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Bias of using odds ratio estimates in multinomial 
logistic regressions to estimate relative risk or 
prevalence ratio and alternatives

Viés da razão de chances estimada pela regressão 
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Abstract

Recent studies have emphasized that there is no 
justification for using the odds ratio (OR) as an 
approximation of the relative risk (RR) or preva-
lence ratio (PR). Erroneous interpretations of the 
OR as RR or PR must be avoided, as several stud-
ies have shown that the OR is not a good approx-
imation for these measures when the outcome is 
common (> 10%). For multinomial outcomes it 
is usual to use the multinomial logistic regres-
sion. In this context, there are no studies show-
ing the impact of the approximation of the OR 
in the estimates of RR or PR. This study aimed to 
present and discuss alternative methods to mul-
tinomial logistic regression based upon robust 
Poisson regression and the log-binomial model. 
The approaches were compared by simulating 
various possible scenarios. The results showed 
that the proposed models have more precise and 
accurate estimates for the RR or PR than the 
multinomial logistic regression, as in the case of 
the binary outcome. Thus also for multinomial 
outcomes the OR must not be used as an approx-
imation of the RR or PR, since this may lead to 
incorrect conclusions.

Odds Ratio; Prevalence Ratio; Logistic Models; 
Relative Risk

Resumo

Recentes trabalhos têm enfatizado que já não 
há justificativa para o uso da razão de chances 
(RC) como aproximação do risco relativo (RR) 
ou razão de prevalência (RP). Deve-se evitar a 
interpretação equivocada da RC como RR ou 
RP, pois vários estudos demonstraram que a RC 
não é uma boa aproximação para tais medidas 
quando o desfecho é comum (> 10%). Para des-
fechos multinomiais é usual aplicar a regressão 
logística multinomial. Nesse contexto, não há es-
tudos demonstrando o impacto da aproximação 
da RC nas estimativas de RR ou RP. O objetivo 
deste trabalho é apresentar e discutir métodos 
alternativos à regressão logística multinomial, 
baseados na regressão de Poisson e no modelo 
log-binomial. As abordagens foram comparadas 
por um estudo de simulação com diversos cená-
rios. Assim como no caso do desfecho binário, 
os modelos propostos apresentaram estimativas 
mais precisas e acuradas para o RR ou RP do que 
a regressão logística multinomial. Então, tam-
bém para os desfechos multinomiais não se deve 
utilizar a RC como aproximação do RR ou RP, 
pois conclusões incorretas podem ocorrer.

Razão de Chances; Razão de Prevalências;  
Modelos Logísticos; Risco Relativo
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Introduction

In clinical and epidemiological studies one often 
wishes to estimate the effects of factors in binary 
outcomes. For these cases, when one is interest-
ed in estimating the relative risk (RR) or preva-
lence ratio (PR), it has already been well estab-
lished that the logistic regression is not the most 
suitable statistical analysis, particularly when the 
outcome is common (> 10%). Several authors 
have shown that the odds ratio (OR) obtained by 
the logistic model can underestimate or overes-
timate the RR or the PR 1,2,3,4. Alternatives have 
also been suggested and discussed, such as the 
use of the Poisson regression with robust vari-
ance and the log-binomial model 1,3,4,5,6,7,8,9,10.

Although recommended methods seem to 
be well established for dichotomous outcomes, 
there is still little discussion concerning which 
method should be used to estimate the RR or the 
PR for outcomes with three or more categories. In 
such circumstances, one usually uses the multi-
nomial logistic regression which, unlike the bina-
ry logistic model, estimates the OR, which is then 
used as an approximation of the RR or the PR.

Blizzard & Hosmer 11 proposed the log-mul-
tinomial regression model, which directly esti-
mates the RR or PR when the outcome is multi-
nomial. To evaluate whether this leads to an un-
derestimation or overestimation of the RR or PR 
when we use the OR obtained through the mul-
tinomial logistic regression, ideally one would 
compare the results obtained using this method 
with those obtained using the log-multinomial 
model. However, we are not aware of the avail-
ability of a computational routine for this model. 
Moreover, Blizzard and Hosmer11 concluded that 
separate robust Poisson regressions produce es-
timates very similar to those of the log-multino-
mial model.

Therefore, this work aims to study through 
simulation the accuracy and precision of OR, ob-
tained through the multinomial logistic regres-
sion, to estimate RR and to compare it with the 
RR estimated by separate robust Poisson regres-
sions and those estimated by the separate log-bi-
nomial models. The separate log-binomial mod-
els have been included in the study as they have 
proved to be the most suitable for estimating the 
RR or the PR for binary outcomes. Another rea-
son for choosing the robust Poisson regression 
and the log-binomial model is that both of them 
are implemented in various statistical programs.

Methodology

It is well known that RR and PR have very dif-
ferent epidemiological meanings, but the math-
ematical definitions are equivalent. The accuracy 
and precision of the model to estimate the RR are 
the same as for estimating the PR, and so hence-
forth we will only refer to the RR.

In order to illustrate the three techniques 
evaluated, without loss of generality, we will con-
sider a multinomial outcome Y with the catego-
ries A, B and C, and a binary exposure factor X 
(yes x no). We are interested in estimating the RR 
for the exposure X with the categories B (RRB) 
and C (RRC) of the outcome and we are not inter-
ested in the association with category A.

The first method studied in this work was the 
multinomial logistic regression. The definition 
of the model and details about the properties of 
their estimators can be found in Hosmer & Lem-
eshow 12. To adjust it, we use the library VGAM 
of program R, version 2.9.0 (The R Foundation 
for Statistical Computing, Vienna, Austria; http://
www.r-project.org) 13. The syntax for adjusting 
the model is: 
library(VGAM)
model <- vglm(Y ~ X, family=multinomial())
summary(model)

As in Blizzard & Hosmer 11, the use of sepa-
rate Poisson regressions, according to the second 
method evaluated, consists of creating binary 
outcomes from the original multinomial out-
come, and then fitting separate robust Poisson 
regressions between each binary outcome and 
the factors. For the aforementioned outcome Y, 
we create the dichotomous variables YB and YC 
as follows:

Y Yand
1, if Y = B 1, if Y = C

0, if Y = A or Y = C 0, if Y = A or Y = B
= =B B

To fit the models we used the libraries lmtest 
14 and sandwich 15,16 of R. The syntax for estimat-
ing RRB is as follows. For RRC it is analogous.
library(lmtest)
library(sandwich)
model.pois.B <- glm(YB ~ X, family=poisson)
coef.beta.B <- coeftest(model.pois.B, vcov= 
sandwich)
coef.beta.B

The third technique compared, namely the 
adjustment of separate log-binomial models, 
is analogous to the method of separate Poisson 
regressions, only adjusting one log-binomial 
model for each binary outcome. The syntax for 
estimating RRB using R is:
model.bin.B <- glm(YB ~ X, family=binomial 
(link=log))
summary(model.bin.B)
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It should be pointed out that the Poisson re-
gression with robust variance and the log-bino-
mial model are also available in other statistical 
software such as SAS (SAS Inst., Cary, USA), SPSS 
(SPSS Inc., Chicago, USA) and Stata (Stata Corp., 
College Station, USA).

Simulation

In the simulation study we considered an out-
come (Y) with three categories (A, B and C) and a 
binary exposure factor (X). An RR as established 
between exposed and non-exposed individuals 
equal to 1.5 for the outcome B (RRB = 1.5) and 
equal to 2 for the outcome C (RRC

 = 2). The simu-
lated scenarios combined three probabilities of 
exposure, say P(X=+), equal to 0.1, 0.5 and 0.9 and 
three marginal distributions for the outcome Y: 
P(Y=A) = 0.90, P(Y=B) = 0.05 and P(Y=C) = 0.05; 
P(Y=A) = 0.60, P(Y=B) = 0.35 and P(Y=C) = 0.05, 
and P(Y=A) = 0.4, P(Y=B) = 0.30 and P(Y=C) = 0.30.  
Thus, nine different scenarios were simulated, 
each one being repeated for three sample sizes 
(100, 500 and 1,000).

Considering these fixed RRs and probabili-
ties for each response category, the conditional 
probabilities of each outcome given the exposure 
factor were calculated. Using the R program, for 
each sample size and scenario, 10,000 contingen-
cy tables 2x3 were simulated, in which the two 
lines are defined as presence and absence of the 
exposure factor (X), and the three columns are 
the categories of the outcome (Y). These tables 
were simulated using two independent multino-
mial distributions (one for those exposed and the 
other for those not exposed) with probabilities 
specified in Table 1.

In order to avoid the occurrences of estimates 
of RRs equal to zero or infinity, if a simulated ta-
ble contained a cell with zero frequency, it was 
discarded and another one generated. The con-
sequences of this will be discussed further on.

For each simulated table, the point estimate 
and respective 95% confidence interval (95%CI) 
of the RRs obtained by each method were re-
corded. From the 10,000 estimates resulting 
for each RR (RRB and RRC) and each method, 
the following measures of accuracy and preci-
sion were calculated: averages of estimates, 
absolute average biases and coverage of the 
confidence intervals as a percentage. The abso-
lute average bias of the estimators for each pa-
rameter q, i.e., each true RR, was calculated as

 
,

where 
i

^�  is the estimated RR of the i-th table from 
the respective model. Whereas the coverage per-
centage of the confidence intervals was calcu-
lated by:
%Coverage = (number of confidence intervals 
which contained q/10,000) x 100.

Results

The separate robust Poisson regression and 
separate log-binomial models had practically 
identical measures of accuracy and precision. 
Therefore, we will only display here the results 
of the separate log-binomial model and the 
multinomial logistic model. The tables with the 
results for the robust Poisson regression can be 
obtained at www.mat.ufrgs.br/~camey/Poisson. 

Table 1

Probabilities used in the different simulation scenarios.

Scenario Marginal probabilities Conditional probabilities

P(X=+) P(Y=B) P(Y=C) P(Y=A|X=+) P(Y=B|X=+) P(Y=C|X=+) P(Y=A|X=-) P(Y=B|X=-) P(Y=C|X=-)

1 0.1 0.05 0.05 0.8377 0.0714 0.0909 0.9069 0.0476 0.0455

2 0.5 0.05 0.05 0.8733 0.0600 0.0667 0.9267 0.0400 0.0333

3 0.9 0.05 0.05 0.8957 0.0517 0.0526 0.9392 0.0345 0.0263

4 0.1 0.35 0.05 0.4091 0.5000 0.0909 0.6212 0.3333 0.0455

5 0.5 0.35 0.05 0.5133 0.4200 0.0667 0.6867 0.2800 0.0333

6 0.9 0.35 0.05 0.5853 0.3621 0.0526 0.7323 0.2414 0.0263

7 0.1 0.3 0.3 0.0260 0.4286 0.5454 0.4416 0.2857 0.2727

8 0.5 0.3 0.3 0.2400 0.3600 0.4000 0.5600 0.2400 0.2000

9 0.9 0.3 0.3 0.3739 0.3103 0.3158 0.6352 0.2069 0.1579
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The results of the simulations for the parameters 
RRB and RRC are summarized in Tables 2 and 3, 
respectively.

For both parameter RRB, and parameter RRC, 
in nearly all the scenarios, the log-binomial mod-
el had more accurate estimates (smaller averages 
of absolute biases) than the multinomial logistic 
regression model. In some cases the average ab-
solute bias of the multinomial logistic regression 

model was more than 2,000 times the value of the 
average absolute bias of the log-binomial model 
(Tables 2 and 3, scenario 7, n = 500 and n = 1,000). 
The exceptions occurred only for RRC in scenari-
os 3 and 6 with n = 500 and n = 100, respectively. 
Generally speaking, the ratio between the biases 
is nearer 1 when the incidence of the outcomes is 
low [ and/or ].

Table 2

Averages of the estimates, absolute bias, and coverage percentage of the 95% confidence interval (95%CI) for the relative risk of outcome B, RRB = 1.5, obtai-

ned by the two models and ratio between average absolute biases.

Scenario/n Log-binomial model Multinomial logistic regression Ratio between biases

Average of estimates Average 

absolute bias

Coverage  

%

Average of 

estimates

Average  

absolute bias

Coverage 

%

1

100 3.592 2.092 95.26 4.797 3.297 93.99 1.58

500 1.610 0.110 96.74 1.792 0.292 95.75 2.65

1,000 1.535 0.034 96.19 1.684 0.184 94.92 5.41

2

100 1.808 0.308 99.70 1.962 0.462 99.67 1.50

500 1.692 0.192 95.73 1.813 0.313 95.67 1.63

1,000 1.580 0.080 95.62 1.684 0.184 95.06 2.30

3

100 0.485 1.015 88.68 0.428 1.072 89.81 1.06

500 1.626 0.126 95.22 1.697 0.197 96.36 1.56

1,000 1.948 0.448 96.77 2.058 0.558 97.41 1.25

4

100 1.433 0.067 97.51 3.22 1.720 95.13 25.67

500 1.507 0.007 95.37 2.418 0.918 74.00 131.14

1,000 1.503 0.003 94.59 2.342 0.842 53.49 280.67

5

100 1.597 0.097 96.09 2.259 0.759 90.23 7.82

500 1.515 0.015 94.96 2.05 0.550 67.77 36.67

1,000 1.510 0.010 95.29 2.033 0.533 42.61 53.30

6

100 1.952 0.452 95.97 2.386 0.886 98.72 1.96

500 1.621 0.121 95.48 2.059 0.559 92.20 4.62

1,000 1.555 0.055 95.24 1.966 0.466 86.71 8.47

7

100 1.416 0.084 97.76 5.987 4.487 97.84 53.42

500 1.495 0.005 95.67 23.678 22.178 0.19 4,435.60

1,000 1.504 0.004 95.27 32.44 30.94 0.00 7,735.00

8

100 1.614 0.114 95.62 4.238 2.738 60.84 24.02

500 1.521 0.021 95.02 3.623 2.123 3.12 101.10

1,000 1.511 0.011 94.89 3.561 2.061 0.00 187.36

9

100 1.789 0.289 95.61 3.105 1.605 99.55 5.55

500 1.643 0.143 95.23 2.874 1.374 72.67 9.61

1,000 1.567 0.067 95.06 2.700 1.200 47.24 17.91
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Table 3

Averages of the estimated values, absolute bias and coverage percentage of the 95% confidence interval (95%CI) for the relative risk of outcome C,  

RRC = 2.0, obtained by the two models and ratio between average absolute biases.

Scenario/n Log-binomial model Multinomial logistic regression Ratio between biases

Average of estimates Average 

absolute bias

Coverage  

%

Average of 

estimates

Average  

absolute bias

Coverage  

%

1

100 4.087 2.087 96.33 5.508 3.508 95.63 1.68

500 2.121 0.121 96.47 2.363 0.363 95.57 3.00

1,000 2.045 0.045 95.69 2.243 0.243 94.71 5.40

2

100 2.179 0.179 98.64 2.364 0.364 99.13 2.03

500 2.313 0.313 95.87 2.478 0.478 95.91 1.53

1,000 2.121 0.121 95.76 2.260 0.260 95.78 2.15

3

100 0.501 1.499 85.95 0.441 1.559 86.46 1.04

500 1.851 0.149 94.59 1.927 0.073 95.65 0.49

1,000 2.534 0.534 96.20 2.672 0.672 97.16 1.26

4

100 4.254 2.254 95.49 8.885 6.885 91.28 3.05

500 2.129 0.129 96.53 3.419 1.419 87.14 1.00

1,000 2.051 0.051 95.44 3.197 1.197 80.77 2.47

5

100 2.166 0.166 98.81 3.023 1.023 99.74 6.16

500 2.323 0.323 96.05 3.145 1.145 91.88 3.54

1,000 2.131 0.131 95.75 2.870 0.870 85.71 6.64

6

100 0.499 1.501 85.35 0.568 1.432 90.24 0.95

500 1.862 0.138 95.08 2.330 0.330 97.90 2.39

1,000 2.498 0.498 95.72 3.147 1.147 98.54 2.30

7

100 1.874 0.126 98.19 7.948 5.948 98.57 47.21

500 1.988 0.012 95.44 31.545 2.545 0.06 2,462.08

1,000 2.000 <0.001 95.53 43.148 41.148 0.00 200,853.14

8

100 2.204 0.204 95.97 5.784 3.784 62.45 18.55

500 2.033 0.033 95.06 4.845 2.845 3.52 86.21

1,000 2.016 0.016 94.91 4.751 2.751 0.02 171.94

9

100 2.095 0.095 94.19 3.569 1.569 99.49 16.52

500 2.296 0.296 95.51 4.022 2.022 78.29 6.83

1,000 2.121 0.121 95.32 3.655 1.655 55.74 13.68

For the parameter RRB, except for scenario 3, 
the averages of the absolute biases diminished 
as we increased the sample size. Whereas for the 
parameter RRC, there were many cases in which 

increasing the sample size did not lead to the bias 
being reduced: scenarios 2, 3, 5, 6 and 9.

In the log-binomial model, for both the pa-
rameters, in only three situations did the cover-
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Table 4

Incidence of total pregnancy weight gain according to pre-pregnancy body mass index (BMI) of women receiving care at 

primary care services in southern Brazil. Porto Alegre and Bento Gonçalves, Rio Grande do Sul State, Brazil, 2007 (N = 667).

Pre-pregnancy BMI (kg/m2) Total Pregnancy weight gain

Insufficient Adequate Excessive

n (%) n (%) n (%) n (%)

< 18.5 26 (3.9) 12 (46.2) 11 (42.3) 3 (11.5)

18.5 ├ 25.0 414 (62.0) 123 (29.7) 138 (33.3) 153 (37.0)

25.0 ├ 30.0 148 (22.2) 18 (12.2) 32 (21.6) 98 (66.2)

≥ 30.0 79 (11.8) 19 (24.1) 15 (19.0) 45 (57.0)

age percentage of the intervals remain below the 
nominal value of 95% (see Table 2, n = 100, third 
scenario and Table 3, n = 100, third and sixth sce-
narios), always with a difference of less than 10%. 
However, for the multinomial logistic model, the 
coverage percentage of the confidence interval 
was only near the nominal value of 95% when 
there was a low prevalence of outcomes and/or 
sample size of n = 100. In some cases the coverage 
% was near zero (see scenarios 7 and 8, in Tables 
2 and 3).

It should be pointed out that, for all the ta-
bles, there were no problems of convergence in 
the log-binomial model or any unallowable solu-
tions for the probabilities estimated by the robust 
Poisson regression model, i.e., all the probabili-
ties assumed values between 0 and 1.

A fourth approach was also studied in this 
work, which was the robust Poisson regression 
with offset 17. We have not detailed this method, 
or displayed its results here (available at www.
mat.ufrgs.br/~camey/Poisson), as they were 
practically identical to those obtained using the 
separate robust Poisson regression without off-
set. Moreover, the calculation of the offset is a 
practical disadvantage, as it is increasingly com-
plex, since categorical exposure (or confusion) 
factors are added, and cannot be calculated in 
the presence of continuous exposure (or confu-
sion) factors.

Comparison using real data

As an example, we used a data set of the Study of 
Food Intake and Eating Behavior in Pregnancy 
(ECCAGE) which is a prospective cohort study 
of pregnant women followed until the puerpe- 
rium 18. These pregnant women were receiv-
ing care in 18 primary care units in two cities in 
Southern Brazil. They were first evaluated be-
tween the 16th and 36th week of pregnancy at a 

prenatal visit. In this example we use a sample of 
667 pregnant women.

Total weight gain was classified according to 
the recommendation of the Institute of Medicine 
2009 19. Total weight gain between 12.5 and 18kg 
was considered adequate for women with pre-
pregnancy body mass index (BMI) below 18.5kg/
m2, between 11.5 and 16kg for women with pre-
pregnancy BMI between 18.5 and 24.9kg/m2, 
and between 7 and 11.5kg/m2 for women with 
pre-pregnancy BMI between 25.0 and 29.9kg/m2. 
Total weight gain between 5 and 9kg was con-
sidered appropriate when pre-pregnancy BMI 
was higher or equal than 30.0kg/m2. Incidences 
of pregnancy weight gain according to the cat-
egories of pre-pregnancy BMI 20 are showed in 
Table 4.

The results obtained of the adjustment by 
separate log-binomial model and multinomial 
logistic regression are shown in Table 5. In this ex-
ample we can perceive that the choice of model 
influenced the direction, magnitude and signifi-
cance of the effect (RR).

The first difference between the models can 
be observed in the RR of the insufficient weight 
gain of the women who had a pre-pregnancy 
BMI greater than or equal to 30 (obese), which in 
spite of not being significant is rather illustrative. 
When the multinomial regression was used, be-
ing obese was a risk factor (RR = 1.42) for insuffi-
cient weight gain and by the log-binomial model 
it becomes a protective factor (RR = 0.81).

The influence of the choice of model in the 
magnitude of the effect can be seen in Table 5 
in several comparisons between the estimates of 
the two models, as for example, in the RR of ex-
cessive gain of women with a BMI greater than or 
equal to 25 and less than 30kg/m2 (overweight). 
In this case there is a reduction of approximately 
70% in the magnitude of the effect when the log-
binomial model is used.
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Table 5

Estimated relative risk of insufficient and excessive gain, by the log-binomial model and by multinomial logistic regression for pregnant women receiving care 

at primare care services in southern Brazil. Porto Alegre and Bento Gonçalves, Rio Grande do Sul State, Brazil, 2007 (N = 667).

Pre-pregnancy 

BMI (kg/m2)

Log-binomial Multinomial logistic regression

Insufficient Excessive Insufficient Excessive

RR 95%CI p-value RR 95%CI p-value RR 95%CI p-value RR 95%CI p-value

< 18.5 1.55 1.00, 2.41 0.05 0.31 0.11, 0.91 0.03 1.22 0.52, 2.87 0.64 0.25 0.07, 0.90 0.03

18.5 ├ 25.0 1.00 1.00 1.00 1.00

25.0 ├ 30.0 0.41 0.26, 0.64 < 0.01 1.79 1.51, 2.12 < 0.01 0.63 0.34, 1.18 0.15 2.76 1.74, 4.38 < 0.01

≥ 30.0 0.81 0.53, 1.23 0.32 1.54 1.23, 1.94 < 0.01 1.42 0.69, 2.92 0.34 2.71 1.44, 5.07 < 0.01

BMI: body mass index; RR: relative risk; 95%CI: 95% confidence interval.

The illustration that the choice of model in-
fluences the significance of the RR can be seen 
through the RR for insufficient weight gain of 
women with a BMI greater than or equal to 25 
and less than 30kg/m2 (overweight). By the mul-
tinomial logistic model, being overweight is not a 
statistically significant protective factor for insuf-
ficient weight gain, different from what occurs 
when the log-binomial model is used.

This example makes it clear that the suitable 
choice of model influences the result of a study 
in several ways.

Conclusions

As in the case in which the outcome is dichoto-
mous, the results showed that the multinomial 
logistic model should not be used to estimate the 
RR or RP with polytomous outcomes, as its esti-
mates generally have greater bias. As a result of 
the bias of the estimator, the estimate of the con-
fidence interval (CI) is centered upon a distant 
value of the parameter, reducing the coverage of 
the CI.

The ratio between the biases of the RR esti-
mated by the multinomial logistic model com-
pared with those estimated by the log-binomial 
model is nearly always greater than 1, and this 
ratio increases to the extent that the incidence of 
the outcomes increases. This also occurs when 
the outcome is dichotomous.

In spite of it being generally agreed that in-
creasing the sample size improves the features of 
the estimates, we can clearly see that when the 
multinomial logistic regression is used, increas-
ing the sample size produces a CI which in most 
cases does not contain the parameter. Three cas-
es occurred with the larger sample size in which 
the coverage is near to zero, meaning that of the 

10,000 CI estimated practically none contained 
the parameter.

As mentioned above, a problem of non-
convergence of the log-binomial model did not 
occur in our simulations, something which it is 
known does not always occur in practice 5,6,7,21. 
We believe that this occurred due to the design of 
our simulation, with only one binary factor, and 
to the discarding of the contingency table with 
null cells. For the same reason, there were no 
situations in which the estimated probabilities 
were greater than one using the robust Poisson 
regression. We would like to draw your attention 
to the fact that when there is a convergence prob-
lem in the log-binomial model, in general, the 
Poisson regression estimates probabilities great-
er than one 5. This occurs because in the Poisson 
regression the average of the Poisson distribution 
is modeled, which is a positive number, but not 
restricted to being less than one.

It is known that there already exist proposals 
for addressing the problem of non-convergence 
of the log-binomial model, such as the COPY 
method 6,21 and the use of non-linear program-
ming 22,23. More realistic simulations, including 
more factors of exposure, which are discrete and 
quantitative, are already being executed.

We would like to stress that for the choice of 
method of analysis, it is important to review the 
conceptual aspects of the measure of association 
which one wishes to estimate, as already pointed 
out by other authors 1,3,8,24, avoiding or minimiz-
ing the erroneous interpretation of OR as RR or 
PR, especially by readers. For a multinomial out-
come this becomes even more important, as the 
interpretation of the OR is performed concerning 
a reference category of the outcome and in the 
RR we have the risk ratio for the category of inter-
est among levels of the factor, but without having 
a reference category. Indeed we could estimate 
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RR even for the reference category. But as the 
main issue of this paper is to compare the results 
with multinomial logistic regression, where this 
is impossible, we did not estimate. 

This study is relevant regarding the discus-
sion of the estimate of RR or PR when the out-
comes are multinomial, showing that there is no 
justification for using the multinomial logistic 

regression to estimate them, once the last one 
estimates OR. Our present recommendation is 
analogous to that of Spiegelman & Hertzmark 8 
for binary outcomes: one must try to adjust the 
separate log-binomial models, but if they do not 
converge, the separate robust Poisson regres-
sions are adjusted. 

Resumen

Los trabajos recientes han enfatizado que ya no se justi-
fica el uso del odds ratio (OR) como una aproximación 
del riesgo relativo (RR) o razón de prevalencias (RP). El 
OR no puede ser interpretado como RR o RP, pues varios 
estudios han demostrado que el OR no es una buena 
aproximación cuando el suceso es común (> 10%). Para 
sucesos multinomiales se utiliza comúnmente la regre-
sión logística multinomial. En este contexto, no hay es-
tudios que demuestren el impacto de la aproximación 
del OR en las estimaciones de RR o RP. Nuestro objetivo 
es presentar y discutir métodos alternativos a la regre-
sión logística multinomial, en base a la regresión de 
Poisson y al modelo log-binomial. Los enfoques utili-
zados fueron comparados en un estudio de simulación 
con diferentes escenarios. Así como en el caso de suceso 
binario, los modelos propuestos dieron como resultado 
estimaciones para RR o RP más precisas y esmeradas 
que la regresión logística multinomial. Para sucesos 
multinomiales el OR tampoco debe ser utilizado como 
aproximación del RR o de la RP, pues se puede llegar a 
conclusiones incorrectas.

Oportunidad Relativa; Razón de Prevalencias; Modelos 
Logísticos; Riesgo Relativo
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