond moment, conditioned on T, can be calculated for distri-
bution H(x, z), and the fit $q  minimizing this conditional
second moment can be found. This is the least-squares re-
gression functional. The functional form of an M-estimator,
by analogy, returns the fit minimizing a robust version of
the second moment of the conditional residual distribution
calculated from H. Intuitions about the functional forms of
other estimators are similar.

The estimate T(H) can be used to represent or character-
ize the estimator’s performance on point sets sampled from
H. Although the robust fit to any particular point set may
differ from T(H), if T(H) is skewed by the pseudo and gross
outliers, then the fit to the point set will likely be skewed as

Fig. 3. Example data set for points near a step discontinuity.
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well. Indeed, when an estimator’s minimization technique
is an iterative search, the skew may be worse than that of
T(H) because of local minima.

4.2 One-Dimensional Location Estimators
To introduce functional forms on a more technical level,
this section examines the least-squares location estimate for
univariate data. For a finite sample {x1, �, xn}, the location
estimate is

$ arg minq q
q

= - =Â Â1 12

n x n xi
i

i
i

e j ,               (19)

which is the sample mean or expected value. The functional
form of this is the location estimate of the distribution F,
from which the xis are drawn:

T F

x dF

x f x dx

xf x dx

loca f
a f

a f a f
a f

=

= -

= -

=

z
z

$

arg min

arg min

,

q

q

q
q

q

2

2

(20)

the population mean or expected value.
The functional form of the location estimate is derived

from the sample location estimate by writing the latter in
terms of the “empirical distribution” of the data, denoted
by Fn, and then replacing Fn with F, the actual distribution.
The empirical density of {x1, �, xn} is

f x n x xn i
i

a f c h= -Â1
d .

where G (¹) is the Dirac delta function, and the empirical dis-
tribution is

F x n u x xn i
i

a f c h= -Â1
,

where u(¹) is the unit step function. When the xis are inde-

pendent and identically distributed, Fn converges to F as n �
�. The least squares location estimate is written in terms of
the empirical density by using the sifting property of the
delta function [8, p. 56]:

arg min arg min

arg min

arg min

q q

q

q

q q d

q d

q

1 1

1

2 2

2

2

n x n x x x dx

x n x x dx

x f x dx

i
i

i
i

i
i

n

- = - -

= - -

= -

Â zÂ

Âz
z

c h a f c h

a f c h

a f a f

Replacing fn with the population density f(x) = dF/dx yields
the functional form of the location estimate as desired (20).

4.3 Residual Distributions and Empirical
Distributions

Before deriving functional forms for the robust regression
estimators, the mixture distribution H(x, z) must be rewrit-
ten in terms of the distribution of residuals relative to a hy-
pothesized fit, T. This is because the objective functions of

the estimators depend directly on residuals r, and only in-
directly on points (x, z). In addition, several empirical ver-
sions of this “residual distribution” are needed.

Two different residual distributions are required: one for
signed residuals and one for their absolute values. Let the
distribution and density of signed residuals be F r Hs q ,c h
and f r Hs q ,c h  (including H in the notation to make explicit
the dependence on the mixture distribution). These are
found by integrating the mixture density over the region
enclosed by the dashed lines in Fig. 4a:

F r H h x z dz dxs x r

x

x
q

q
, ,c h a fa f

=
-•

+zz
0

1
,                   (21)

and

f r H dF r H dr h x x r dxs s

x

x
q q q, , ,c h c h a fc h= = +z

0

1
.      (22)

Let the distribution and density of absolute residuals be
F r Ha q ,c h  and f r Ha q ,c h, where r � 0. These are found by
integrating the mixture density over the region enclosed by
the dashed lines in Fig. 4b:

F r H h x z dz dxa

x r

x r

x

x
q

q

q
, ,c h a f

a f
a f

=
-

+zz
0

1
,                  (23)

and

f r H dF r H dr

h x x r h x x r dx

a a

x

x

q q

q q

, ,

, , .

c h c h
a fc h a fc h

=

= + + -z
0

1
(24)

Details of evaluating these integrals may be found in the
appendix of [27], which is available on the world-wide web.

Replacing h with h1 in the above equations yields the re-
sidual distributions and densities for the target (inlier) dis-
tribution.

Now, several empirical distributions are needed below.
First, given n points (xi, zi) sampled from h(x, z), the empiri-
cal density of the data is simply

h x z n x x z zn i i
i

, ,a f c h= - -Â1
d .

(hn should not be confused with hi from (15).) Next, the em-
pirical density of the signed residuals follows from hn(x, z)
using the sifting property of the G function [8, p. 56]:

f r H h x x r dx

n x r z

n
s

n n

i i
i

q q

d q

, ,d i a fc h

c hd i

= +

= + -

-•

•z
Â1

(25)

Finally, the empirical distribution of the absolute residuals is

F r H f y dyn
a

n n
s

r

r
q q,d i c h=

-z .                           (26)

4.4 M-Estimators and Fixed-Band Techniques
The functionals for the robust regression estimators can now
be derived, starting with that of fixed-scale M-estimators.
The first step is to write (1) in a slightly modified form, which
does not change the estimate:
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$ arg min $,q r s
q

q= Â1
n ri

i
d i .

Next, writing this in terms of the empirical distribution
produces

arg min $ arg min $

arg min $ ,

arg min $ , .

,
q

q
q

q

q

r s r q s

r q s d

r q s

1 1

1

n r n z x

n z x x x z z dx dz

z x h x z dx dz

i
i

i i
i

i i
i

n

d i c hd ie j

a fc hd i c h

a fc hd i a f

Â Â

zzÂ

zz

= -

= - - -

= -

Replacing the empirical density hn(x, z) with the mixture
density h(x, z) yields

T H z x h x z dx dzr
q

r q sa f a fc hd i a f= -zzarg min $ , .

The change of variables r = z ��T(x) simplifies things further:

T H r f r H drs
r

q
r s qa f c h c h= zarg min $ , .              (27)

This is the fixed-scale M-estimator functional. Substituting
(2), (3), and (4) gives functionals TUm, TUh, and TUs, respec-
tively, for the M-estimators studied here.

For the M-estimators that jointly estimate $q  and $s  (see
(7) and (8)), the functional is obtained by replacing
r sr $c hwith U(r, V) in (27), producing

T H r f r H drs
s

r
q s

r s q, arg min min ,a f c h c h= z .         (28)

Finally, recalling that fixed-band techniques (see
Section 2.2) are special cases of fixed-scale M-estimators,
their functional is obtained by substituting (9) into (27),
yielding

T H f r H dr f r H dr

F r H

b
s s

r

r

a
b

b

ba f c h c h

c h

= +L
NM

O
QP

= -

•

-•

- zzarg min , ,

arg min , .

q

q

q q

q1 (29)

Observe that [1 � Fa(rb|T, H)] is the expected fraction of outliers.

4.5 LMS and LTS
Deriving the functional equivalent to LMS requires first
deriving the cumulative distribution of the squared residu-
als and then writing the median in terms of the inverse of
this distribution. Defining y = r2, the empirical distribution
of squared residuals is

F y H F y Hn y n
a

, , ,q qc h d i= + ,

since it is simply the percentage of points whose absolute
residuals relative to fit T are less than y+ . Now,

median ,r F hi n yq qd i d i2 1 1 2RST
UVW = -

, , .                  (30)

In other words, the median is the inverse of the cumulative,
evaluated at 1/2. Substituting (30) in (10) and replacing the
empirical distribution Fn,y with F y H F y Hy

aq q, ,d i d i= +

produces the LMS functional:

T H F HL ya f d i= -arg min ,
q

q1 1 2 .                   (31)

Turning now to LTS, normalizing its objective function
and writing it in terms of the empirical density of residuals
yields

1 2

1

1 2
2

n r r f r H dr
j N

j

N

n
s

nr

r

m

m

q qe j d i
a f

:
,

=

+

-Â z=

where r F Hm n y n
2 1 1 2= -

, ,qd i  is the empirical median square

residual. The functional form of LTS then is easily written as

T H r f r H drT
s

F H

F H

y

ya f d ic h
c h

=
- -

-zarg min ,
,

,

q q

q
q2

1 2

1 2

1

1

.            (32)

4.6 MINPRAN
MINPRAN’s functional is derived by first rewriting MIN-
PRAN’s objective function, replacing the binomial distribu-
tion with the incomplete beta function [19, p. 229]:

min , , min , ,, , ,r r r r rr k n I k n k r Z) q q qd i d i= - + 1 0

where

     
                                                     (a)                                                                                                                 (b)

Fig. 4. The dashed lines enclose the regions of integration for calculating the cumulative distribution of signed (a) and absolute (b) residuals r relative
to fit T(x).
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I v w p
v w
v w

t t dtv wp
, ,b g a f

a f a f a f=
+

-- -zG
G G

1 1

0
1 .

and *(¹) is the gamma function. This is done because I(v, w, p)

only requires v, w ° ¤+, whereas the binomial distribution

requires integer values for kr ,q  and n. Now, since F r Hn
a

nq ,d i
is the empirical distribution of the absolute residuals (see
(26)), k n F r Hr n

a
n, ,q q= ◊ d i  for all r > 0. Thus, MINPRAN’s

objective function can be rewritten equivalently as

min , , , ,
r n

a
n n

a
nI n F r H n F r H r Z◊ - +q qd i d ie je j1 1 0 ,

Replacing Fn
a  by Fa , and substituting (13), gives the functional

T HM a f =

arg min min , , , , .
q

q q
r

a aI n F r H n F r H r Z◊ - +d i d ie je j{ }1 1 0  (33)

Observe that n, the number of points, is still required here,
but TM(H) is considered a functional [10, p. 40].

5 PSEUDO OUTLIER BIAS

Now that the functional forms of the robust estimators have
been derived, the pseudo outlier bias metric can be defined.
Given a particular mixture distribution H(x, z), target dis-
tribution H1(x, z), and a functional T, let

$ $q q= =T H T Ha f c h and 1 1 .

These fits are assumed to minimize the estimator’s objective
functional globally. Then, pseudo outlier bias is defined as
the normalized L2 distance between the fits:

$ $ $ $q q q q s- =
-

-RST
UVWz1 2

1 0
1

2 1 21

0

1

x x
x x dx

x

x

c h a f a fe j .    (34)

As is easily shown, this metric on the estimates is invariant
to translation and independent scaling of both x and z. (For
fixed-scale M-estimators, $s , which is provided a priori,
must be scaled as well. For MINPRAN, the outlier distribu-
tion must be scaled appropriately.)

When the set of the possible curves T(x) includes E1(x), it
can be shown that, for each of the functionals derived in
Section 4, T H1 1 1c h = =$q b . In other words, the objective

function of the estimator is minimized by E1. When T(H1) =

E1, the pseudo outlier bias metric becomes

$ $q b q s- =
-

-
RST

UVWz1 2
1 0

1

2 1 21

0

1

x x
x B x dx

x

x

c h a f a fe j .  (35)

Intuitively, pseudo outlier bias measures the L2 norm
distance between the two estimates, T(H) and T(H1), nor-
malized by the length of the x interval [x0, x1] and by the
standard deviation, V, of the noise in the z values. Since
T(H1) = E1 for the cases studied here, a metric value of 0
implies that T is not at all corrupted by the presence of ei-
ther gross or pseudo outliers, and a metric value of 1 im-
plies that on average over the x domain T(H) is one stan-
dard deviation away from E1.

6 BIAS CAUSED BY SURFACE DISCONTINUITIES

Pseudo outlier bias (or ”bias" for short) can now be used to
analyze the accuracy of robust estimators in fitting surfaces
to data from three different types of discontinuities: step
edges, crease edges, and parallel lines with overlapping x
domains. To do this, Section 6.1 parameterizes the mixture
density, outlines the technique to find T(H), and discusses
the relationship between results presented here and results
for higher dimensions. Then, numerical results for specific
estimators are presented: fixed-scale M-estimators and fixed-
band techniques (Section 6.2) which require a prior estimate
of $s , standard M-estimators (Section 6.3) which estimate
$s , and LMS, LTS, and MINPRAN (Section 6.4) whose ob-

jective functions are independent of $s . In each case, the
bias is examined as both the discontinuity magnitude and
mixture of inliers, pseudo outliers and gross outliers vary.

6.1 Discontinuity Models and Search
Fig. 5 shows the models of step edges, crease edges, and
parallel lines. The translation and scale invariance of both
the estimators and pseudo outlier bias, along with several
realistic assumptions, allow these discontinuities to be de-
scribed with just a few parameters. (Refer back to Section 3
for the exact parameter definitions.) For all models, V   1.0
and the x interval is [0, 1]. For step edges, E1(x)   0 and E2(x)
  'z/V�¥retaining the V parameter to make clear the scale
invariance—yand x1,0   0, x2,1   1, and x1,1   x2,0   xd. With
these values, Hs   xd. To move from step to crease edges,
only the curves E1(x) and E2(x) must be changed. Referring
to Fig. 5b, these functions are E1(x)   ('z/V)(x/xd) and E2(x)
  ('z/V) (�x/xd + 2)� Note D plays no explicit role because it
is not scale invariant. For parallel lines (Fig. 5c), E1(x) and
E2(x) are the same as for step edges, x1,0   x2,0   0 and x1,1  

x2,1   1, and the parameter xd plays no role. Finally, the out-
lier distribution go(z) is defined to be uniform for z within
±z0/2, of 'z/2 and 0, otherwise.

The foregoing shows that the parameters Hs, Ho, 'z/V,
and z0 completely specify a two curve discontinuity model,

      
                                   Step                                                                     Crease                                                                Parallel

Fig. 5. Parameters controlling the curve models for step edges, crease edges, and parallel lines. In each case, E1(x) is the desired correct fit and
points from E2(x) are pseudo outliers. 'z/V is the scaled discontinuity magnitude, and Hs controls the percentage of points from E1(x).
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the resulting mixture density, h(x, z), and, therefore, the
distribution, H(x, z). Hence, after specifying the class of
functions (linear, here) for hypothesized fits, a given robust
estimator�s pseudo outlier bias can be calculated as a function
of these parameters. This calculation requires an iterative,
numerical search to minimize T(H), and may require several
starting points to avoid local minima. (See Fig. 6 for an ex-
ample plot of TUh.) Thus, for a particular type of discontinuity
and for a particular robust estimator, the parameters may be
varied to study their effect on the estimator�s pseudo outlier
bias, thereby characterizing how accurately the estimator can
fit surfaces near discontinuities.

As a final observation, although the results are presented
for one-dimensional image domains, they have immediate
extension to two dimensions. For example, a two-dimensional
analog of the step edge presented here is E1(x, y)   0 for x °
[0, xd] and y ° [0, 1] and E2(x, y)   'z/V for x ° [xd, 1] and
y ° [0, 1]. It is straightforward to show that this model re-
sults in exactly the same pseudo outlier bias as a one-
dimensional step model having the same mixture pa-
rameters and gross outlier distribution. Similar results are
obtained for natural extensions of the crease edge and
parallel lines models. Thus, one-dimensional discontinui-
ties are sufficient to establish limitations in the effective-
ness of robust estimators.

6.2 Fixed-Scale M-Estimators
and Fixed-Band Techniques

The first numerical results are for fixed-band techniques
and fixed-scale M-estimators. These techniques represent
an ideal case where the noise parameter $s s=  is known
and fixed in advance. Fig. 7 shows the bias of fixed-band
techniques (TF) and three fixed-scale M-estimators (TUm, TUs,
and TUh) as a function 'z/V when Hs = 0.6 and when Hs = 0.8.
The bias of the least-squares estimator, calculated by sub-
stituting U(u) = u2 into (27), is included for comparison. The

U function tuning parameters values are directly from the
literature (c = 1.345 for Um [11], a = 1.31, b = 2.04, c = 4.00 for
Uh [10, p. 167], f = 1.5 for Us [18]), and rb = 2.5 $s  for Tb. Inter-
estingly, the proportion of gross outliers, Ho, has no effect on
the results. This is because the fraction of the outlier distri-
bution within r of a fit is the same for all fits T and for all r,
except when T(x) � r is extreme enough to cross outside the
bounds of the gross outlier distribution.

The sharp drops in bias shown in Figs. 7a and 7b for
fixed-band techniques and for the hard redescending M-
estimator (and to some extent for the soft redescending M-
estimator in (b)) correspond to $q rx T Ha f a f= , shifting from

the local minimum associated with a heavily biased fit to
the local minimum near E1(x), the optimum fit to the target
distribution. Plotting the step height at which this drop oc-
curs as a function of Hs gives a good summary of the bias of
these estimators on step edges. Fig. 8 does this, referring to
this height as the “small bias height” and quantifying it as
the step height at which the bias drops below 1.0.

The plots in Figs. 7 and 8a show that fixed-band techniques
and fixed-scale M-estimators are biased nearly as much as
least-squares for significant step edge and crease edge discon-
tinuity magnitudes. The estimators fare much better on paral-
lel lines (Figs. 7e and 7f); apparently, asymmetric positioning
of pseudo outliers causes the most bias. To give an intuitive
feel for the significance of the bias, Fig. 9 shows step edge data
generated using Hs   0.6 and 'z/V   7.5, model parameters for
which the robust estimators are strongly biased.

Overall, the hard redescending, fixed-scale M-estimator
is the least biased of the techniques studied thus far. Com-
pared to other fixed-scale M-estimators, its finite rejection
point—ythe point at which outliers no longer influence the
fit—makes it less biased by pseudo outliers than monotone
and soft redescending fixed-scale M-estimators. On the
other hand, it is less biased than fixed-band techniques3

because it retains the statistical efficiency of least-squares
for small residuals.

The hard redescending, fixed-scale M-estimator can be
made less biased by reducing the values of its tuning pa-
rameters, as shown in Fig. 8b, effectively narrowing Uh
and reducing its finite rejection point. (The parameter set
a   1.0, b   1.0, c   2.0 comes from [2]; the set a   1.0, b   2.0,
c   3.0 was chosen as an intermediate set of values.) Using
small parameter values has two disadvantages, however:
The optimum statistical efficiency of the standard pa-
rameters is lost, giving less accurate fits to the target dis-
tribution, and some good data may be rejected as outliers.
Despite these disadvantages, lower tuning parameters
should be used since avoiding heavily biased fits is the
most important objective.

Finally, in practice, the nonconvex objective functions of
hard and soft redescending fixed-scale M-estimators can
lead to more biased results than indicated here. Iterative
search techniques, especially when started from a nonro-
bust fit, may stop at a local minimum corresponding to a
biased fit when the fit to the target distribution is the global

3. When interpreting the results for Hough transforms, a type of fixed-
band technique, be aware that T Hba f = $q  corresponds to the peak position
in transform space.

Fig. 6. Surface plot of the objective functional TUh(H) on a step edge
with Hs   0.6 and 'z/V   7.5 when fits have the form T(x)   mx + b. (The
plot shows the negation of the objective functional.) There are three
local optimal: one at T(x)   E1(x), the second at T(x)   E2(x), and the
third at a heavily biased fit, T(x)   tan(27.92°)x � 1.91 . The biased fit is
the global optimum.
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minimizer of the objective function. Therefore, to avoid
local minima, fixed-scale M-estimators should use either a
random sampling search technique or a Hough transform.

6.3 M-Estimators
Next, consider standard M-estimators, which estimate $s
from the data. To calculate T(H) for the monotone and soft
redescending M-estimators, simply calculate $

,q r= T Hsa f

for any mixture distribution using (7) or (8) as the objective
functional. For the hard redescending M-estimator, which
estimates $s  from an initial fit, the optimum fit to the mix-
ture distribution is found in three stages: First, find the op-
timum LMS fit, then calculate the median absolute deviation
(MAD) [10, p. 107] to this fit, scaling it to estimate $s , and,
finally, calculate $q r= T H

h
a f  with $s  fixed. Two different scale

factors for estimating $s  are considered: The first, 1.4826,

    
                                                       (a) Step Hs   0.6                                                                                   (b) Step Hs   0.8

   
                                                      (c) Crease Hs   0.6                                                                             (d) Crease Hs   0.8

   
                                                     (e) Parallel yHs   0.6                                                                              (f) Parallel yHs   0.8

Fig. 7. Bias of fixed-band techniques, fixed-scale M-estimators and least-squares on step edges, (a) and (b), crease edges, (c) and (d), and par-
allel lines, (e) and (f), as a function of height when Hs   0.6 and Hs   0.8. The horizontal axis is the relative discontinuity magnitude (height), 'z/V,
and the vertical axis is the bias (see (35)). Plots not shown in (a) are essentially equivalent to the least-squares plots.
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ensures consistency at the normal distribution; the second,
1.14601, ensures consistency at Student�s t-distribution
(with f = 1.5). Using the second allows accurate comparison
between the hard redescending M-estimator and the soft
redescending M-estimator which is the maximum likeli-
hood estimate for Student�s t distribution [5].

Fig. 10 shows bias plots for the soft redescending M-
estimator and for the hard redescending M-estimator using
the two different scale factors (plot “Hard-N” for the nor-
mal distribution and plot “Hard-t” for the t-distribution).
Results for the monotone M-estimator are not shown since
its bias matches that of least-squares almost exactly. Over-
all, the results are substantially worse than for fixed-scale
M-estimators, especially for Hs   0.6. This is a direct result of
$s  being a substantial over-estimate of s : for example,

when Hs   0.6 and 'z/V = 10, $s /s �� 2.4 for all estimates.
(See [22] for analysis of bias in estimating $s .) These over-
estimates allow a large portion of the residual distribution
to fall in the region where U is quadratic, causing the esti-
mator to act more like least-squares. Because of this, M-
estimators are heavily biased by discontinuities when they
must estimate $s  from the data.

6.4 LMS, LTS, and MINPRAN
The last estimators examined are LMS, LTS, and MIN-
PRAN, methods which neither require $s  a priori nor need
to estimate it while finding $q xa f. Fig. 11 shows bias plots for
these estimators on step edges, crease edges and parallel
lines, using H0   0.1 and z0   100. Fig. 12 shows small bias
cut-off heights on step edges for LMS, LTS, and MINPRAN,
and it demonstrates the effects of changes in the mixture
proportions on LMS and LTS.

LMS and LTS work as well as any technique studied as
long as the actual fraction of inliers—data from E1(x)—is
above 0.5. Since this fraction is (1 � Ho)Hs, the bias of LMS and
LTS, unlike that of M-estimators, depends heavily on both Ho

and Hs. (For random sampling implementations of LMS and
LTS, where p points instantiate a hypothesized fit and the
objective function is evaluated on the remaining n � p points,
the bias curves in Fig. 11 and the steep drop in cut-off heights
in Fig. 12 will shift to the right, but only marginally, since
usually n @ p.) Figs. 12b and 12c demonstrate this depend-
ence in two ways for LTS. Fig. 12b shows small bias cutoffs
as a function of Hs, the relative fraction of inliers points on the
lower half of the step. The bias cutoffs are lower for lower Ho

simply because fewer gross outliers imply more actual inliers
when Hs remains fixed. Fig. 12c shows small bias cutoffs as a
function of the actual fraction of inliers, (1 � Ho)Hs. For a fixed
fraction of actual inliers, increasing or decreasing Ho decreases
or increases the fraction of pseudo outliers the corresponding
amount. Thus, comparing the three curves in the plot shows
that the coherent structure of the pseudo outliers causes more
bias than the random structure of gross outliers. This same
effect is shown for LMS in Fig. 12d. Finally, the magnitude of
z0, which controls the gross outlier distribution, has little ef-
fect on the bias results, except in the unrealistic case where it
approaches the discontinuity magnitude.

LTS is less biased than LMS, especially when the actual
fraction of inliers is only slightly above 0.5. This can be seen
most easily by comparing the low bias cutoff plots in Figs. 12c
and 12d. Like the advantage of hard redescending M-
estimators over fixed-band techniques (Section 6.2), this occurs

    
                                                                   (a)                                                                                                        (b)

Fig. 8. Small bias cut-off heights as a function of Hs, the relative fraction of points on the lower half of the step. Plots in (a) show the heights for fixed-
band techniques and two fixed-scale M-estimators. Plots in (b) show the heights for different tuning parameters of the hard redescending fixed-scale
M-estimator. Heights not plotted for small Hs are above 'z/V   20. When height is not plotted for large Hs, bias is never greater than 1.0.

Fig. 9. Example step edge data generated when Hs   0.6 and 'z/V  
7.5, a discontinuity where each the objective function of each robust
estimator (except LTS) is minimized by a biased fit. The example fit
shown is $q xa f  for the hard redescending, fixed-scale M-estimator.
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because the LTS objective function depends on the smallest 50
percent of the residuals rather than just on the median resid-
ual. It is important to note that although the efficiency of LMS
can be improved by application of a one-step M-estimator
starting from the LMS estimate, this will not substantially im-
prove a heavily biased fit, since a local minimum of the M-
estimator objective function will be near this fit.

With a minor modification to its optimization criteria,
MINPRAN can be made much less sensitive to pseudo

outliers, improving dramatically on the poor perform-
ance shown in Figs. 11 and 12. The idea is to find two
disjoint fits (having no shared inliers), $q a  and $q b , with
inlier bounds $ra  and $rb  and inlier counts k

a ar$ , $q
 and k

b br$ , $q
,

minimizing ) $ $ , ,$ , $ $ , $
r r k k na b r rba b

+ +FH IKq q1
 [23], [26]. If $q  is the

single fit minimizing the criterion function, with inlier

   
                                                        (a) Step yHs   0.6                                                                                  (b) Step Hs   0.8

   
                                                      (c) Crease yHs   0.6                                                                             (d) Crease yHs   0.8

    
                                                      (e) Parallel yHs   0.6                                                                              (f) Parallel Hs   0.8

Fig. 10. Bias of M-estimators and least-squares on step edges, (a) and (b), crease edges, (c) and (d), and parallel lines, (e) and (f), when Hs   0.6
and Hs   0.8. The horizontal axis is the relative discontinuity magnitude (height), 'z/V, and the vertical axis is the bias (see (35)).
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bound $r  and inlier count k
r$ , $q
, then the two fits $q a  and $q b

are chosen instead of the single fit $q  if

) )$ $ , , $, ,$ , $ $ , $ $r r k k n r k na b r ra a b b
+ +F

H
I
K <

q q qe j .             (36)

Thus, the modified optimization criteria tests whether one
or two inlier distributions are more likely in the data [28].
Fig. 12 shows the step edge small bias cut-off heights for
this new objective function, denoted by MINPRAN2. These

are substantially lower than those of the other techniques,
including LTS. Further, these results, unlike those of
MINPRAN, are only marginally affected by the parame-
ters Ho and z0. Unfortunately, the search for $q a  and $q b  is
computationally expensive, and so the present imple-
mentation of MINPRAN2 uses a simple search heuristic [23],
[26] that yields more biased results than the optimum
shown here. It is, however, as effective as the fixed-scale,
hard redescending M-estimator and, unlike LMS and LTS,
it does not fail dramatically when there are too few inliers.

   
                                                       (a) Step Hs   0.6                                                                                   (b) Step Hs   0.8

   
                                                     (c) Crease yHs   0.6                                                                               (d) Crease yHs   0.8

   
                                                     (e) Parallel Hs   0.6                                                                              (f) Parallel yHs   0.8

Fig. 11. Bias of MINPRAN, LMS, LTS, and least-squares on step edges, (a) and (b), crease edges, (c) and (d), and parallel lines, (e) and (f), when
Hs   0.6 and Hs  �0.8. The horizontal axis is the relative discontinuity magnitude (height), 'z/V, and the vertical axis is the bias (see (35)).
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6.5 Discussion and Recommendations
Overall, the results show that all the robust estimators
studied estimate biased fits at small but substantial discon-
tinuity magnitudes. This bias, which, relative to the bias of
least-squares, is greater for crease and step edges and less
for parallel lines, occurs even if $s  or the distribution of
gross outliers or both are known a priori. Further, it must
be emphasized that this bias is not an artifact of the search
process: The functional form of each estimator returns the fit
corresponding to the global minimum of the estimator�s
objective function.

The reason for the bias can be seen by examining the
cumulative distribution functions (cdfs) of absolute residu-
als. Fig. 13 plots this cdf, Fa(r|T, H), when T  is the target fit
(T = E1) and, when T  is the least-squares fit to H, for H
modeling crease and step discontinuities. For 'z/V   6.0,
the cdf of the biased fit is almost always greater that of the
target fit, meaning that in a discrete set of samples the bi-
ased fit, which crosses through both point sets, will on av-
erage yield smaller magnitude residuals than the target fit,
which is close to only the target point set. (The situation is
somewhat better when 'z/V   9.0.) Therefore, robust esti-
mators, such as the ones studied, whose objective functions
are based solely on residuals, are unlikely to estimate unbi-
ased fits at small magnitude discontinuities.

While none of the estimators works as well as desired,
the following recommendations for choosing among them
are based on the results presented above:

• When $s  is known a priori, one should use a hard re-
descending M-estimator objective function, such as
Hampel�s, with reduced tuning parameter values and
either a random-sampling search technique or a
weighted Hough transform. To ensure all inliers are
found and to obtain greater statistical efficiency, a
one-step M-estimator with larger tuning parameters
should be run from the initial optimum fit. This tech-
nique is preferable to LTS and LMS because it is less
sensitive to the number of gross outliers.

• When $s  is not known a priori, but the distribution of
gross outliers is known, one should use the modified
MINPRAN algorithm, MINPRAN2 [23], [26].

• When neither $s  nor the distribution of gross outliers
is known, LTS should be used, although its perform-
ance degrades quickly when there are too few in-
liers. LTS is preferable to LMS because of its statisti-
cal efficiency.

   
                                                                  (a)                                                                                                       (b)

   
                                                                   (c)                                                                                                        (d)

Fig. 12. Small bias cut-off heights. Plot (a) shows these for LMS, LTS, MINPRAN, and the modified MINPRAN optimization criteria (MINPRAN2) as a
function of Hs, the relative fraction of inliers. Plot (b) shows these for LTS as a function of Hs for three different gross outlier percentages Ho. Plots (c) and
(d) show these for LTS and LMS, respectively, as a function of (1 � Ho)Hs, the actual fraction of inliers for three different gross outlier percentages Ho.
Heights not plotted for small Hs or (1 � Ho)Hs are above H/V   20. When height is not plotted for large Hs or (1 ��Ho)Hs, bias is never greater than V.
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7 SUMMARY AND CONCLUSIONS

This paper has developed the pseudo outlier bias metric
using techniques from mathematical statistics to study the
fitting accuracy of robust estimators on data taken from
multiple structures—surface discontinuities, in particular.
Pseudo outlier bias measures the distance between a robust
estimator’s optimum fit to a target distribution and its op-
timum fit to an outlier corrupted mixture distribution.
Here, the target distribution models the points from a sin-
gle surface and the mixture distribution models points from
multiple surfaces plus gross outliers. The optimum fit for
each estimator is found by applying its functional form to
one of these model distributions. Thus, like other analysis
tools from the robust statistics literature, pseudo outlier
bias depends on point distributions rather than on particu-
lar point sets drawn from these distributions. While this has
some limitations—the actual fitting error for particular
point sets may be more or less than the pseudo outlier bias
and it ignores problems that may arise from multiple local
minima in an objective function—it represents a simple, effi-
cient, and elegant method of analyzing robust estimators.

Pseudo outlier bias was used to analyze the performance
of M-estimators, fixed-band techniques (Hough transforms
and RANSAC), least median of squares (LMS), least

trimmed squares (LTS), and MINPRAN in fitting surfaces
to three different discontinuity models: step edges, crease
edges, and parallel lines. For each of these discontinuities,
two surfaces generate data, with the larger set of surface
data forming the inliers and the smaller set forming the
pseudo outliers. By characterizing these discontinuity mod-
els using a small number of parameters, formulating the
models as mixture distributions, and studying the bias of
the robust estimators as the parameters varied, it was
shown that each robust estimator is biased for substantial
discontinuity magnitudes. This effect, which relative to that
of least-squares, is strongest for step edges and crease
edges, persists even when the noise in the data or the gross
outlier distribution or both are known in advance. It is dis-
appointing because in vision data—not just in range data—
multiple structures (pseudo outliers) are more prevalent
than gross outliers. In spite of the disappointment, how-
ever, specific recommendations, which depend on what is
known about the data, were made for choosing between
current techniques.4

These negative results indicate that care should be taken
when using robust techniques to estimate surface parame-
ters from range data—either to obtain local low-order sur-

4. See [14], [17] for new, related techniques.

   
                                                     (a) Step y'z/V   6.0                                                                              (b) Step y'z/V   9.0

  
                                                    (c) Crease y'z/V   6.0                                                                         (d) Crease y'z/V   9.0

Fig. 13. Each figure plots the cumulative distribution functions (cdf) of absolute residuals for the target fit and for a biased (least-squares) fit:
(a) and (b) are relative to a step discontinuity, and (c) and (d) are relative to a crease discontinuity. For all plots, the mixture fractions are fixed at
Ho   0.1 and Hs   0.6. All robust estimators are substantially biased at 'z/V   6.0 for both step and crease discontinuities.
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face approximations or to initialize fits for surface growing
algorithms [3], [5], [6], [15]. Similar difficulties may occur
for the “layers” techniques that have been applied to mo-
tion analysis [1], [6], [29] and for other estimation problems
where multiple structures may be “near” each other in the
data. In range data applications, robust estimates will be
accurate for large scale depth discontinuities and sharp
corners, but will be skewed at small magnitude disconti-
nuities, such as near the boundary of a slightly raised or
depressed area of a surface or near a moderate change in
surface orientation. Obtaining accurate estimates near these
discontinuities will require new and perhaps more sophis-
ticated robust estimators.
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