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This simulation investigates bias in trait factor loadings and intercorrelations when

analyzing multitrait-multimethod (MTMM) data using the correlated uniqueness

(CU) confirmatory factor analysis (CFA) model. A theoretical weakness of the CU

model is the assumption of uncorrelated methods. However, previous simulation

studies have shown little bias in trait estimates even when true method correlations

are large. We hypothesized that there would be substantial bias when both method

factor correlations and method factor loadings were large. We generated simulated

sample data using population parameters based on our review of actual MTMM re-

sults. Results confirmed the prediction; substantial bias occurred in trait factor

loadings and correlations when both method loadings and method correlations

were large.
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Campbell and Fiske’s (1959) introduction of the multitrait-multimethod

(MTMM) matrix approach to establishing convergent and discriminant validity

is one of the most highly cited articles in the history of psychology (Sternberg,

1992). Still today, the MTMM methodology is one of the cornerstone ap-

proaches to establishing the construct validity of psychological measures

(Messick, 1995). Although Campbell and Fiske’s article broke new and impor-

tant methodological ground, it has been pointed out that their criteria for estab-

lishing convergent and discriminant validity were qualitative and subjective

(e.g., Schmitt & Stults, 1986). As a result, numerous, more quantitatively based

approaches to the MTMM matrix have been proposed, including (a) analysis of

variance (ANOVA; e.g., Kavanagh, MacKinney, & Wolins, 1971), (b) path anal-

ysis (e.g., Kalleberg & Kluegel, 1975), (c) linear regression (e.g., Lehman,

1988), (d) exploratory factor analysis (e.g., Lomax & Algina, 1979), (e)

covariance components analysis (e.g., Wothke, 1996), and (f) confirmatory fac-

tor analysis (CFA; e.g., Widaman, 1985).

Current consensus is that CFA provides the most general and flexible quantita-

tive approach to the analysis of MTMM data (e.g., Marsh & Grayson, 1995;

Millsap, 1995; Schmitt & Stults, 1986). Even here, however, there is debate over

which paramaterization of the CFA model best characterizes the structure of

MTMM data. Four main variants of the CFA model are (a) a class of linear and ad-

ditive CFA models (e.g., Widaman, 1985, 1992), (b) a class of hierarchical sec-

ond-order factor (SOF) CFA models (e.g., Marsh & Hocevar, 1988), (c) a corre-

lated uniqueness (CU) parameterization of method effects (Kenny, 1976; Marsh,

1989), and (d) direct product (DP) models of multiplicative trait and method ef-

fects (Campbell & O’Connell, 1967; Cudeck, 1988). Our main focus in this article

is on the CU model because (a) it has been recommended as a desirable option for

MTMM analysis (e.g., Lievens & Conway, 2001; Marsh, 1989) and (b) there is

reason to be concerned about bias in CU model estimates (Lance, Noble, &

Scullen, 2002). To describe the potential for bias we use the linear CFA (also

known as the correlated trait–correlated method, CTCM, model) as a point of com-

parison.

Lance et al. (2002) critiqued the CTCM and CU models along several lines, not-

ing that both models have their strengths and weaknesses. Two of the issues dis-

cussed by Lance et al. are most critical for our study. The first issue is that the CU

model returns convergent and proper solutions far more often than does the CTCM

model (Conway, 1996; Marsh, 1990; Marsh & Bailey, 1991; Marsh, Byrne, & Cra-

ven, 1992). Because of this advantage, the CU model has gained in popularity rela-

tive to the CTCM model. The second issue and the focus of this article is the poten-

tial bias in estimated trait factor correlations and trait factor loadings under the CU

model. As Lance et al. (2002) pointed out, this weakness can potentially lead to in-

accurate inferences regarding construct validity.
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POTENTIAL BIAS IN ESTIMATED TRAIT-RELATED

PARAMETERS UNDER THE CU MODEL

Trait factor loadings and trait correlations are critical parameter estimates for

MTMM data. Large trait factor loadings support inferences about convergent va-

lidity, and relatively low trait factor correlations support inferences about

discriminant validity (Widaman, 1985). Bias in these parameter estimates could

lead to unwarranted conclusions about the construct validity of measures. Lance et

al. (2002) showed how the potential for these biases incurs. Assuming the analysis

of a MTMM correlation matrix, under the CTCM model monotrait-heteromethod

(MTHM), heterotrait-heteromethod (HTHM), and heterotrait-monomethod

(HTMM) correlations are modeled as functions of estimated model parameters, re-

spectively, as follows:

MTHM = λTijλTij′ + λMijλMij′φMjMj′ (1a)

HTHM = λTijλTi′j′φTiTi′ + λMijλMi′j′φMjMj′ (1b)

HTMM = λTijλTi′jφTiTi′ + λMijλMi′j (1c)

where λTij refers to the standardized loading of the ijth trait-method unit (TMU;

i.e., a measure of the ith trait as measured by the jth measurement method) on the

ith latent trait factor, λMij is the ijth TMU’s loading on the jth method factor, φTiTi′

refers to the correlation between different trait factors, and φMjMj′ refers to the cor-

relation between different method factors. Thus, correlations among TMUs in a

MTMM matrix are seen as arising from the effects of trait and method factors and

the trait and method factors’ intercorrelations.

Under the CU model, these correlations are modeled as follows:

MTHM = λTijλTij′ (2a)

HTHM = λTijλTi′j′φTiTi′ (2b)

HTMM = λTijλTi′jφTiTi′ + θδ(ij,i′j) (2c)

where θδ( , )ij i j�
refers to covariances between TMUs uniquenesses that are fixed

equal to zero for pairs of TMUs measured by a different method (i.e., j ≠ j′) but that

are estimated as free parameters as part of the CU model for TMUs that share a

common measurement method (i.e., j = j′).
Comparing Equations 1c and 2c, it can be seen that the CTCM and CU models

account for common method effects in HTMM correlations by alternative

parameterizations of the same covariance component: (a) the CTCM model uses

the common causal effect of the measurement method shared in common (i.e.,
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λMijλMi′j in Equation 1c) and (b) the CU model uses the covariance between the

uniquenesses of TMUs that share the same measurement method (i.e., θδ( , )ij i j�
in

Equation 2c). However, under the CTCM model, method effects appear also for

MTHM (λMijλMij′φMjMj′ from Equation 1a) and HTHM (λMijλMi′j′φMjMj′ from Equa-

tion 1b) correlations (i.e., some portion of the MTHM and HTHM correlations are

assumed to be due to effects of correlated methods on TMUs). Note, however, that

these components do not appear for the MTHM and HTHM correlations under the

CU model (Equations 2a and 2c). In special cases in which one or more of the λMijs

= 0 or φMjMj′ = 0, Equations 1a and 1b reduce to their corresponding Equations 2a

and 2b. If, however, all λMijs ≠ 0 and φMjMj’ ≠ 0, that is, if TMUs’ loadings on

method factors are nonzero and correlations between different methods are non-

zero, then Equations 2a and 2b are misspecified.1 In this case, there are potential

sources of covariance in the MTHM and HTHM correlations that are not ac-

counted for in Equations 2a and 2b. This is expected to result in (likely upward, and

perhaps seriously) biased estimates for the λTijs (leading to inflated estimates of

convergent validity), the φTiTi′s (leading to underestimates of discriminant valid-

ity), or both. The implications of this “unmeasured variables problem” (James,

1980) are summarized by Kenny and Kashy (1992):

The average method–method covariance is added to each element of the trait–trait

covariance matrix. So, if the methods are similar to one another, resulting in positive

method–method covariances, the amount of trait variance will be overestimated as

will be the amount of trait–trait covariance. (pp. 169–170)

Lance et al. (2002) noted that this source of specification error was one poten-

tially serious limitation of the CU model and presented one example of how bias in

estimated trait factor loadings and correlations could result in serious misinterpre-

tation of construct validity from a MTMM matrix. Marsh and Bailey (1991) noted

that method correlations are critical parameters because the CU model assumes

that method correlations are zero and, necessarily, ignores method correlations in

the estimation of other model parameters.

In their comprehensive simulation study, Marsh and Bailey (1991) used method

correlations as high as .49. However, they found evidence of only small positive

biases in the CU model (.02 and .047 on average for trait loadings and trait correla-

tions, respectively) and concluded that those biases were trivial. A second simula-
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1We do not mean to imply that the CTCM model is necessarily correct or that the CU model is nec-

essarily misspecified. Instead, our point is that if correlated method effects are present in MTMM data,

and theory and empirical evidence suggest that they typically are, then there is a potentially important

source of covariance that is accounted for by the CTCM model but not by the CU model. Although the

CTCM model includes this method covariance, it is always possible that the model is misspecified in

other ways (e.g., the assumption that method factors are unidimensional) and that the misspecification

could lead to bias in CTCM estimates.



tion study found similarly small bias (Tomás, Hontangas, & Oliver, 2000). Tomás

et al. did point out, however, that Marsh and Bailey had varied method correlations

within the MTMM matrix, so the average method correlation was relatively low

even when some values were as high as .49. Tomás et al. simulated data in which

all method correlations for a MTMM matrix were .60 but still found little bias in

trait estimates.

Despite these findings, we still believe there is the potential for substantial bias

in trait estimates under the CU model, especially when there is substantial method

variance shared between variables. Tomás et al. (2000) were correct to point out

the importance of method correlations, but Equations 1a and 1b show that what is

really critical is the product of a method correlation and two method factor load-

ings. For example, if two methods are highly correlated, but a pair of variables each

has a low loading on its measurement method factor, then the correlation between

those two variables will not be inflated much (there is little common method bias).

Thus, the CU model should be able to estimate fairly accurately the trait parame-

ters for those variables. Although Tomás et al. simulated high method correlations,

their simulated method loadings were only as high as .35; this can explain their

finding of little bias. Our prediction is that the CU model will show substantial up-

ward bias in trait loadings and trait correlations when both method correlations

and method loadings are reasonably high, a case that may be common in real data

(e.g., Cote, & Buckley, 1987).

Our prediction is based on the size of parameters (both method correlations and

method loadings); thus, it is critical that the values in a simulation study be repre-

sentative of realistic research situations (Paxton, Curran, Bollen, Kirby, & Chen,

2001). In the two previous simulations, it is not clear how parameters were chosen,

although we speculate that it was based on a combination of logic and previous ex-

perience of the investigators. Therefore, it is not clear how well previous results

generalize to MTMM situations that researchers are likely to face when analyzing

real data. This issue is addressed in our study.

In summary, given (a) Lance et al.’s (2002) conceptual (algebraic) results that

suggest that CU model estimates of trait loadings and correlations are potentially

biased; (b) the Marsh and Bailey (1991) and Tomás et al. (2000) simulation results

suggesting that there is little, if any, bias in CU estimates; (c) the unknown

generalizability of the previous simulations’ results; (d) the relatively common re-

liance on the CU method to solve convergence problems associated with the

CTCM method; and (e) the significance, for the validity of substantive research

conclusions, of the assumption that CU parameter estimates are relatively free of

bias, further investigation of the accuracy of CU model estimates is needed. Thus,

the general purpose of this study was to determine the extent of bias in trait factor

loadings and trait intercorrelations under the CU model for a variety of representa-

tive sets of MTMM model parameters, including a condition with high method

correlations and high method loadings. Therefore, we hope to offer guidance as to
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conditions under which the CU model is (not) likely to yield accurate estimates of

trait parameters.

METHOD

Literature Review

We undertook the following steps to design the simulation study (see Paxton et al.,

2001). First, to ensure ecological validity, we examined large-scale reviews of

MTMM studies in applied research. MTMM studies were defined broadly (Kenny,

1995), to include instrument-based, rater-based (so-called multitrait-multirater ma-

trices), and temporally based methods (so-called multitrait-multioccasion matri-

ces). Five large-scale reviews were identified and reviewed (Buckley, Cote, &

Comstock, 1990; Conway, 1996; Hernandez & Gonzalez-Roma, 2002; Lievens &

Conway, 2001; Williams, Cote, & Buckley, 1989). The Becker and Cote (1994) re-

view was not included because the studies overlapped considerably with other re-

views.Overall, these large-scale reviewsincluded147individualMTMMmatrices.

Second, based on this literature review, we made informed decisions regarding

MTMM study design and the population values of the parameters of interest to this

study. Table 1 presents the descriptive statistics of each variable of interest (i.e.,

sample size, the number of traits, the number of methods, mean trait loading, mean

trait correlation, mean method loading, and mean method correlation) across the

MTMM matrices retrieved by the literature review. For factor loadings and corre-

lations, we used estimated values for the CTCM model (this is the only model that
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TABLE 1

Results of Literature Review and Population Parameter

Values in Simulation

Literature Review Values
Simulation

ValuesM Mdn SD Min Max 25th 75th

Sample sizea 232.14 125 309.27 27 2163 82 261 125 and 500

Number of methods 2.92 3 .95 2 8 2 3 3

Number of traitsa 4.5 4 2.03 2 11 3 5 3 and 5

Trait loadings .55 .57 .17 .11 .93 .42 .69 .60

Trait correlations .41 .44 .30 –.58 1.00 .28 .61 .50

Method loadingsa .50 .48 .18 .00 .84 .37 .65 .35, .50, and .65

Method correlationsa .28 .31 .33 –1.00 .91 .16 .49 .10, 30, and .50

Note. Due to missing values, N varies between 109 and 147. Mdn = median; Min = minimum;

Max = maximum
aThese variables were manipulated in the simulation study.



provides all necessary information), averaged across all values within a study (e.g.,

the mean trait factor loading for a study). The last column of Table 1 shows the val-

ues chosen in the simulation.

As a general rule we decided that, in case of manipulated variables (e.g., mean

method correlation), the 25th percentile, 50th percentile (the median), and the 75th

percentile were chosen as population parameter values. If a variable was held con-

stant (e.g., mean trait loading), the median was chosen as population parameter

value. However, we deviated slightly from these general rules for some variables

because we had to make trade-offs among ecological validity, feasibility, and an-

swering our research questions (Paxton et al., 2001). In particular, to keep the sim-

ulation manageable, we included only two values for the sample size variable, N =

125 (i.e., the median value from our review) and N = 500. Although the latter value

clearly exceeded the 75th percentile value from our review, we chose this value be-

cause it replicated the sample size value chosen by the two earlier simulation stud-

ies (Marsh & Bailey, 1991; Tomás et al., 2000). We also included only two values

for the matrix size variable, a matrix with three traits and three methods and a

MTMM matrix with five traits and three methods. As shown in Table 1, the number

of methods chosen in our simulation conformed to the median value from our re-

view and the two values chosen for the number of traits conformed to the 25th and

75th percentiles.

Design

Four variables were manipulated: the mean method factor loading for a matrix, the

mean method factor correlation for a matrix, the sample size, and the matrix size.

Mean method loading and mean method correlation each had three levels. Mean

method loadings were .35, .50, and .65 (the 25th, 50th, and 75th percentiles were

actually .37, .48, and .65, see the last column in Table 1). Mean method correla-

tions were .10, .30, and .50 (the 25th, 50th, and 75th percentiles were actually .16,

.31, and .49, see the last column in Table 1). Method parameters varied within ma-

trix. For example, within-matrix method loadings varied by ±.20 around the mean

value for the matrix (.20 is approximately the method loading standard deviation in

Table 1, .18). See the Appendix for a complete description of parameters and an

example of values for the 3 × 3, high method loading, high method correlation con-

dition. Sample size had two levels. These levels were N = 125 and N = 500. Matrix

size had two levels: a MTMM matrix with three traits and three methods and a

MTMM matrix with five traits and 3 methods. Crossing the levels of these four

variables yielded a 3 × 3 × 2 × 2 factorial design.

The other matrix characteristics were held constant, namely mean trait factor

loading and mean trait factor correlation. Mean trait loadings were held constant at

.60 (the median value was actually .57) and mean trait correlations at .50 (the median
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value was actually .44). As with method parameters, the trait parameters varied

withinmatrix.Forexample, trait loadingsvariedfrom.40to .80or themedian±.20.

Simulation and Analysis of Data

For each of the 36 cells (three method loading conditions × three method correla-

tion conditions × two sample size conditions × two matrix size conditions) we used

PRELIS 2 (Jöreskog & Sörbom, 1996) to generate 100 sample MTMM matrices

with normally distributed variables, yielding a total of 3,600 matrices. We then

used LISREL 8 (Jöreskog & Sörbom, 1993) to fit the CU model to each matrix us-

ing maximum likelihood estimation. Although not directly related to the study’s

purpose, we also fitted the CTCM model to each matrix.

RESULTS

Estimation Problems

We considered a solution to be appropriate if it had no estimation problems, that is,

if the solution converged and had no out-of-range estimates (standardized factor

loadings or factor correlations greater than 1.00 in absolute value or negative

unique variances). Percentages of appropriate solutions by condition appear in Ta-

ble 2. The CU model produced appropriate solutions for 3,494 of the 3,600 solu-

tions (more than 97%). There was a tendency for more inappropriate solutions

with N = 125 than with N = 500 (not surprising, due to greater sampling error for N

= 125), but unexpectedly this only tended to happen when method correlations

were low. This result was surprising because the CU model should be more appro-

priate (and show less bias) when method correlations are low, because the CU

model implicitly assumes orthogonal method factors. We do not have an explana-

tion for this finding.

Goodness of Fit

We based our decisions regarding model fit on Hu and Bentler’s (1999) criteria.

They concluded that relatively stringent fit criteria should be used and recom-

mended the standardized root mean squared residual (SRMSR) along with at

least one other fit index such as the Tucker-Lewis Index (TLI), the root mean

square error of approximation (RMSEA), or both. Their proposed cutoffs for

good fit were .08 or lower for the SRMSR, .95 or higher for the TLI, and .06 or

lower for the RMSEA. We defined a well-fitting model as one that met all three

of these criteria.
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TABLE 2

Percentages of CU Solutions That Were Appropriate

and That Showed Good Fit

Method Correlations

Method Loadings .50 (High) .30 (Medium) .10 (Low)

High Method Loading (.55)

3 × 3

N = 125

% Appropriate 100 98 94

% Good fit 1 11.2 83

N = 500

% Appropriate 100 100 100

% Good fit 0 0 93

5 × 3

N = 125

% Appropriate 97 98 96

% Good fit 5.2 29.6 80.2

N = 500

% Appropriate 100 100 100

% Good fit 0 43 100

Overall

% Appropriate 99.3 99 97.5

% Good fit 1.5 21 89.2

Medium Method Loading (.35)

3 × 3

N = 125

% Appropriate 99 96 83

% Good fit 31.3 49 84.3

N = 500

% Appropriate 100 100 100

% Good fit 2 38 100

5 × 3

N = 125

% Appropriate 99 94 85

% Good fit 44.4 63.8 91.8

N = 500

% Appropriate 100 100 100

% Good fit 45 94 100

Overall

% Appropriate 99.5 97.5 92

% Good fit 30.7 61.3 94.6

Low Method Loading (.15)

3 × 3

N = 125

% Appropriate 99 94 89

% Good fit 50.5 56.4 69.7

(continued)



Table 2 shows the percentages of matrices with good CU model fit in each con-

dition (note that these figures were computed considering only those solutions that

contained no improper parameter estimates as described earlier). The most striking

finding was the fact that less than 2% of appropriate solutions met the fit criteria in

the high method loading, high method correlation condition. In general, as method

loadings and method correlations decreased, the fit of CU solutions increased; in

the low-low condition 87.5% of appropriate solutions met the stringent fit criteria.

These findings suggest that the fit of the CU model is sensitive to method effects.

The larger the product of mean method loading and mean method correlation, the

less likely the CU model was to meet the fit criteria; in the case in which the largest

bias was expected (the high-high condition) the CU model almost never met the fit

criteria. The fit criteria that we used might therefore serve as one indication of

whether the CU model is likely to produce substantially biased trait estimates (see

Discussion).

Accuracy of CU Model Trait Estimates

ANOVA: trait factor loadings. As one approach to investigating the accu-

racy of CU model trait estimates, we conducted two separate ANOVAs: one for

trait factor loadings and one for trait factor correlations. Results from all appropri-

ate CU solutions (those containing no improper parameter estimates) were in-

cluded. We conducted the ANOVAs with the individual parameter estimate as the
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N = 500

% Appropriate 100 100 100

% Good fit 40 84 99

5 × 3

N = 125

% Appropriate 98 95 86

% Good fit 55.1 71.6 77.9

N = 500

% Appropriate 100 100 100

% Good fit 81 95 100

Overall

% Appropriate 99.5 97.3 93.8

% Good fit 56.7 77.1 87.5

Note. Appropriate solutions were those with no estimation problems. Percents of samples show-

ing Good Fit are shown in italics and are calculated as the percentage out of all Appropriate solutions.

CU = correlated uniqueness.

TABLE 2 (Continued)

Method Correlations

Method Loadings .50 (High) .30 (Medium) .10 (Low)



unit of analysis; thus, each matrix contributed multiple cases. The dependent vari-

ables were deviations calculated as the CU parameter estimate minus its corre-

sponding population value. We refer to these scores as errors. Positive errors repre-

sent overestimations and negative errors represent underestimations. For the trait

loading ANOVA, there were 41,979 cases, and for the trait correlation ANOVA,

there were 22,733 cases.

The independent variables were mean method loading (three levels; .65, .50,

and .35), mean method correlation (three levels; .50, .30, and .10), N (two levels;

500 and 125), matrix size (two levels; 3 × 3 and 5 × 3), and parameter value. Pa-

rameter value took on five levels for trait loadings (3 × 3 matrices had values of .4,

.6, and .8; 5 × 3 matrices had values of .4, .5, .6, .7, and .8) and 10 levels for trait

correlations. We estimated all main effects, two-way interactions, and three-way

interactions. We did not evaluate statistical significance because of the unusually

high power afforded by the sample sizes. Instead, we used η2 values of .01 or

greater (1% of the variance accounted for) as our criterion for interpreting an effect

that was practically significant.

Results of the ANOVA for trait factor loadings appear in Table 3. Three main ef-

fects showed η2 of at least .01: mean method loading (η2 = .032), mean method

correlation (η2 = .081), and parameter (η2 = .362). As expected, positive bias in

trait factor loadings was highest when the mean method loading was .65 (mean er-

ror = .063) and decreased when the mean method loadings were .50 (mean error =

.049) and .35 (mean error = .023). In addition, as expected, positive bias in trait fac-

tor loadings was highest when the mean method correlation was .50 (mean error =

.080) and decreased when the mean method correlations were .30 (mean error =

.043) and .10 (mean error = .012). The large effect for parameter value was not ex-

pected, and we explore it in more detail later. In addition, three two-way interac-

tions had relatively large effect sizes. As we expected, the method loading-method

correlation interaction (η2 = .012) showed that bias was greatest when both method

loadings and method correlations were high. There were unexpected interactions

for mean method correlation × parameter (η2 = .042) and parameter × matrix size

(η2 = .120).

Mean errors by conditions: trait factor loadings. To interpret the trait fac-

tor loading effects in more detail, we examined mean errors for the various condi-

tions. Table 4 contains mean errors for all conditions except different levels of pa-

rameter values. There are so many levels of parameter values that we chose to

address this independent variable separately (see later).

The overall values in Table 4 represent the mean errors for each combination

of method loading and method correlation. These means are also shown graphi-

cally in Figure 1. The pattern is consistent with our hypothesis that the combina-

tion of high method factor loadings and high method correlations would produce

substantial bias; the high-high condition showed the highest mean error .117—a
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substantial amount of overestimation. There was also substantial overestimation

in the medium method loading, high method correlation condition: a mean error

of .083. Mean errors decreased as both method loading and method correlation

decreased, to a low of .005 (very slight overestimation) for the low-low con-

dition.

Results for different parameter values are shown in Table 5. Note that param-

eter had a main effect and also interactions with mean method correlation and

matrix size. Rather than present all means necessary to fully explicate these ef-

fects, we present results for the most extreme case to show what can happen and

then comment on differences by method correlation and matrix size. Table 5

presents mean errors by parameter value for the high method correlation, 3 × 3
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TABLE 3

ANOVA Results for Trait Factor Loadings and Trait Factor Correlations

Trait Factor

Loadings

Trait Factor

Correlations

Source of Variance F η2 F η2

A. Mean method loading 686.04 .032 465.27 .039

B. Mean method correlation 1845.65 .081 1860.87 .138

C. Parameter value 5951.30 .362 40.71 .016

D. Sample size 1.38 .000 8.06 .000

E. Matrix size 27.24 .001 74.66 .003

A × B 129.08 .012 70.64 .012

A × C 12.39 .002 4.61 .004

A × D 1.41 .000 .25 .000

A × E 24.94 .001 10.95 .001

B × C 227.59 .042 8.67 .007

B × D .02 .000 4.57 .000

B × E 6.24 .000 2.24 .000

C × D .68 .000 .96 .000

C × E 3005.17 .126 2.81 .000

D × E .11 .000 .47 .000

A × B × C 4.67 .002 1.20 .002

A × B × D .95 .000 1.98 .000

A × B × E 2.95 .000 1.89 .000

A × C × D .23 .000 1.47 .001

A × C × E 8.12 .001 1.56 .000

A × D × E .65 .000 .56 .000

B × C × D .86 .000 .79 .001

B × C × E 38.65 .004 1.56 .000

B × D × E .04 .000 1.12 .000

C × D × E .17 .000 1.03 .000

Note. Italicized η2 values exceeed .01, our criterion for interpreting an effect. ANOVA = analysis

of variance.



matrix condition (collapsed across the two N’s); this was the condition with the

most extreme results.

Table 5 shows that overestimation of trait factor loadings was greatest for pa-

rameter values of .40 and least for parameter values of .80. The three loadings with

parameter values of .40 had an average bias of .25, which is very substantial. The

loadings with parameter values of .60 had an average bias of .15 (still substantial),

whereas loadings with parameter values of .80 had an average bias of only .01. The

pattern of greater bias for lower parameters holds across conditions not shown in

Table 5, although the differences are smaller. Regarding the interaction between

parameter value and mean method correlation: for the high method correlation

condition (collapsed across method loading, matrix size, and N) the difference in

bias for .40 parameter values versus .80 parameter values was relatively large at .18

versus –.05, respectively, whereas for the low method correlation condition the dif-

BIAS IN THE CORRELATED UNIQUENESS MODEL 547

TABLE 4

Mean Errors (Standard Deviations in Parentheses) for Trait Factor

Loadings by Condition

Method Correlations

Method Loadings .50 (High) .30 (Medium) .10 (Low)

High method loading (.55)

3 × 3

N = 125 .136 (.168) .068 (.173) .021 (.176)

N = 500 .132 (.156) .067 (.160) .017 (.165)

5 × 3

N = 125 .109 (.098) .049 (.076) .016 (.068)

N = 500 .104 (.073) .051 (.049) .012 (.037)

Overall .117 (.121) .057 (.114) .016 (.113)

Medium method loading (.35)

3 × 3

N = 125 .084 (.167) .048 (.170) .014 (.180)

N = 500 .084 (.154) .048 (.157) .014 (.164)

5 × 3

N = 125 .085 (.107) .052 (.094) .015 (.089)

N = 500 .081 (.083) .046 (.060) .014 (.043)

Overall .083 (.124) .048 (.118) .014 (.118)

Low method loading (.15)

3 × 3

N = 125 .041 (.173) .024 (.179) .003 (.187)

N = 500 .041 (.153) .023 (.160) .007 (.167)

5 × 3

N = 125 .037 (.097) .022 (.090) .004 (.093)

N = 500 .040 (.064) .023 (.053) .005 (.047)

Overall .039 (.119) .023 (.119) .005 (.122)



ference was .05 versus –.07. Findings were similar for the interaction between pa-

rameter value and matrix size: 3 × 3 matrices had a larger difference (.15 for .40 pa-

rameter values vs. –.11 for .80 values) than did 5 × 3 matrices (.09 vs. –.01,

respectively). Results for parameter value are important because they show that the

CU model (a) tends to homogenize parameter estimates relative to their population

values and (b) can return parameter estimates that are substantially biased.
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FIGURE 1 Mean errors for trait factor loadings.

TABLE 5

Trait Loading Parameters, Mean Sample Estimates, and Mean Errors

for the High-Method Loading, High-Method Correlation Condition

(Collapsed Across N’s)

Trait 1 Trait 2 Trait 3

Method 1

Parameter .40 .60 .80

Mean Estimate (.700) (.809) (.852)

Mean Error +.300 +.209 +.052

Method 2

Parameter .80 .40 .60

Mean Estimate (.820) (.649) (.744)

Mean Error +.020 +.249 +.144

Method 3

Parameter .60 .80 .40

Mean Estimate (.692) (.748) (.590)

Mean Error +.092 –.052 +.190



ANOVA: trait factor correlations. As shown in Table 4, the ANOVA for

trait factor correlations showed three substantial main effects: mean method load-

ing (η2 = .039), mean method correlation (η2 = .138), and parameter value (η2 =

.016). As expected, positive bias in trait factor correlations was highest when the

mean method loading was .65 (mean error = .082) and decreased when the mean

method loadings were .50 (mean error = .075) and .35 (mean error = .039). In addi-

tion, as expected, positive bias in trait factor correlations was highest when the

mean method correlation was .50 (mean error = .112) and decreased when the

mean method correlations were .30 (mean error = .063) and .10 (mean error =

.019). There was only one interaction with a substantial effect size: the predicted

two-way interaction between mean method loading and mean method correlation

(η2 = .012). As expected, bias in estimated trait factor correlations was greatest

when both mean method loadings and mean method correlations were high.

Mean errors by conditions: trait factor correlations. Next, we examined

mean errors in greater detail for our different conditions. Table 6 contains mean er-

rors for all conditions except different levels of parameters (again discussed sepa-

rately). These means are shown graphically in Figure 2. As with trait factor load-

ings, the overall values in Table 6 supported our hypothesis: the combination of

high method loading and high method correlation produced the greatest bias. The

mean bias for the high-high condition was .148, whereas mean bias for the low-low

condition was only .013. Also similar to trait loading results, there was substantial

overestimation in the medium method loading, high method correlation condition,

with a mean error of .124.

Differences in bias as a function of the parameter value (which ranged from

.330 to .720) were much smaller than for trait factor loadings. The mean bias for

parameter of .330 (collapsed across all other independent variables) was .075, and

for the parameter of .720 it was .048.

Supplementary Analyses: The CTCM Model

As a supplementary set of analyses, we fit the CTCM model to each matrix to par-

allel the CU model analyses. The CTCM model’s tendency to produce appropriate

solutions varied dramatically depending on N and matrix size, as shown in Table 7.

Results for 3 × 3 matrices were poor and consistent with previous findings; for N =

125, only about 6% of solutions were appropriate, containing no improper parame-

ter estimates, and for N = 500, about 30% were appropriate. These findings are

consistent with previous research (e.g., Marsh & Bailey, 1991). The results for 5 ×

3 matrices were markedly better: for N = 125, 59% were appropriate and for N =

500, 88% were appropriate. These findings are consistent with Lance et al.’s

(2002) prediction that empirical underidentification problems should be less

threatening in MTMM matrices that are larger than the minimum 3 trait × 3
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method design. Fit for the CTCM model was also best for 5 × 3, N = 500. Other

conditions often failed to meet the fit criteria.

We calculated errors for the CTCM model as we did for the CU model, by

taking the difference between an estimate and its parameter. For trait loadings,

the mean error across all conditions was –.01, indicating almost no bias. For trait

correlations, the mean error was –.02. We conducted ANOVAs like those for the

CU model but no main effect or interaction effect showed a η2 value of .01 or

above. This indicated that none of the independent variables had any meaningful

effects on the degree of bias, and we do not present mean errors separately by

condition.

One intriguing finding was the relatively high percentage of appropriate solu-

tions for the CTCM model in the 5 × 3, N = 500 condition. The fact that perfor-

mance was considerably better in this condition than for either 3 × 3, N = 500 or 5 ×
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TABLE 6

Mean Errors (Standard Deviations in Parentheses) for Trait Factor

Correlations by Condition

Method Correlations

Method Loadings .50 (High) .30 (Medium) .10 (Low)

High method loading (.55)

3 × 3

N = 125 .179 (.079) .097 (.081) .029 (.100)

N = 500 .173 (.050) .095 (.047) .029 (.050)

5 × 3

N = 125 .143 (.088) .069 (.089) .010 (.098)

N = 500 .137 (.045) .077 (.049) .019 (.045)

Overall .148 (.071) .078 (.071) .018 (.077)

Medium method loading (.35)

3 × 3

N = 125 .132 (.099) .086 (.099) .033 (.107)

N = 500 .125 (.048) .083 (.052) .026 (.048)

5 × 3

N = 125 .126 (.090) .066 (.102) .023 (.109)

N = 500 .119 (.048) .071 (.051) .025 (.052)

Overall .124 (.073) .072 (.080) .025 (.083)

Low method loading (.15)

3 × 3

N = 125 .069 (.111) .035 (.114) .017 (.108)

N = 500 .075 (.050) .043 (.049) .014 (.055)

5 × 3

N = 125 .063 (.107) .032 (.118) .015 (.118)

N = 500 .062 (.054) .041 (.054) .010 (.055)

Overall .064 (.085) .037 (.090) .013 (.089)
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TABLE 7

Percentages of CTCM Solutions that are Appropriate

and that Show Good Fit

Method Correlations

Method Loadings .50 (High) .30 (Medium) .10 (Low)

High Method Loading (.55)

3 × 3

N = 125

% Appropriate 4 6 9

% Good fit 100 33.3 77.8

N = 500

% Appropriate 32 33 65

% Good fit 100 0 93.8

5 × 3

N = 125

% Appropriate 78 74 73

% Good fit 97.4 28.4 78.1

N = 500

% Appropriate 98 95 99

% Good fit 63.3 43.2 100

Overall

% Appropriate 53 52 61.5

% Good fit 82.1 30.8 91.1

Medium method loading (.35)

3 × 3

N = 125

% Appropriate 9 5 10

% Good fit 44.4 40 90

N = 500

% Appropriate 23 22 49

% Good fit 0 50 100

5 × 3

N = 125

% Appropriate 66 55 73

% Good fit 54.5 74.5 91.8

N = 500

% Appropriate 91 91 97

% Good fit 42.9 94.5 100

Overall

% Appropriate 47.25 43.25 57.25

% Good fit 41.8 80.9 96.9

Low method loading (.15)

3 × 3

N = 125

% Appropriate 5 4 5

% Good fit 40 50 80

(continued)



3, N = 125, suggests that the combination of a large number of variables and a large

N facilitates good CTCM performance. It seems likely that the relatively large

number of degrees of freedom due to the large number of variables, coupled with

the small amount sampling error due to the large N, results in better estimation of

CTCM parameters. To explore this finding further we generated data for an addi-

tional condition (100 additional samples). This condition maintained N = 500 but

increased the number of variables, using a 7 trait × 4 method matrix (this condition

is similar to Marsh & Bailey’s 1991 analysis of a 7 × 4 matrix based on real data

with a large N). There were 28 observed measures and 295 df for the CTCM model,

as compared to the 12 df in the 3 × 3 condition and 62 df in the 5 × 3 condition. We

specified trait factor loading parameters varying from .45 to .75 (in increments of

.05), with a mean of .60. Method factor loading parameters varied from .35 to .65

(in increments of .05), with a mean of .50. Trait factor correlation parameters var-

ied from .33 to .68 with a mean of .488; method factor correlation parameters var-

ied from .20 to .42 with a mean of .298.

We fit the CTCM model to each of the 100 correlation matrices; 99 showed ap-

propriate solutions and all 99 met the fit criteria. Mean estimates were almost ex-

actly the same as parameters: the mean errors were –.004 for trait factor loadings

and –.01 for trait factor correlations (showing no evidence of bias). This finding,

consistent with Marsh and Bailey’s (1991) and Lance et al.’s (2002) prediction, in-

dicates that the CTCM model can perform quite well but that the study design

needs to go well beyond the typical matrix size and N.
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N = 500

% Appropriate 14 11 19

% Good fit 42.9 81.8 100

5 × 3

N = 125

% Appropriate 34 33 42

% Good fit 55.9 75.8 81

N = 500

% Appropriate 70 82 73

% Good fit 78.6 95.1 100

Overall

% Appropriate 30.75 32.5 34.75

% Good fit 66.7 87.7 93.5

Note. Appropriate solutions are those with no estimation problems. Percents of samples showing

good fit are shown in italics and are calculated as the percentage out of all appropriate solutions. CTCM

= correlated trait–correlated method.

TABLE 7 (Continued)

Method Correlations

Method Loadings .50 (High) .30 (Medium) .10 (Low)



DISCUSSION

Our simulation confirmed empirically what our algebraic argument suggested

should be true—that when the product of the method loadings and method correla-

tions is relatively large, the CU model is likely to yield biased estimates of trait fac-

tor loadings and trait factor correlations. This finding extends what previous simu-

lation studies have shown. Other simulations (Marsh & Bailey, 1991; Tomás et al.,

2000) have concluded that even relatively large method loadings and inter-

correlations have only minor biasing effects on CU estimates of trait parameters.

Our results are consistent with that conclusion, if the method loadings and method

correlations are not both in their upper ranges. However, if the two types of method

parameters simultaneously take on fairly large, but realistic, values, our findings

show that CU estimates of the trait parameters can be substantially biased. Previ-

ous research had examined the effects of relatively large method factor loadings

and the effects of relatively large method factor correlations but had not considered

the two simultaneously.

Our study would be theoretically interesting, but of little practical importance,

if the parameter values in our simulation represented extreme conditions that sel-

dom arise in empirical research. We emphasize that this is not the case. All of the

parameter values used in this research were based on our survey of the ranges of

values that have appeared in published studies employing the MTMM approach

(see Table 1). The high values in this study, representing approximately the 75th

percentiles of those ranges, are hardly extreme. Therefore, it is reasonable to as-

sume that the conditions we simulated in this study are realistic representations of

the conditions present in MTMM research.

The most significant question this raises is whether the biases that we have

demonstrated are serious enough to affect substantive research conclusions. The

possibility that it has is demonstrated by a pair of articles by Lievens and Conway

(2001) and Lance, Lambert, Gewin, Lievens, and Conway (2004). Lievens and

Conway (2001) used the CU model to measure dimension- and exercise-related

variance in a large number of assessment center (AC) studies. They concluded that,

on average, AC ratings exhibit approximately equal amounts of dimension and ex-

ercise variance. This finding was somewhat at odds with conventional wisdom

based on prior qualitative and quantitative AC research. A subsequent reanalysis

(Lance et al., 2004), which used most of the same data but was based on other theo-

retically defensible CFA models (e.g., one-dimension correlated exercises and/or

zero-dimension correlated exercises), supported the conventional thinking that ex-

ercise variance generally dominates over dimension variance.

The implications of the Lievens and Conway study for construct validity and for

the best practical use of AC ratings are quite different from those of the Lance et al.

study. Theoretically, the Lance et al. study suggests a lack of construct validity for

AC dimension ratings (at least in terms of the traditional view that ACs are de-
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signed to measure stable dimensions), whereas the Lievens and Conway study pro-

vides more reason for optimism about that construct validity. On a practical level,

the Lievens and Conway study suggests that, in some cases, it is appropriate to use

dimensional AC ratings to provide assessees with feedback about their strengths

and weaknesses. The Lance et al. results cast doubt on that, suggesting instead that

AC ratings should only be used as indicators of overall performance.

The important point here is that the CU model led researchers to a different sub-

stantive conclusion than the other models did. The same kind of thing could hap-

pen in other areas of MTMM research anytime the CU model is used. Perhaps it al-

ready has. That leads to another important question. How should the MTMM

researcher proceed, given the estimation problems associated with the CTCM

model and the possible bias associated with the CU model?

Our results lend empirical support to the recommendation made by Lance et al.

(2002) that researchers should prefer, on a theoretical basis, the CTCM model or

somevariant thereof (seeLanceetal.,2002;Widaman,1985)over theCUmodel.We

reemphasize that the CTCM model is just one of a family of models, any one of

which might be the most appropriate for a given situation. As discussed by Lance et

al. (2002), other members of that family (e.g., the one-dimension correlated exer-

cises model in Lance et al., in press) might well be more theoretically and empiri-

cally appropriate than is the CTCM model. Estimation problems associated with the

CTCMmodelaresometimeseliminatedbyuseofadifferentmodel fromthatgroup.

Our results also indicate that, all else being equal, larger MTMM matrices (i.e.,

those with more traits and methods) based on larger samples tend to converge and

to yield admissible CTCM solutions more frequently than do smaller matrices,

matrices based on relatively small samples, or both. Therefore, we suggest that re-

searchers incorporate more traits and methods into their studies and that, if possi-

ble, they gather samples considerably larger than the typical size of about 125. Per-

formance in our N = 500 condition was clearly superior to the N = 125.

Of course, it is still possible, even with larger matrices, larger samples, and

more theoretically appropriate models, that the researcher will still be plagued

with estimation problems. If the researcher encounters persistent estimation prob-

lems, or if the CTCM solution contains unduly large standard errors, the CU model

might well provide a plausible solution. The question then becomes one of whether

or not that solution is accurate.

Our study suggests that when the true method factor loadings or method factor

correlations are small to moderate, CU estimates of the trait parameters are likely

to exhibit only relatively small positive biases. In those cases, it would certainly be

reasonable to argue that having a solution with minor biases is superior to having

no solution at all. Unfortunately, of course, outside of simulation studies the true

values of the method parameters are never known.

Assuming that the CTCM and related models fail and that the CU model yields

a convergent and admissible solution, we suggest one criterion that researchers
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might use to assess the potential accuracy of the estimated trait parameters in a CU

solution. We have shown that the CU model is theoretically most appropriate (or

perhaps least inappropriate) in cases in which intercorrelations among the method

factors or method factor loadings are low. Although the percentage of cases (see

Table 2) in which the CU model yields appropriate solutions does not vary greatly

according to the magnitudes of the method correlations, the percentage of admissi-

ble solutions that show good fit increases dramatically as the method correlations

move down toward zero. This is true for all matrix sizes and for both sample sizes.

This means that the great majority of CU solutions in our simulation that exhibited

both admissible parameter estimates and good overall fit statistics came from the

low method correlations condition. We believe this fact can be used as follows in

assessing the likely accuracy of a CU solution.

If the CTCM and related models fail, but the CU model succeeds in returning an

admissible solution, then the researcher should check the goodness-of-fit statistics

(SRMSR, TLI, and RMSEA). An admissible CU solution that also has acceptable

levels of each of these goodness-of-fit statistics is likely to be the product of a situ-

ation in which the intermethod correlations were low (i.e., a situation in which the

CU method is most likely to yield the least biased results).

Limitations and Suggestions for Future Research

One limitation of our simulation study is that we do not know precisely how well our

results generalize to real research settings. For example, generalizability will de-

pend on the correctness of our assumption that the CTCM model holds for the popu-

lation. We generated our data based on a CTCM population model, and our results

are valid to the extent that this actually occurs in real data. However, just as we never

know the true levels of method correlations or method loadings in real data, we never

know exactly what population model is true. For example, Lance et al. (2004) argued

that more restricted models are theoretically defensible for AC data. Still, we believe

that whenever there are correlated method factors (which we believe is likely in real

data) the CU model will tend to overestimate trait parameters.

Another issue is our choice of parameter values. We believe the mean values

generalize well, but different research situations will vary in how the loadings and

correlations are distributed around the means. For example, we observed the high-

est bias in loadings with the highest parameters, and that effect may decrease if the

spread of the loadings is less than in our simulation. Nevertheless, we are confident

that our overall conclusion about bias in CU trait estimates will generalize to actual

research settings.

We did not look at bias in method factor loadings or correlations. This was

because our theoretical rationale focused on upward bias in trait parameter esti-

mates. However, we could also speculate on downward bias in method esti-

mates, and this could be a useful path for future research. Scullen’s (1999) tech-
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nique for estimating the proportion of method variance for CU solutions could

be used to see how often out-of-range estimates appear and how biased the

method loadings are.

SUMMARY

Although prior simulation studies have suggested that the CU model yields only

trivially biased estimates of trait factor loadings and trait factor correlations, our

simulation study shows that this is not true in all cases. In cases in which method

factors are both fairly substantial and highly intercorrelated, the trait parameters

are likely to be positively biased. This has the potential to lead to inappropriate

conclusions regarding construct validity. It is important for researchers to be wary

of CU model estimates of trait parameters.

We urge researchers to consider the CTCM or other theoretically appropriate

models from Widaman’s (1985) taxonomy before turning to the CU model. Our re-

sults suggest a number of strategies that researchers can use to increase their likeli-

hood of success with the CTCM and related models, as well as some strategies that

might be useful for evaluating a solution in those cases in which the CU model is

the only alternative.
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APPENDIX

Trait factor loading parameters were chosen by specifying the constant (across ma-

trices) mean value of .60 and then varying the loadings within-matrix by ±.20

around the mean value. For the 3 × 3 matrices (as shown later), the loadings

within-matrix took on values of .40, .60, and .80. For the 5 × 3 matrices, values still

ranged from .40 to .80 but in increments of .10 rather than .20. As shown later, trait

loadings always averaged .60 within-trait as well as within-method.

Method factor loading parameters were specified in a similar way; loadings var-

ied by ±.20 around the mean value for the condition (e.g., from .45 to .85 in the

condition in which the mean method loading was .65). For the 3 × 3 matrices as

shown later, loadings varied in increments of .20. For the 5 × 3 matrices the incre-

ments were of .10. Average loadings for a matrix were equal within-traits and

within-methods. A final constraint on method loadings was that variables with

high trait factor loadings (e.g., .80) were assigned relatively low method factor

loadings (e.g., .45).

Specification of trait factor correlation parameters began by specifying the sec-

ond-order loadings of the trait factors on a general factor to account for correla-

tions among traits (following Marsh & Bailey, 1991). For the 3 × 3 condition we

specified second-order loadings of .90, .70, and .55; these loadings produced the

trait factor loadings shown later, with a mean of .505 (very close to our desired

value of .50). For the 5 × 3 condition the second-order loadings were .9, .8, .7, .6,

and .55, giving a mean correlation of exactly .50.

We used a similar approach to specifying method factor correlation parameters.

Second-order loadings by condition were .90, .70, and .55 (high condition, mean
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factor correlation = .505), .80, .60, and .30 (medium condition, mean factor corre-

lation = .30), and .50, .40, and .10 (low condition, mean factor correlation = .097).
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Factor Correlations

T1 T2 T3 M1 M2 M3

T1 1.000

T2 .630 1.000

T3 .495 .385 1.000

M1 .000 .000 .000 1.000

M2 .000 .000 .000 .630 1.000

M3 .000 .000 .000 .495 .385 1.000

Factor Loadings

T1 T2 T3 M1 M2 M3

T1M1 .40 .85

T2M1 .60 .65

T3M1 .80 .45

T1M2 .80 .45

T2M2 .40 .85

T3M2 .60 .65

T1M3 .60 .65

T2M3 .80 .45

T3M3 .40 .85

FIGURE 2 Mean errors for trait factor correlations.


