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Bias in species range estimates from minimum convex polygons:

implications for conservation and options for improved planning

INTRODUCTION

Extent of habitat is one of the most important pieces of
information for assessing the conservation status of
species (e.g. Millsap et al., 1990; IUCN, 1994; Lunney et
al., 1996). Often, the only data available for estimating
habitat area are presence records, the result of
opportunistic records, sightings and specimen collections.
One of the most influential of the protocols, the IUCN
(1994, 2001) rules, defined the extent of occurrence as the
area contained within the shortest continuous boundary
that encompasses all sites of present occurrence of a taxon.
The measure may exclude discontinuities or disjunctions
within the overall distributions of taxa, such as large areas
of obviously unsuitable habitat. 

To measure habitat area, IUCN (1994) recommended a
minimum convex polygon (also called a convex hull). It
is the smallest polygon in which no internal angle exceeds
180 degrees and which contains all sites. The minimum
convex polygon is easy to compute from coordinate data
and it is appropriate for presence-only data.

Area estimates from minimum convex polygons 
are used in two ways. The first is in the evaluation of
thresholds for extent of occurrence. For example, the IUCN
(1994, 2001) rules classify a species as critically

endangered if its extent of occurrence is less than 100 km2.
The second use is for inferring trends in range. For example,
a species is classified as critically endangered under the
IUCN (1994) rules if data suggest a reduction in extent of
occurrence of more than 80% in the last 10 years.

Because minimum convex polygons are constructed
around the most extreme points in a space, it is possible that
area estimates derived from them may be sensitive to errors
in location. Surveys for plants and animals intended to
detect trends are often somewhat opportunistic and depend
on contributions from volunteers. Thus, design variables
such as the temporal and spatial distribution of sampling
effort are not always under the control of the managing
agency or scientist. The purposes of this study are:

• to explore, by simulation, the effect on estimates of
habitat area of variation in spatial accuracy, and spatial
and temporal sampling effort;

• to evaluate the adequacy of the convex hull for
quantifying habitat area;

• to evaluate biases likely to affect conservation assess-
ment protocols. 

METHODS

Three hypothetical species ranges were constructed
(Fig. 1), representing a range of spatial forms including
‘horseshoe’, square and linear habitat patches. Each
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Minimum convex polygons (convex hulls) are an internationally accepted, standard method for estimating

species’ ranges, particularly in circumstances in which presence-only data are the only kind of spatially

explicit data available. One of their main strengths is their simplicity. They are used to make area

statements and to assess trends in occupied habitat, and are an important part of the assessment of the

conservation status of species. We show by simulation that these estimates are biased. The bias increases

with sample size, and is affected by the underlying shape of the species habitat, the magnitude of errors

in locations, and the spatial and temporal distribution of sampling effort. The errors affect both area

statements and estimates of trends. Some of these errors may be reduced through the application of α-

hulls, which are generalizations of convex hulls, but they cannot be eliminated entirely. α-hulls provide

an explicit means for excluding discontinuities within a species range. Strengths and weaknesses of

alternatives including kernel estimators were examined. Convex hulls exhibit larger bias than α-hulls

when used to quantify habitat extent and to detect changes in range, and when subject to differences in

the spatial and temporal distribution of sampling effort and spatial accuracy. α-hulls should be preferred

for estimating the extent of and trends in species’ ranges.
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species had a notional linear range of 300–400 km, although
the actual scales were unitless. The sampling area was
divided into 10,000 grid squares (notionally, 10,000 km2)
and the three shapes were set on a 1 × 1 square grid
(notionally, a 1 × 1 km grid). An additional area bounded
the three shapes by at least 50 km on all sides. 

In the simulations, grid squares were occupied with some
frequency (probability) within the specified bounds of the
habitat. Grid squares were selected at random and sampled
by a hypothetical observer. For example, in many scenarios,

species occupied half of the potential habitat cells, and
when present they were detected only 50% of the time when
the hypothetical observer visited a square within the habitat.
The probability of detecting a species outside of the habitat
area was 0 in all scenarios. This implies that the habitat
boundaries were clearly defined, there were no vagrants and
there were no false positive sightings.

The number of samples and the spatial distribution of
observations were varied within plausible limits. In
addition, circumstances were modelled in which there
were real trends in both the density of the species (with
no reduction in range) and the range of the species (with
no reduction in density) (Table 1). This simulation
environment was used to represent circumstances in
which a fauna survey was conducted, and later repeated
to detect trends in species. 

The hypothetical species ranges were sampled, and
different levels of the features outlined in Table 1 was
introduced one at a time. A total of 500 replications was
used for every level of the simulation to provide
acceptable estimates of the mean and 95% confidence
intervals (Manly, 1997). Three levels for each of shape,
range and density resulted in 27 combinations. These 27
possible combinations were sampled 500 times each,
yielding 13,500 examples, 4500 for each shape of habitat.
Each of these hypothetical ranges consisted of a grid (in
the shape of square, line or horseshoe) of 1s and 0s
corresponding to the presence of a species at each grid
intersection, and bounded by a grid of 0s, 50 squares (km)
wide. These surfaces represented 500 realizations of 27
different, true underlying processes. 

Sampling hypothetical species ranges

In the next stage, the 13,500 ranges were sampled by a
hypothetical observer and various sampling artefacts were
introduced to mask the true distributions. The artefacts
included changes in the intensity of sampling, variation in
the spatial accuracy of samples and variation in the
intensity of sampling across the range (Table 1). They
represent the kinds of deviations from balanced survey
designs that are part of large-scale and extensive surveys,
such as those conducted for the Birds Australia atlas
(Garnett & Crowley, 2000), and that underlie the
presence-only data maintained by museums and herbar-
iums. For each level of sampling intensity, observations 
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Fig. 1 Hypothetical linear (top), square (middle) and horseshoe
(bottom) habitat shapes as used in simulations. Each shape is
bounded by a 50 km buffer. The total area within which
hypothetical observations were made is hatched. The Delauney
triangulation resulting from 2000 spatially uniform samples
subject to small spatial error is also shown. The areas of convex
hulls were calculated as 9691.3, 9542.8 and 14,730.0 for the 
line, square and horseshoe compared to known notional areas
of 10,000 km2.

Table 1. Habitat features and sampling attributes used in the
simulations

Habitat features Levels

Shape Horseshoe, square, linear
Range trend None, 25% reduction, 50% reduction
Density trend None (sighting rate 0.5), 20% reduction

(sighting rate 0.4), 50% reduction
(sighting rate 0.25)

Sample attributes
Number of observations 500, 2000, 20,000
Spatial accuracy Small, half-small and half-large, large
Spatial uniformity Uniform (50%–50%), non-uniform

(20%–80%)
Area estimation Convex hull, a-hull



were distributed (uniformly) randomly on the two-
dimensional surface. 

GPS (global positioning systems) have improved the
spatial accuracy of field sampling relative to traditional,
map-based methods. The level of spatial accuracy in
sampling was varied between two levels that represent the
scale of accuracy that might be associated with 1:100,000
maps (large errors) and with GPS units (small errors). A
small spatial error was generated by sampling a normal
distribution with a mean of zero and standard deviation of
1, and then relocating each sighting by adding this error
to its x and y coordinates. For this level of uncertainty,
roughly 66% of observations would be located within one
grid cell of the true location. A large spatial error was
generated by sampling a normal distribution with a mean
of zero and standard deviation of 10. These spatial errors
were added to the x and y coordinates of the hypothetical
species ranges generated in the first stage. The examples
in which half the samples were loaded with small errors
and half with large errors reflect surveys in which a
proportion of participants use GPS units and others do not. 

Because of differences in geographical accessibility, the
intensity of sampling in most real, uncontrolled surveys is
not consistent across a study area. Samples are likely to be
concentrated in more accessible areas such as those
serviced by roads, compared to more remote areas where
access is difficult. Opportunistic records and volunteer
sampling are more likely to be closer to large human
populations. To reflect this property of samples, two levels
of spatial uniformity were used. In the first, samples were
distributed uniformly across the study area. In the non-
uniform design, 80% of samples were concentrated in one
half of the region and 20% in the other half.

Each of the 13,500 hypothetical ranges generated in the
first stage were sampled using the 18 (3*3*2) different
levels of sampling, resulting in 243,000 sampled species
ranges. 

Estimating the area of species ranges

The next step was to estimate the area of each sampled
range, before comparing these estimates to the underlying,
true range. The convex hull for a set of points in space
generates a minimum convex polygon about the points. It
is the smallest polygon that contains all points in which
no internal angle exceeds 180 degrees, i.e. concave
structures are excluded on the outer surface (Rapoport,
1982; O’Rourke, 1998). The constraint of convexity on
the outer surface yields a hull with a very coarse level of
resolution on its outer surface that will depart from the
actual species range. This is particularly the case for
irregularly shaped species ranges (such as the horseshoe),
resulting in a substantial overestimate of the range. There
are no explicit rules outlined in the methods for assessing
conservation status that would suggest a means for
establishing when the hull should be split to exclude
uninhabitable regions. 

To improve the match of the hull to the true habitat
shape, the α-hull, a generalization of the convex hull
(Edelsbrunner, Kirkpatrick & Seidel, 1983) was applied.

To estimate an α-hull;

(1) Make a Delauney triangulation of the points in a
sample. The triangulation is created by drawing
lines joining the points, constrained so that no lines
intersect between points (O’Rourke, 1998).

(2) Measure the lengths of all of the lines, and calculate
the average line length.

(3) Delete all lines that are longer than a mulitple (a) of
the average line length. The value of a can be chosen
with a required level of resolution in mind (see
below). The smaller the value of a, the finer the
resolution of the hull. This process results in the
deletion of lines joining points that are relatively
distant, the space between which is unlikely to
represent good habitat.

(4) Calculate the area of habitat by summing the areas
of all remaining triangles.

The outer surface of the Delauney triangulation is
identical to the convex hull, but this is just one of many
possible representations of habitat that can be derived
from the triangulation. The advantage of the α-hull is that
it provides a more detailed description of the habitat’s
shape, is capable of breaking the hull into several discrete
hulls when it spans an uninhabitable region, and yields a
hull unconstrained by convexity on its outer surface
(Okabe et al., 2000). 

The α-hull is mathematically well defined (Moran
& Wagner, 1994; Edelsbrunner, 1995) and consists
of a family of hulls of differing levels of resolution on
their external surface dependent on the value of the
parameter α. Put simply, α-hulls are constructed by
retaining only those vertices of the Delauney triangulation
that are shorter in length than a chosen value of the
parameter α. More formally, they are constructed by
preserving sections of the Delauney triangulation
corresponding to the union of balls of radius a
(Edelsbrunner, 1995). The α-hull is the outer surface of
this new subgraph of the Delauney triangulation. Varying
the value of α between zero (finest level of resolution, i.e.
a set of discrete points in space) and infinity (coarsest level
of resolution, i.e. a convex hull) generates different
configurations of the hull, and perhaps provides a more
reliable estimate of habitat extent when the shape of the
range is irregular. 

Rapoport’s (1982) seminal work proposes the
‘maximum propinquity tree’ (a minimum spanning tree)
for generating an area-based estimate of species extent.
The method uses a buffer about the minimum spanning
tree with a radius based on the mean or standard deviation
of the distance between points. The total area of this buffer
is summed to provide an estimate of species range. Similar
to the α-hull, the minimum spanning tree is also a
subgraph of the Delauney triangulation (Aurenhammer &
Klein, 2000) constructed as a single-line graph with
minimum total edge length. Rapoport’s minimum
spanning tree was investigated in this study but
quantifying area was relatively difficult in a standard
geographic information system. Various buffering
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algorithms common in geographic information systems
were capable of generating an area estimate, but more
formal, computationally efficient methods were lacking
(De Floriani, Magillo & Puppo, 2000). The α-hull was
deemed preferable as it is geometrically well defined and
its area can be computed exactly and efficiently. 

Kernel density estimators are applied in ecology to
estimate the home ranges of animals from radio-tracking
data (Worton, 1995). The method works by placing a two-
dimensional probability density over each spatial record
of a species. A grid is superimposed on the resulting
surface and an estimate of density is obtained at each grid
intersection. A parameter termed a ‘bandwidth’ (Seaman
& Powell, 1996) determines the relative contributions of
close and distant points to the density estimates. Range
estimates based on kernel estimators depend sensitively
on the choice of bandwidth (Seaman & Powell, 1996) and
are subject to bias, particularly when sample sizes are
small, although these biases may be less than those from
minimum convex polygons (Seaman & Powell, 1996;
Hansteen, Andreassen & Rolf, 1997; Ostro et al., 1999).
The advantage of the convex hull and tree methods over
kernel estimators is their simplicity of application, and
kernel estimators are not considered further here.

When applying α-hulls, rather than selecting arbitrary
values of the parameter a, we used a multiple of the mean
line length between points to select hulls with the
appropriate level of resolution. This was implemented
practically using a simple rule whereby triangles were
deleted from the triangulation when their mean edge
length exceeded some multiple of the overall mean edge
length. This effectively removes triangles spanning
regions where there are relatively few observations. Three

values for the parameter a were trailed. Triangles were
removed when the mean Delauney edge length exceeded
two, three, and four times the average overall edge length,
respectively. The areas of the remaining triangles were
summed to provide estimates of habitat area. 

Implementation

The simulation study was implemented using S+. A single
function was written that could be called for a particular
combination of shape, density and range, which was then
sampled using a particular combination of sampling
intensity, spatial accuracy and sampling uniformity. This
function included a loop that repeated the process 500
times. The function generated four area estimates
corresponding to the convex hull and the three α-hulls for
each of the 500 iterations. S+ code for implementation of
α-hulls is available on request.

RESULTS

Area estimates

Of the three rules for defining α-hulls with differing levels
of resolution, rule 2 (triangles removed when the mean
edge length exceeded three times the average overall edge
length) was consistently the most robust to sampling
artefacts introduced by differing sampling intensities,
spatial accuracies and spatial uniformities. Subsequently,
only the α-hull defined using rule 2 is shown here.

The convex hull provides a consistent and substantial
overestimate of range (Fig. 2). Box and whisker plots are
used in Fig. 2 to indicate the mean and 1.5 times the
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interquartile distance of area estimates, or the extreme
value, whichever is less (for 500 replicates). The convex
hull has the unappealing property that the range estimate
diverges from the truth as the sample size increases,
whereas the α-hull converges with increasing sample size.
As shown in Fig. 2, an uneven spatial distribution of
sample effort has little effect on both the convex and α-
hull, although the range of effort is only two- to three-fold
for this factor. 

The convex hull and the α-hull defined using rule 2 
are shown for the horseshoe in Fig. 3. The convex hull is
sensitive to irregular, concave habitat shapes for which it
substantially overestimates the correct range of 10,000
km2. The α-hull prevents this overestimate by removing
triangles from the large concave inner region of the horse-
shoe where no observations were made. When habitat
shapes are linear or square (Fig. 1) the results are less
sensitive to the choice of hull. As the sample size increases
the α-hull converges on the exact habitat extent, with
increasing resolution on its exterior surface (Fig. 3).

Influence of spatial errors

Large spatial errors result in substantial overestimates of
range (Fig. 4). The definition of large spatial errors in this
study was that the locations were sampled from a normal
distribution with a standard deviation of 10. This translates
to an error in which roughly 95% of the observations are
within about 20 cells of the correct cell, or a standard error
that is approximately 10% of the species linear range (for
the horseshoe-shaped habitat). Errors of this magnitude
resulted in substantial overestimation of species ranges
and in reduced precision in estimates of species ranges.
For both methods (convex and α-hulls), the problem
became worse as the sample size increased. Larger
samples increase the likelihood of extreme values that
result in larger estimates of ranges. The α-hull was least
affected. The degree of overestimation was largest for the
horseshoe, and smallest for the square. 

The results for mixtures of small and large spatial errors
were intermediate between the results for small and large
errors applied independently (results not shown). Non-
uniform sampling effort resulted in poorer resolution for
the affected area. Non-uniform spatial accuracy resulted
in overestimation of habitat extent for the affected area.
When combined, these two artefacts tended to offset one
another. Thus, small and non-uniform sample efforts and
large spatial errors may introduce compensating biases
(see Fig. 4). The degree to which they cancel one another
will vary from case to case and will not be measurable in
any instance without substantial additional information.

Changes in range of the order of 25–50% are detected
reliably when spatial errors are small (Figs 5 & 6 for the
horseshoe and square). The ability to detect changes of
these magnitudes was not greatly diminished, even in the
presence of relatively large spatial errors. Range estimates
in the presence of large spatial errors are biased but the
bias is consistent and trends are detectable. Generally,
larger numbers of samples result in improved likelihood
of detection of reductions in species ranges. 

Comparing temporal samples when sampling
attributes differ

As observed in Figs 5 and 6, when sampling intensity,
spatial accuracy and spatial uniformity are consistent
across two temporal sampling efforts, trends in range
reduction are observed reliably. However, when sampling
attributes differ across two temporal sampling periods, the
underlying trends in range reduction can become obscured
by sampling artefacts (Fig. 7). If the magnitude of spatial
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500 samples. Convex hull (left) and α-hull (right). 

 

 
2000 samples. Convex hull (left) and α-hull (right).  

 
20 000 samples. Convex hull (left) and α-hull (right). 

Area:  11,277.5 km2 Area:  7659.5 km2

Area:  15,723.9 km2 Area:  9512.2 km2

Area:  16,364.4 km2 Area:  9872.7 km2 

Fig. 3. Comparison of convex and α-hulls for the horseshoe
when subject to differing sampling intensities.



errors in the first temporal sample was relatively small,
and the magnitude of errors in the second sample was
substantially larger, a valid comparison of ranges will be
unreliable because of the overestimation of the range of

the species in the second sample. The extent of the
overestimation in the example here is such that it obscures
a 50% range reduction in the second temporal sample.
Such a distribution of errors will also lead to the detection
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of apparent trends that are sampling artefacts (Fig. 7).
These biases were even greater for convex hulls (not
shown) than for α-hulls. For instances when a non-uniform
sampling effort or a reduction in sampling intensity is
introduced in time 2, comparisons of range will be affected
by a consistent underestimate (by 10% or more) of species
range in time 2, irrespective of the shape of the patch of
habitat (Fig. 7). If both artefacts are introduced in time 2,
an even greater bias can be expected. When large spatial
errors are added to the problem, range estimates are
substantially overestimated by 20–30% (Fig. 7).

Overall, comparisons of range size are unreliable when
sampling attributes vary between times. The only way to
standardize when this is so, would be to conduct a series
of simulations, such as those outlined here, and correct
each of the estimates to eliminate the expected biases.

Application of convex and αα-hulls

Convex and α-hulls were applied to data for the locations
of observations of Richard’s pipit in the Birds Australia
atlas data, from Field Atlas records collected between
1977 and 1981 (Fig. 8) and New Atlas records collected
between 1998 and 2000 (Fig. 9). The finer resolution
provided by the α-hull (rule 2) resulted in areas of ocean
such as the Great Australian Bite and Gulf of Carpenteria
correctly excluded from the triangulation. The improved
resolution provided by the α-hull yields range estimates
almost half of those generated using convex hulls.
Another advantage of the α-hull is that outliers are also
excluded from the hull when their distance from other
records exceeds three times (rule 2) the average overall
edge length. From the results of the simulation study, the
estimates of habitat extent from the α-hull should more
accurately reflect the actual extent of Richard’s pipit.

Inferences based on changes in range are highly
sensitive to which hull is used and to differences in the
spatial and temporal distribution of sampling effort and
spatial accuracy. To test for the significance of changes in
habitat extent, randomization tests can be performed by
resampling the combined new and old records. However,
these tests assume that the observations are independently
and randomly drawn from the distribution of the species,
that the spatial intensities of the samples are approxi-
mately the same in both sampling periods, and that the
errors associated with the locations of the samples are
roughly equal in both sampling periods. The simulations
performed in this study provide an indication of the
importance of each of these assumptions. 

For the Birds Australia atlas data, sampling effort was
almost equivalent in the two time periods. However, the
errors associated with locations were much smaller in the
New Atlas records owing to the widespread use of hand-
held GPS. This temporal difference in the spatial accuracy
of samples may be capable of producing artefacts such as
apparent range reductions when the underlying range is
unchanged (Fig. 7). In addition, the first survey included
observations collected over 5 years. The data for the
second survey, which was ongoing, were over 2.5 years.
The first survey may integrate over a broader array of
climatic conditions, and if the birds track these conditions
on a continental scale then apparent differences in range
may dissipate as sampling continues through time. To
some extent, conclusions about ‘real’ trends may be
tempered by the magnitude of methodological biases
relative to observed changes. For example, errors in map-
read locations compared to GPS locations are likely to be
small, relative to the range size of the pipit.

When the range of Richard’s pipit is based on the Field
(Fig. 8) and New Atlas records (Fig. 9) and the convex
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Fig. 8 Convex (left) and α-hull (right) for Field Atlas records collected between 1977 and 1981.



hull is used to estimate area, the habitat extent appears to
have contracted only slightly (by about 1%), and was not
statistically significant in the randomization test. The α-
hull reveals a much larger contraction in habitat extent (by
about 40%) that is significant (P < 0.0001). Such a
difference would have profound consequences for
evaluating species using Millsap et al. (1990) or IUCN
(1994, 2001) rules. These apparent range reductions need
to be treated with caution because of the possibility of
sampling artefacts and the influence of climate on
observations. The results may best be used to flag potential
problems that should be evaluated with independent
biological evidence.

DISCUSSION

There is little to recommend convex hulls for range
estimation. They have the unpleasant properties that
biases increase as sample sizes increase, and that biases
may be very substantial, even when errors in the location
of observations are small. Important bias may be
introduced by the shape of the habitat patch, and by
interactions between shape, location errors, and the
temporal and spatial distribution of sampling effort. The
α-hull seems to be more robust to the kinds of sampling
characteristics that are likely to be present in such data
sets as bird surveys. Trends in the ranges of bird
distributions of the order of 25% or 50% should be
detected with samples of several hundred records, even if
spatial errors are substantial. However, if the magnitude
of errors is substantially different between surveys and is
appreciable compared to the ranges of the species in
question, then spurious trends may result, and would not
be distinguishable from range-wide biological trends.

Trends in range are an important part of state of the

environment reporting and the classification of conser-
vation status (IUCN, 1994, 2001). In most instances,
trends are inferred using observational data and simple
inferential tools such as range estimates inferred from
convex hulls. The most difficult circumstances for
detecting trends reliably for these methods are created by
unevenness in the temporal distribution of sampling effort
and location errors. Large spatial errors will contribute to
overestimation of the range in the first sample. Fewer
observations will lead to underestimation of range in the
second sample. These two factors, taken together, will
generate spurious apparent trends in many species.

The importance of this phenomenon depends on the
relative magnitude of the differences in spatial errors, and
the magnitude relative to the extent of a species distribu-
tion. If errors are relatively small, or approximately the
same between sampling periods, and sample sizes are
generally large, then these sources of bias may be
unimportant and the trends detected may have causes
other than sampling artefacts. Thus, the interpretation of
the reliability of inferences drawn from area estimates will
depend critically on the quantification of the magnitude
of spatial errors in different surveys. The application of
α-hulls to data collected using approaches such as those
outlined by Keith (2000) will generate estimates of range
and inferences of trends in range that are substantially
more reliable than those made currently.

Generalizations are difficult because the sensitivity of
a survey to the errors outlined above will depend on
unique spatial and temporal characteristics. If species
occupy very small spatial scales relative to the errors
implicit in location data, such as rare and geographically
restricted plants, then the results will be sensitive to
location errors. If species have wide geographic ranges,
such as many birds, then small location errors will be less
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Fig. 9 Convex (left) and α-hull (right) for New Atlas records collected between 1998 and 2000



critical. Uniform temporal and spatial sampling effort will
matter more if trends are important, and will matter less
if area statements are important. Sensitivity may also
depend on whether or not a species’ range characteristics
are close to one of the IUCN’s (2001) thresholds. These
factors will interact to determine what is important in a
survey. The results presented here provide guidance on
how to allocate survey effort to minimize important
sources of bias. 
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