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Bias of Mean Value and Mean Square Value 

Measurements Based on Quantized Data 
Istvan Kollar, Senior Member, IEEE 

Abstract- This paper investigates the imperfect fulfillment 
of the validity conditions of the noise model quantization. The 
general expressions of the deviations of the moments from Shep- 
pard's. corrections are derived. Approximate upper and lower 
bounds'of the bias are given for the measurement of first- and 
second-order moments of sinusoidal, uniformly distributed, and 
Gaussian signals. It is shown that because of the uncontrollable 
mean value at the input of the ADC (offset, drift), the worst-case 
values have to be investigated; it is illustrated how a simple- 
form envelope function of the errors can be used as an upper 
bound. Since the worst-case relative positions of the signal and 
the quantization characteristics are taken into account, the results 
are valid for both midtread and midrise quantizers, while in the 
literature results are given for a selected quantizer type only. 

F ROM the statistical point of view, uniform quantization 

can usually be described by the so-called noise model: the 

effect of the quantizer is modeled by an additive, independent 

noise, uniformly distributed in ( - 9 1 2 ,  q / 2 ) ,  where q  is the 

quantum size [I]-[7]. Moreover, it is often noted that the 

spectrum of the quantization noise samples is white [4], [7]. 

Usually, it is mentioned that the noise model is applicable if 

the quantum size q  is sufficiently small when compared to 

the amplitude or the standard deviation of the signal, and no 

saturation of the quantizer occurs. 

When the noise model may be applied, the mean value of 

the quantized data will be exactly equal to the mean value of 

the nonquantized random variable. 

since the mean value of nq is zero because of its uniform 

distribution in ( - q / 2 ,  q / 2 ) .  Similarly, for the mean square 
values, the following expression can be obtained: 
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Equations (1) and (2) yield the so-called Sheppard's cor- 

rections [I]-[3] for the first-order and the second-order case, 

respectively, 

The quantization theorem [I]-[6] gives the applicability con- 

ditions of the noise model. The probability density function of 

the quantization error,' nq = x q - x ,  can be expressed in the 

form of a complex Fourier series [I]-[5] 

q 
q < z L -  for - - 
2 -  2 

0  otherwise. (4) 

This distribution will be uniform when the characteristic 

function of the random variable to be quantized 

has zero values at certain points 

271-lc 
W(a)=O for a = - !  

9 
k =  f l ,  f 2 ,  . . .  (6) 

[4] and [5]. Condition (6), which is a sufficient and neces- 

sary one [4], holds e.g., when the characteristic function is 
bandlimited 

27r 
W(a)=O for l a l > - - .  9 (7) 

This condition can be exactly fulfilled in theory only, since 

a bandlimited characteristic function implies nonbandlimited- 

ness of the pdf (probability density function), which means the 

existence of infinitely large amplitudes. However, approximate 

fulfillment of the condition is possible. 

Another family of distributions, with a uniform quantization 

error, consists of the distributions that can be decomposed 

into the convolution of two distributions, one of which is a 

uniformly distributed component in ( - r q / 2 ,  r q / 2 ) ,  with r  

being a positive integer. The convolution of two distributions 

'Note that some of the literature, e.g., [4] and [ 5 ] ,  define the quantization 
error with the opposite sign, as 1 1 ,  = .r - .r 'I' 
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(or, in other words, of the two pdf's) corresponds to the 
J(z ,  

pdf of the quant~zarion error, q = l ,  A=7.6, p=o.4 

summation of two indevendent random variables. and to I n 
the multi~lication of the two characteristic functions. The 1 I\ 11 1 
characteristic function of this component is 

with zero values at the points 2rk:/rq,  k = *I, f 2 .  . 0 8 1  1 
When such an independent random variable is added to another 0.6 1 1 -1 
one, the resulting characteristic function also has zeros at the 0.41 1 I -1 
desired points. 0 . 2  1 I 4 

When the quantization error has uniform distribution, ,I I , 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 
Sheppard's second-order correction is valid if and only if - -  . 

I & { . 1 . 7 h q )  = 0. The expression of the correlation was derived 
I by Sripad and Snyder (41 

flz) pdf of the quentlzallon error, q = l ,  A=31 2, p=025 
2 I '  I '  I 

where the overdot denotes derivation. The condition of the 

uncorrelatedness is, in addition to (6 ) ,  that 

dW(a)  2 ~ k  
= O  for a=-- - .  

(lrr Y 

k: = il, f 2 ,  . . . .  

A condition, similar to (7),  is sufficient again 

27l 
W(tr) = 0 for It11 > - - E ,  E > 0. (1 1) 

Q 

Another possibility for the fulfillment of (10) is that the 

random variable has an independent, random component with 

triangle distribution in (-pq,pq) or, more generally, it has 

two independent, random components, uniformly distributed 

in (-rq/2,  rq /2)  and (--tq/2, tq/2) ,  respectively, with p,  r., t 
positive integers. 

However, the above conditions of the validity of the noise 

model are usually not exactly met. In such cases, the question 

arises: how large is the deviation from the ideal case. 

In this paper, this deviation is studied. In Section 11, an 

example is discussed, and the basic ideas are developed. 

Section 111 presents the derivation of the general formulas, 

while Section IV applies these results to common signals: 

Gaussian, uniformly distributed, and sinusoidal ones. 

11. AN EXAMPLE: QUANTIZATION OF A SINE WAVE 

The arising phenomena can be studied with the following 

example. Fig. 1 shows two typical quantization error pdf's for 

sine waves2 with peak value A and mean value p. It is obvious 

that the deviation from the uniform distribution depends on 

the ratio A/q: for larger values, the uniform distribution will 

be better approximated in the sense that the integral of the 

absolute value of the difference between the error pdf and the 

I uniform one will be small. It is also clear that the position 

1 of the interval of higher probability depends on the mean 

'It should he mentioned here that, throughout this paper, it is assumed 
that the measured signal is stationary. This assumption is violated when, e.g., 
sampling is done synchronously with the sine wave; in such cases, the idea.; 
of statistical quantization theory generally do not apply. 

Fig. 1. Probability density functions of the quantization errors of sine waves 
for a rounding (midtread) quantizer. 

value p: by changing p, the pdf will be circularly shifted in 

(-(112, q/2). When the higher probability interval is close to 

the left or to the right side, the mean value of the quantization 

error will significantly differ from zero; for the positions where 

the distribution of the quantization error is symmetrical, the 

mean is exactly zero. The second-order moment also depends 

on the mean value; therefore, it also has to be investigated as 

a function of IL. 

In measurements, the mean value of the signal usually 

cannot be exactly controlled; moreover, this is often the 

quantity to be measured. Therefore, it is not known which 

value of p occurred. There is no better way than to give an 

upper limit of the deviation from Sheppard's corrections. In 

the following sections, this limit will be given. 

Fig. 2 illustrates the behavior of the mean value of the 

quantization error, as a function of LL, for A = 7 . 6 ~ .  Clearly, 

it seems to be hopeless to obtain a simple analytical form 

of this function. What can be done is to find the maximum 

in a numerical way, and to investigate the behavior of this 

maximum for all reasonable values of A. Since the pdf of 

the discrete random variable x, can be easily calculated, the 

numerical computations do not require much computer power. 

In special cases, also, the general summation formulas [see, 

e.g., (18) or (23)] can be evaluated. For example, [9] gives 

an easily calculable formula of the quantization error power 

for the case of a midrise quantizer (see below) and a zero- 

mean sine wave with amplitudes exactly equal to integer 

multiples of the quantum size. However, this evaluation cannot 
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Error of the 1st moment, q = l ,  A=7.6 
0.05, 

Max. error of the 1st moment, q= 1, s ~ n e  wdbe 

0.5 

Fig, 2. The behavior of the mean value of the quantization emor of a sine Fig. 3. The maximum values of the bias of the quantization error of a sine 

wave, as a function of i t .  wave, depending on the signal amplitude -1. The dotted line is the asymptotic 

envelope: 0.141 a. 

be performed for other values of A and p, while from Fig. 8 

it can be seen that the largest deviations occur for noninteger 

values of Alq. Direct numerical calculations can be done for 

any case, in an effective way. 

Fig. 3 shows the numerically calculated maximum mean 

values of the quantization error, as depending on the sine 

amplitude A. It is hopeless again to exactly determine the 

exact value of A in a practical situation, but the envelope of 

this function can be given in a simple form (see dotted line). 

It is our aim here to determine an appropriate expression for 

such envelopes of the first-order and second-order moments. 

111. DERIVATION OF THE GENERAL EXPRESSIONS 

In this paper, the expressions will be given for the case of 
a rounding (midtread) quantizer, that is, a uniform one with 

a dead zone around zero. It should be noted that, in some of 

the papers on quantization, the so-called midrise quantizer is 

treated (with a comparison level at zero). 

A. First-Order Moment 

The expected value of the noise can be easily calculated 

00 

&{n,} = J afn(z)da 

This result can also be derived by applying 

Equation (12) can be transformed to a form where its depen- 

dence on the mean value p is explicitly shown. By introducing 

the characteristic function of the zero mean random variable 
5 0  = 5 - p, 

This expression strongly depends on p, and its worst value has 

to be considered. Because of the symmetry to zero (see Fig. 2), 

it is enough to consider the maximum value: max,(E{n,)). 

For signal distributions, symmetric to their mean value, 

Wz,(27rk/q) is real and symmetric. In such a case, 

This is the Fourier series form of the mean value of the 

quantization error, as a function of p. Its maximum value 

cannot be given in general. However, it is easy to see that 

the lower and upper limits of the maximum values of this 
function can be given by the effective value and the sum of 

the absolute values of the coefficients, respectively, 

1 -  

&{5,} = 7 = (13) 5 max(&{n,)) 
3 

m 

to the characteristic function of the quantized variable 

00 k = l  

In the case of a sine wave, for A = 7.69, these bounds yield 
k=-cu 0.0279 5 max,(&n,) 5 0.0759, in good agreement with Fig. 

x s i x ( ?  - k7r) (14) 2, where max,(&n,) 0.0479. However, these bounds can 

be somewhat pessimistic; the upper bound is 1.5 times larger 

than the true value. 
sin(x) 

sinc(x) = -. 
From (19) it may be concluded that by increasing the 

x 
(I5) 

amplitude of the random variable to be quantized, that is. 

with 
I 
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by contracting Wio(rr) ,  the maximal bias will tend to zero Us~ng (16) again, and 

similarly to the decrease of WzO((~)  [lo]. A simple proof 
li/,(ct) = p ~ " ~ J k ~ ~ ( a )  + jpeJnpWxo(cy) 

was given by Nagy [ l  I] for the case when the decay of the 

characteristic function can be majored as follows: - - J ( w )  + w ( ) )  (24) 

IWx((l.)l < p > 0 (20) for symmetrical signal distributions, the following simpler 
(Dfi(p ' expressions can be obtained: 

with D being the amplitude or the standard deviat~on of .r. 

One obtains, by using the right side of (19). 7l 
k= 1 

with 

and { being the Riemann zeta function 1121. The values of ( 

are for a few important cases: C(l.5) zz 2.612. ((2) = 7r2/6 zz 

1.645, C(2.5) zz 1.342, ((3) % 1.202, ((4) = .rr4/90 % 1.082. 

This means that for p > 3. { ( p  + 1) % I is a reasonable 

approximation. 

According to (21). the bias of the first moment is majored 

by a function, similarly decaying as j147x(tr)l, if this can be 

described by (20). Therefore, in order to obtain a reasonable 

form of the envelope for large signal amplitudes, the asymp- 

totic hehulzior of I,VXo(tr) has to be investigated. In many cases. 

however, the upper bound given by (2 1 ) is too pessimistic. For 

a sine wave, c = @, D = A. and = 0.5 [see (42) and 

(43)], which yields (1 = l/?r2C(1.5) zz 0.265, an upper limit 

quite larger than the best one 0.14, found in Fig. 3. 
Before applying the above idea to common signal forms, let 

us investigate the approximation of Sheppard's second-order 

correction, too. 

B. Second-Order Moment 

The error of Sheppard's second-order correction may be 

manifested in two facts: 2&{:ruq) is not zero, and/or 2&{71,~} 

is not equal to q2/12 [see also (2)] 

The correlation term is given by (9). and the mean square 

value of the noise is [4] I 

m 
27rk ( - l j k  

+ 2 7r 
sin (7.) .wx. (?) - 

k=l 
k 

The first term in (25) is periodic as a function of and repre- 

sents the covariance of :r: and n,, while the second one is noth- 

ing else than /~&{n, )  [see (I@]. Thus, (25) exactly represents 

the following expression for symmetrical signal distributions: 

From (18) and (26) or (12) and (23), the general expression of 

the variance of the quantization error can also be derived. using 

It is obvious again that the deviation from Sheppard's 

second-order correction will tend to zero only if 

I )  Ir is limited, and 

2) the correlation coefficient between :r: and TI,, 

disappears more quickly with an increasing signal ampli- 

tude than the increasing amplitude itself or the standard 

deviation of x .  This is not the case when the deriva- 

tives of the contracting characteristic function do not 

disappear with an increasing amplitude of . I . .  Since the 

contraction introduces a multiplier X 

the derivative of the characteristic function should tend 

to zero more quickly than 1 /X.  Furthermore, it may be 

noticed that since x f i 7 ( x a )  usually disappears more 

slowly with an increasing X than W(Xtrj,  the deriva- 

tive will dominate in the asymptotic behavior of the 

envelope of the bias of the second-order moments. 

If linls,, cov{zn,) = 0 is not true, it may be reasonable 

to study the deviation after normalization by var{:r2}, as it 

will be done in Section IV, for the case of the sine wave. 

For the second-order moments, there will be no symmetry, 

similar to first-order moments (see Fig. 2); therefore, we are 

going to examine both the maxima and the minima of the 

deviations. 



Max error of the 1st moment, q = l ,  Gauss~an s~gndl  

F I ~  5 The rnaxlrnurn values of the deviat~on from Sheppard's second-order 

F I ~  4 The maxlmum values of the bias of the quantlzatlon error of a correctton for a Gauss~an nolse, depend~ng on the standard devtatton u, for 

Gau~s~dn  none, depending on the rtandard devrat~on u The dotted l ~ n e  1s 0 5 11 5 q The dotted llne IS the asymptotlc envelope, see (35) Max error 

the asymptot~c envelope, \ee (37) of the 2nd moment, q = 1, Gauss~an s~gnal 

IV. APPL~CATION TO SPECIAL SIGNAL FORMS Both functions, defined by (33) and (3.51, disappear with an 

The above-discussed errors can be rather easily investigated increasing value of g, similar to W,o and w , o ( ~ ) ,  respectively 

by numerical methods in the case of simple distributions like (Figs. 4 and 5 ) .  

Gaussian, uniform, and sinusoidal ones. We shall look for 

envelopes in a parametric form, determined on the basis of B ,  ,~~,ifo,.~l~ ~ i ~ ~ ~ i b ~ ~ ~ d  ~~i~~ 
the above considerations. 

The characteristic function disappears much more slowly 

than for the Gaussian signal 
A. Gaussian Noise 

I In the case of a Gaussian random variable, the characteristic 

function is 

l V T ( @ )  = e3aIIe-(f12a"2). (3 1) 

s in(Aa)  
W,(a) = eJaP- Act. 

where the uniform distribution is in the interval (-A + p, A + 
This function is nowhere zero, but it very quickly disappears 

/l). It is easy to see that (6) is fulfilled for A = 7-912, r = 
for I N (  > 2 ~ / a  

1, 2, . . . ; therefore, (12) is exactly zero for these values, and 

wxo (:) = e-8"2 < 10-2: . ?-2r2  
may be different from zero elsewhere. &inq)  can be easily 

evaluated, since f n q ( z )  has a special step-wise form, and the 

bias is the largest when the higher level is just at one side. 
- 
- (%) . (32) For A = rq/2 + AA with A A  < q/2, this is achieved for 

LL = q/2 - AA. The constant part gives zero, while the rest 
Therefore, in the above infinite sums, the first terms dominate is the error 
i f u > q  

and, using (37) 

w = (T2(ye-(oL,2/2) 
According to the above considerations, this function will have 

xo  (34' an envelope of the form c/A. It is easy to see that the 

and combining the amplitudes of the cos and sir1 terms, maximum of the numerator is q2/4; therefore, the envelope 

f' 

is (see Fig. 6) 

~ { x : }  - £ { s 2 }  - - 
12 

q2 
env(A) = -. 

2&{.rnq} + &{71,2} - - 1GA 
(38) 

12 

2 Indeed, this envelope fits the error function. The major- 
% /(JoZ + $I2 + ( 2 ip1n1 ; .x )  e ( 2 r 2 u 2 / q 2 )  ing function, given by (21), is somewhat larger: env(A) < 

2(1/27r)' .71-~/6(q/A)q = (q/12A)q, an indication of the fact 
(35)  

that the upper bound given by (21) is somewhat pessimistic. 

The minima of e2 need not be investigated, since the good The cause is that on the uniform grid of 2 ~ k / q ,  we cannot 

approximation by the first term of the series ensures the select such points only of WZo(n), which are all on its positive 

symmetry; thus, rnin,,{e2) z - iilax,{e2}. envelope. 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 43. NO. 5. OCTOBER 1994 

Max. error of the 1st moment. o=l .  uniform d~siribution 

Fig. 6. The maximum values of the bias of the quantization error of a uniform 
noise in ( - A .  A ) ,  depending on the signal amplitude A. The dotted line is 

the asymptotic envelope: 1/(16A). 

Min. and max. errors of the 2nd monient, q = I ,  unlfornl distribut~<~n 
0.15 

Min. and max. errors of the 2nd moment, normalized by A" 212, q= 1, aine wave 

1 

Fig. 8. The worst-case values of the deviation from Sheppard's second-order 
correction for a sine wave, normalized by var{r) = d 2 / 2  versus the signal 
amplitude A, for 0 5 /1 5 q. The dotted lines are the asymptotic envelopes: 

0 . 3 ~ 1  a3 and -0.721 03. 

It may be speculated that the extreme values will be taken 

when the cosines have values f 1. This may result in terms 1, 

1, 1, 1, I , . . -  , o r  -1, 1, -1, 1, -1, 1, ..., f o r k =  1 ,2 ,  3 ,4 ,  

5, . . .  , in the case of A = rq or A = ( r + 0 . 5 ) q ,  for p = 0 

or p = 0.59. These two cases yield (see Fig. 7) 

-0 05 - q2 O3 q2 
- m a x { e 2 }  =-x- - 

?r2 
k=l 

k2  - 12' 
-0 1 - 

q 2 m - 1  q2 
-0.15 - min { e z )  = - ?r2xs--T. (41) - 

k = l  
-0.21 

1 2 3 4 5 6 7 8 ' ) I I )  

Indeed, for A = 0.5rq, these extreme values were obtained by 
Fig. 7. The worst-case values of the deviation from Sheppard's second-order 
correction for a uniform noise in ( -A,  A) ,  depending on the signal amplitude the calculatiOns (Fig. 7). 

'4, for 0 5 11 5 q.  The dotted lines are the asymptotic envelopes: 1/12 and 
-116. 

C .  Sine Wave 

The characteristic function is 
It may also be noticed that ~ ~ ~ ( 2 ? r k / ~ )  will not disappear 

with an increasing A [see the first term of the right side of (39)] Wx ( a )  = e jap  J0 ( A a )  (42) 

cos ( 2 n k g )  - sin ( 2 r k $ )  where J o ( z )  is the zero-order Bessel function of the first kind. 

W,~(Y)= l r r k  (39) It is not easy to evaluate the above sums with the Bessel 

- (y)2A . 
terms. However, it may be noticed that for large values of 

4 z  ( z  >> I), J o ( z )  may be approximated [13] by 

Therefore, the minimum and maximum errors of Sheppard's 
second-order correction will have finite value for A 4 cc 

(see Fig. 7). From (22), (25), (26), and (39), these values can 

be obtained, using the dominance of the derivatives of the 

characteristic function and of the first term of (39), for large 

values of A 

A (-1)"l 
= 2 ?r2 2 cOs (yp) cos ( 2 ~ k ~ )  (40) 

k=l 

This means that for A >> q, the characteristic function has 

a decay of 1 / &  character; therefore, the envelope of the 

error of Sheppard's first-order correction should also behave 

similarly. Indeed, such a function with a proper constant 
( e n v ( A )  z 0 . 1 4 m  . q )  can seemingly be used as an 

envelope (Fig. 3). As we saw earlier, the upper limit, calculated 

from (21), is again somewhat larger: e n v ( A )  5 0 . 2 6 5 m . 4 .  
As was mentioned above, the envelopes of the error of 

Sheppard's second-order correction have a c f i  character; that 
is why for a plot it is reasonable to normalize the error by 

var{x}  = A2/2 .  When normalized, it has envelopes of the 

form 0 . 3 6 ~ ~ / m ~  and - 0 . 7 2 ~ ~ 1 m ~  (Fig. 8). 
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The general formulas of the deviations from Sheppard's 

corrections have been developed for the case of a uniform, 
midtread quantizer, provided that no saturation occurs. It has 

been shown that the deviations strongly depend on the mean 

value of the signal. The errors can be characterized by their 

asymptotic envelopes for A >> q, and that these envelopes 

decay in a similar way as the characteristic functions do. These 
results, since they treat the worst-case mean values of the input 

signal, equally apply for the case of midrise quantizers, and 
can also 'be used for arbitrary waveforms, for which the pdf 

and the characteristic function can be given. 

The author is very much indebted to T. Dobrowiecki and 

to one of the anonymous reviewers for their valuable remarks 

on this paper. 
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