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Abstract

The fixed effects estimator of panel models can be severely biased because of the well-known inciden-
tal parameter problems. It is shown that such bias can be reduced as T grows with n. We consider
asymptotics where n and T grow at the same rate as an approximation that allows us to compare bias
properties. Under these asymptotics the bias corrected estimators are centered at the truth, whereas the
fixed effects estimator is not. We also show how our alternative asymptotics is related to the higher order

“large T” asymptotics.



1 Introduction

Panel data, consisting of observations across time for different individual economic agents, allows the
possibility of controlling for unobserved individual heterogeneity. Such heterogeneity can be an important
phenomenon, and failure to control for such heterogeneity can result in misleading inferences. One way
of attempting to deal with the presence of unobserved individual effects in nonlinear models is to treat
each such effect as a separate parameter to be estimated. Unfortunately, such estimators are typically
subject to the incidental parameters problem noted by Neyman and Scott (1948). The estimators of the
parameters of interest will be inconsistent if the number of individuals goes to infinity while the number
of time periods is held fixed. In practical terms, the incidental parameters problem suggests that fixed
effects estimators may be severely biased.

Hahn and Kuersteiner (2002) recently showed that the bias in a panel AR(1) model can be alleviated
substantially by considering an alternative approximation where the number of individuals (n) and the
number of time series observations (T') grow to infinity at the same rate. Hahn and Newey (2002) showed
how the bias correction can be implemented in a static nonlinear panel data model with fixed effects
under the same asymptotics. Alternative asymptotics are implicitly based on the intuition that the bias
of fixed effects estimators should change with the number of time series observations.

To be more precise, let 6 denote an R-dimensional parameter of interest, and let 0|7 denote the limiting
value, as the number of individuals goes to infinity, of a fixed effects estimator 0of 0. A consequence of
the incidental parameters problem is that typically 67) # 0. Note that the bias should be small for large
enough 7', i.e., limr_. o O] = 6. Suppose that 61 also obeys the relation 0|7 = 0 +T718+0 (T_Q). If
a reasonably precise estimator E of (3 is available, we would expect that 5 = 5—T‘1E would be less biased
than the fixed effects estimator 0. In order to implement this strategy, we need to have a convenient
theoretical characterization of 3.

In this paper, we examine asymptotic biases of general dynamic nonlinear panel models with fixed
effects, and develop methods to remove them. The common intuition in Hahn and Kuersteiner (2002)
and Hahn and Newey (2002) was that, under the alternative asymptotics where both n and T grow
to infinity at the same rate, v/nT @f 9) will be centered at /x3, where x is the limit of Z. It was
shown that § can be consistently estimated, which led to a bias corrected estimator. We adopt the
same strategy in this paper, and consider general nonlinear dynamic panel models with fixed effects.
Our analysis could provide a useful alternative to Honoré and Kyriazidou (2000), who examined some
dynamic binary response model. Their identification and estimation require conditioning on (possibly
continuous) covariates taking identical values over time, which is not required in our approach. On the
other hand, it is expected that our approach requires reasonably large T to be a good approximation.

In this paper, we also formalize the relationship between the “large n, large T” asymptotics and the
higher order “large T” asymptotics. It is argued that the former is a simplified way of doing the latter,
and the bias correction done under the latter would imply the bias correction under the former. This
relationship provides a useful re-interpretation of the incidental parameters problem as a special case of
higher order asymptotics.

We do not develop any “automatic” method of bias reduction, such as jackknife as in Hahn and Newey

(2002). It is not clear how jackknife could be adapted to the situation where observations are depen-



dent. Block bootstrap may provide an alternative solution, although we conjecture some modification is
necessary.! Lancaster (2002), Woutersen (2002) and Arellano (2000) adopted the same asymptotics, and
developed bias corrected estimator for various panel models with fixed effects. So far, all of their meth-
ods are confined to models with full parametric specification. We do not yet know the exact relationship

between our approach and theirs, and are yet unable to generalize their methods to dynamic models.

2 Alternative Asymptotics

In this section, we characterize the approximate bias of the fixed effects estimator for a dynamic nonlinear
panel model. We consider the asymptotic approximation where n and T' grow to infinity at the same rate.
We show that the fixed effects estimator is consistent and asymptotically normal, but has an asymptotic
bias. We provide a formula for asymptotic bias under such asymptotics.

Suppose that we are given an estimator such that

n T

(5,&1,... ,A"> = argmax Zzw (zit;0, ) (1)

o0 =1 =1

for some ¢ (). We assume that 1) is a sensible function that a time-series econometrician would use: If n is
fixed, and T — oo, we assume that (5, ar,... ,an) is consistent for (0g, aqp, . . . , @no), where g is a com-
mon parameter of interest, and «;q is individual specific fixed effect. This can be justified by assuming a

primitive condition such that, for each 7 > 0, inf; [G(i) (00, @io) = SUP{(0,0):(0,0)— (00,ai0)| >0} G (i) (05 a)} >

0, where
R T
Gy (0,05) =T Z¢ (i3 0,05), Gy (0,05) = E [ (2450, ;)]
t=1
It can be shown that this condition also implies that (5, ai,. .. ,an) are consistent even when n grows

to infinity. See Theorem 1 below.

We use the following notation in the paper:

Ui (3450, ;)

50 (it; 0, i) — pig - Sa (i3 0, ;)
(

Vi(xi; 0,05) = o (zit;0,04),
 _ Elsea (xzta907 0)]
Pio = E [sa Tit; 907 aZO)]
0
so (vit;0,05) = aow(xnﬁ Q) ,
0
Sa (Tit30,05) = aaiw (w3150, i)
B OU; (x41; 0, o)
S (CACH

For simplicity of notation, we will assume dim () = R and dim (a) = 1.

We now assume the following regularity conditions:

Hahn, Kuersteiner, and Newey (2002) considered the bootstrap in the cross sectional context, and concluded that it

would not work without some modification such as “truncation”.



Condition 1 n,T — oo such that 7 — K, where 0 < Kk < oo.

Condition 2 Suppose that, for each i, {x;,t=1,2,...} is a stationary mizing sequence. Let Al =
o (xit,xit,l,xit,g, ) R Bi =0 (wit,xit+1,1’it+2, ) and o (m) = sup; SUpAeAi,B€B§+m |P (A N B) - P (A) P (B)|
Assume that sup, |a; (m)| < Ca™ for some a such that 0 < a < 1 and some C > 0. We assume that

{zi,t =1,2,3,...} are independent across i.

Condition 3 Let ¢ (z;,¢) be a function indexed by the parameter ¢ = (0,«) € int ®, where @ is a
compact, convex subset of RP and p = dim¢ = R+ 1. Let v = (v1,...,vk) be a vector of non-negative
integers v;, [v| = 25:1 vj and DV (zi, ) = 8""1&(3%,(;5)/ (097*...0¢1F). Assume that there exists a
function M (x;1) such that | D% (xit, 1) — DV (x4, Po)| < M (xit) ||@1 — Psl| for all ¢y, ¢4 € @ and |v| <
5. We also assume that M () satisfies supgeq || DV (wit, ¢)|| < M (it) and sup; E [|M(xit)|10q+12+5} <
oo for some integer ¢ > p/2 + 2 and for some § > 0.

Condition 4 Let ¥;7 = Var <T’1/2 Zthl Ui (z44; 0, ai)> and assume that inf; infr \;p > 0 where \ip is

the smallest eigenvalue of X;p.
Condition 5 inf; |E [0V (xi; 0o, o)/ Oay]| > 0.
Condition 6 sup ||Z;|| < oo such that lim,_on ' Y1 | Z; =I. We also assume ||Z|| > 0.
It can be shown that, under the alternative asymptotics, the parameters are consistent:
Theorem 1 Assume that Conditions (1),(2) and (8) are satisfied. Then, 0,a1,..., 0 are consistent.

Proof. See Appendix A.2. =

It is shown in Appendix B that a Taylor series expansion leads to

~ _ 1 /n_
vnT (9 —90) ==+ 5\/;:2 + op (1) (2)

where

o
Il
7\

| =
N
~
|
Y
5~
|
[~
=
~—

=1 =1 t=1

1) 1| Y 1 & B[]
5 = o (—ZL) 1 ey Vi || Ly (o EIUE,

et niS | VTE [S—Cﬂ TiI 2F {%}

for 7 defined later in equation (30) in Appendix C, and in equation (31) as well. Here,

Ui = Ui(xit; 00, 050)
Vie = Vi(xi; 00, 0)
Us = @Ui (3¢5 00, vip)
o 9*
UL = WUi (i3 0o, o) -

i



It turns out that under our asymptotics where n and T tend to infinity jointly, the term Z; determines

the asymptotic distribution of the estimator, while the term =5 turns out to be a pure bias term. These

facts are established in the following two Lemmas.

Lemma 1 Let Conditions (1),(2),(8) and (4) be satisfied. Then

ZZUtHN (0,9)

zltl

where Q = lim,, n=1 Y7 T

Proof. Follows from Lemma (6) in the Appendix. m

Lemma 2 Assume that Conditions (1),(2),(3), (4) and (6) hold. Let fYU" =370

and fVV = Soe oo Cov(Vig, Vieir). Let
f i . fVU“
= limn E _t
P E[OV(%ZIH oz,):|

and

n

EUMY (2430, o)) v
S o (p [2tgeen])’

Define ¥ = fVU" — YV Then

YV =limn=!

COV( its Uz(::l)

o1 1 Vit (74650, 0y 1 & o E[UXY (x40, o
U= plimo R —th(t—)} —= 0 | Ui (i 0, 00) i a0 0l (6,0

3

and

—1
1 /n_ n (1<
S\ T2~ "\ T (E;L> U +o0p,(1).
Proof. See Appendix (C). m

Using Lemmas (1) and (2) as well as (18) it follows that

- Nozlﬁz)

%\/: \/7< ) T+ o, (1).

28 {QV«;E?t;Q,D&i}}
23

To summarize, we have the following result regarding the asymptotic distribution of the the estimator 0.

Theorem 2 Assume that Conditions (1),(2),(3), (4) and (6) hold.
VT (@ - 90) N (ﬁ\/E,I_lQ (z’)*l)
where

=_77 1.



3 Bias Correction

In this section, we consider various methods of estimating 3 in Theorem 2.

3.1 Casel

In the fully parametric model, it may be possible to derive an analytic expression for 3 as a function
b (0o, 10, 0, - . . ) of (0o, 10,20, ...). A natural estimator would then be given by b (5,@1,&2, . ..),
which would be consistent for 4 under some regularity conditions. For example, consider a linear dynamic

panel model with fixed effects such that
Yit = a; + 0yir—1 + €it,

where €;; ~ N (0,0?) are independent over ¢ and ¢. Note that we can take x;; = (yit,¥i—1) in this

example. Fixed effects OLS solves

(5,@1,... ,An) = argmax ZZ(/} X3 0, a)

Oansesan 5=y 4=
where ¥ (2450, ;) = — (yir — ; — Qyit,l)Q. For this case, it can be shown that
n T 2
1 4 (02)
U; (zi;0,0) = N | 0, )
and
W9 o? 202

- e
1-0’ 1-—6°

(See Appendix E.) It follows that

B=-T"W=—(1406), I 'Qr'=—1_—

and hence

\/nT(é—eo) — N (—Vr(1+0),1—06%),
a result discussed by Hahn and Kuersteiner (2002). As a consequence, a natural estimator for 3 is given
by — (1 + /9\)

3.2 Case 2

The estimation strategy discussed in the previous section is infeasible without a tightly specified model
regarding x;;. In many cases, we may have to settle with the mixing condition as in Condition 2. We

now develop a feasible estimator that is asymptotically unbiased under these general conditions. Note



that natural estimators for E [%}, E (U], and Z; are given by

73

- 1 E .
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where
U; (:cit;@ al) = 59 (xit;/év &z) - lj V7] Vit (xa;ﬁ,az)
EV
O (rudoa) = soo (racfis) - 2Ly (i)
i it; U, Qg 0c; | Tit; 0, Q4 E[V;C”] it it; U, Qg
g (l’it;/é, az> = Soasas (xit;@ az’) - MV?M <3«“z‘t357 ai)
1 - I
7 [1/0
ﬁf) (xitégyai) = Soo (:cit;@ai)—g[[v‘f;i]]%? (xit;/é7ai)

In order to estimate the bias parameter 3 we form the spectral estimates

m
N [vue
fi = Z L'y

l=—m

where
max (T, T+1) ,
nvuUe -1 D~ " D~
Pil = T Z ‘/Z (xita 97 aL) U’LDZ (xit—la 97 aL)
t=max(1,l)
and

m
na% A%
i = Z L'y

l=—m

where
max (T, T+1) ,
iNa% -1 A i .0a
Fil = T Z ‘/Z <xit7 97 aL) U’LDZ (xit—h 97 aL) .
t=max(1,l)

The parameter m is a bandwidth parameter that needs to be chosen such that m/ TY2 - 0as T — oo.

Note that fV U%and fYV are cross-spectra and spectra at zero frequency of the processes U (z; 0, a)

and V; (zit; 0, ;) . When such spectral quantities are estimated in the context of constructing confidence

regions or test statistics, one needs to guarantee that the estimators are positive definite matrices. This

is typically achieved by choosing appropriate kernel functions as pointed out by Newey and West (1987)



and Andrews (1991). In the current context of bias correction, positivity of the estimates is of no concern
and the main motivation for using any kernel other than a truncated kernel disappears.
We thus estimate § by

n -1 n a =S o
b=—(iyz) Ly |—L B Guwilen] Y
N n ! ni— E’ {GVIK(?SQ@L)} 9 (E [5%(%«&;0,&1)})2

i=1
which is shown to be consistent in the next Theorem.

Theorem 3 Assume that Conditions (1),(2),(3), (4) and (6) hold. Let m,T — oo such thatm/T? — 0.
Then,

VnT (@ 9> — N (0,27'z 7).
where

G=0-—5 (5)

N~

4 Higher Order Time Series Asymptotics

We now consider the second order time series asymptotic approximation, where 7" is assumed to increase
to infinity while n is being fixed. It is argued that the “large n, large T” asymptotics can be understood
as a simplified way of doing the higher order “large T” asymptotics. This provides a new interpretation
of the incidental parameter problem as a higher order bias problem.

It can be shown that an expansion similar to (2) is valid here as well?:

\/ﬁ(ﬁ—eo) :E1—|—%\/§Eg+op (%) (6)

By an appropriate central limit theorem, it can also be shown that
= — N (0,27'0171)
Writing

~ 1 = 15, 1
0=00+—= —— -
O+\/T n+T2+Op<T)

we can see that

at

Eo = TIEI;OE [E2]

is the long run bias of order % under “large T” asymptotics. We may therefore want to consider a bias

reduced estimator
~ 15,
0 —=2
T 2

2This is because practically all the results in Appendices A and B go through even when n is fixed. Most notably, instead

of the Central Limit theorem we use for the large n, large T' case, a Central Limit Theorem for mixing sequences needs to

be used here. The additional arguments needed are routine and therefore not reported.



where _6.2 is a consistent estimator for Z5 under “large T” asymptotics. In order to develop and analyze

a consistent estimator for Sy, it is useful to recall that

O R I RN I /70 B IR ol
S TPV R ) b= prry B by B Tam[em]

i=1 io1 |VTE [g—(ﬂ
1) 1

Therefore, we have

c(2xz) 1 g

Note that %limTﬁoo E[T] # 0 in general under the “large T” asymptotics, although %plimT_,oo T7=0
under the “large n, large T” asymptotics. Therefore, we can see that the asymptotic bias under the “large
n, large T” asymptotics is a simplified version of the higher order bias under the “large T” asymptotics.
This observation suggests that bias correction under “large T” asymptotics would imply bias correction
under the “large n, large T” asymptotics.

In order to understand this implication, consider a bias corrected estimator under the “large 71”7
asymptotics. It is reasonable to develop separate estimators for the two terms on the RHS of (7).
Because the first term is the term that shows up in the “large n, large T” asymptotics, it is reasonable
to use the bias correction device developed there. For this purpose, we can consider the probability limit

of 3 under “large T” asymptotics. It can be shown that

LN frue B U (2110, )] FY
B:_<EZZ> lz _ Y _E[U (Ltveat)]fiv

i=1

with f/?/UQ defined in (3) and E/V defined in (4) consistently estimates § times the first term on the RHS
of (7) under the “large T” asymptotics as well.> We now consider the second term on the RHS of (7). Tt

is also useful to note from (31) that 7 is the sum of several terms of the form

(B () TG () (58 o

11t1 j=1 1t=1

SIH

for some kit = k (wit, 0o, o), kit = k™ (wit, 0o, aio), mi,j = my (wit, 0o, o), my ; = mj (wit, 0o, o) such
that E[ki] = 0, E[ly] = 0, |E [m} ;]| > 0 and for J equal to 1, 2, or 3, and for J* equal to 0 or 1.
Writing (8) as

LSSy sn(i5a) m(is

i=1i=1t=1¢=1 j=1

8 (159 |

3This holds because the arguments in Appendix D.3 reduce to the results in Andrews (1991) when T — oo and n is
fixed.



and noting that observations with ¢ # i’ are independent of each other, we can see that the natural

estimator of the limit (as T' — o0) of its expectation would take the form
—J* ~ —1
1 n m maX(T,T-‘rl)A (1 no_ J 1 n B [m ] 1 no_ R
s DD DD DS =D DEZ) B | | S D= I =D Br 3 BN (9)
==, t=max(1,l) = S\t S B [m};] "3
with m/T*/? — 0, where
ki = k (xit;a ai)
E;& = & (l’it,g, az‘)

T

E‘ [mi,j] = T_l Z m; (1}“,/9\, az)
t=1

~ T ~

E[mi;] = T_lzm; (fcitﬁ,ai)
t=1

Let 7 denote the sum of such terms. Using again standard arguments from the covariance estimation
literature it follows as before that 7 = 7 + 0p(1). We then have

—1
~ ~ 1 <~
2 =26+ (5 ZI)
=1

and our bias reduced estimator will take the form

~ n -1
=~ 14 1 1 ~ ~
9_9T6ﬁ<EZL> T (10)

7

S|

i=1

nT
because this is related to the term that is ignored under “large n, large T” asymptotics.

2 2 N1 o
Note that the only difference between 6 and 6 is the last term -1 (% S l'i> 7. This is not surprising

5 Summary

In this paper, we provided a simple characterization of the asymptotic bias of a fixed effects estimator for
dynamic nonlinear panel model with fixed effects. The asymptotic bias was based on the “large n, large
T” asymptotics adopted by, e.g., Hahn and Kuersteiner (2002) and Hahn and Newey (2002). It was shown
that this alternative asymptotic expansions are an alternative way of obtaining a higher order “large T

asymptotic approximation. A method of reducing bias based on these expansions was developed.



Appendix

A Consistency

A.1 General Lemmas

We provide a different version of Lahiri’s (1992) Lemma 5.1 which is stated for bounded zero mean

random variables.

Lemma 3 Assume that {W;,t =1,2,...} is a stationary, mizing sequence with E [Wy] =0 and E {|Wt|2r+5} <
oo for any positive integerr, some d > 0 and allt. Let Ay = 0 (Wi, Wi_1, Wi_o,...), By = 0 (Wy, W1, Wigo, ...)
and a (M) = sup, SUpac 4, Bes, .., [P(ANB) — P (A) P(B)|. Then, for any m such that 1 <m < C(r)n,

B[S, W™ 0@ B[W ] [rm? 4 na (m)=
where C (1) is a constant that depends on 7.

Proof. The proof is exactly identical to the proof of Lahiri (1992, p.198-200) except that, instead of
using the mixing inequality in Lemma 27.2 of Billingsley (1986), we are using the mixing inequality in
Corollary A.2 of Hall and Heyde (1980). For notation used here, we refer the reader to Lahiri (1992). All
statements in Lahiri (1990) on p. 198 are unchanged and we pick up the proof starting on p. 199. We need
to consider the term ’23 E [ - W“t}
A ={t:a; =1} and let §; be the number of elements in A. Lahiri (1992) shows that 2 (j — r) < 8, < 2r

which shows that A is non-empty when j > r. The sum ) , is as defined in Lahiri and extends over all

, where (a1, .., ;) is a j-tuple such that 2r = Zgzl ;, j>r. Let

indices in the set By, = {(i1,...,35) : 1 < iy < ... <45 <n,|ig—1 —i¢| > m, |ig — i441] > m for some t € A}.
Now consider E[ 7 W»O‘t} when j > r. Fix 7 € A. Then, if 1 < 7 < j define W, = tT:_ll Wi,
Wy =W, and We = [[;_, ., W as well as by = S ay and by = 7oy such that

B we]

< [EWWWe] = E[WoWo] E[W]| + |E [WaWi]| [E [W]]

< (st 5 [ )
} E [|Wb|2r+5}) 2r+& o (m) iji&
5

S+by

< SE[Wil"| a(m)=5 + 8B [[Wil**| a (m) v+ | (11)

+8|E W] (B [Iwa R

+

where the second line follows from Corollary A.2 of Hall and Heyde (1980), and the last line is based on a
repeated application of Holder’s inequality and makes use of stationarity. If 7 = 1, then define W, = W},
and W;, = [[_ +41 Wit such that

B we]| = Ewaw)
< s (B [waf )7 (8 [WfEH]) T a
< SE[Wi"|a(m)7

10



by the mixing inequality from Corollary A.2 of Hall and Heyde (1980). A similar argument holds for the
5+b

case when 7 = j. Since « (m)m% =o0 (a (m)rié> the second term in (11) can be subsumed into the

constant C(r). The remaining part of Lahiris proof is not affected by the changes made here because it

does not involve mixing arguments. ®

Lemma 4 Suppose that, for eachi, {&,,,t =1,2,...} is a mizing sequence with E'[¢,,] = 0 for alli,t. Let

Ay =0 (fitafz‘t—hfit—za ) Bi=0o (Eit75it+1afit+2a ) and a; (m) = sup, SUPAeAi, BB, |P(ANB) — P (A) P(B)|.
Assume that sup; |a; (m)| < Ca™ for some a such that 0 < a < 1 and some 0 < C < oo. We assume

that {&;;,t =1,2,3,...} are independent across i. We also assume that n = O (T). Finally, assume that

E [|§it|6+§} < oo for some § > 0. We then have

Pr [ max

1 7
1<i<n T Zt:l fz‘t

> n} =o(T™)

< 0o for some 6 > 0 and some integer ¢ > 1. Then,

for everym > 0. Now assume that E [|§it|10q+12+5}

1
JT S i

Pr [fgfg{n > 77T110“] =o(T79)

for everyn >0 and 0 < v < (100q + 120)71.

Proof. By the Markov inequality

1
T Z?:l fit Z?:l fit Z?:l fit

>n} Pr{max

1<i<n

6
> nGTG} <T 5 °F [max

1<i<n

]
and by a an inequality for the Orlicz norm of a maximum of random variables (van der Vaart and Wellner,

1996, p.96) one obtains
]

6} <CE [|5“|6+5] (T3m6 + T%@(m)ﬁ)

Pr | max
1<i<n

F | max
1<i<n

S it

6} < nrnzaxE DZtT_l it

>From Lemma (3) it follows that

B :)Z?_l u

for any m such that 1 < m < CT. Choose m = T and some v such that 0 < v < 1. Then, for y < %,

IN

Pr [ max

1 7
1<i<n T Zt:l fit

> 77} nT%n~°C (T3+67 + Tﬁae%éT”)

= O(T " +Td"")=0(T71).

11



For the second part of the Lemma, note that by previous arguments

[ 1 «r a1
TP 125n ﬁztzlfit > nT'7o “}
[ 3_,
= TP o [ ] >
= T9Pr _max ZtT—1§‘t 10ati2 > n(10q+12)T(gv)(10q+12)]
[1<i<n =15
3_, _ 10g+12
< TIT™ (2 )(10q+12) (10p+12) Lrg?él Zt &, ]

- 0 [T75q7%+10vq+12vn O (T5q+6+“/(10q+12) 4 T(1oq+12)amw>}

- 0 (Tfé+10vq+12v+107q+127> _ 0(1)
for v > 0 sufficiently small. m

Lemma 5 Let & (2, ¢) a function indexed by the parameter ¢ € ® where ® is a convexr subset of RP
with E [§ (x4, ¢)] = 0 for all i,t and ¢ € ®. Assume that there exists a function M (x;) such that
1§ (@it, 1) = & (wit, @o)| < M (wit) |91 — ol for all ¢y, ¢y € @ and supy [€ (vie, @) < M(x4). For each i,
let x;; be a a-mizing process with exponentially decaying mizing coefficients satisfying sup, |a; (m)] < Ca™
for some a such that 0 < a <1 and some 0 < C < co. Let q denote a positive integer such that q > %4,
where p = dim ¢. We also assume that E “M (xit)|10q+12+5} < oo for some 6 > 0. Finally, assume that
n =0 (T). We then have

1 X
ﬁZﬁ(fCit,@)
t=1

for 0 < v < (100q + 120)71. Here, {¢;} is an arbitrary nonstochastic sequence in ®.

Pr lmax >TH Y| =0 (Tﬁl)

Proof. Note that we have

1 T n
—= > (@i, ¢;) <T) P [
Tt 2"

Adapting an argument in Hall and Horowitz (1996) we chose ¢ > 0 and divide ® into subsets ®1, ®a,...2 /(<)
such that ||¢; — ¢ < % whenever ¢, ¢, are in the same subset ®;. Then

T

Z Tit, (b

=1

T Pr [ max > T > T
K3

>T7Y| < ZPr > T16—v

sup

Pr |sup
PED,

PP

1 & 1«
ﬁZ§(xzt,¢) ﬁzg(x”’d))
t=1 t=1

Then, for some ¢; € ®; and any ¢ € @;

— )] & (xit, @ ' < %;f(m,%) +LT;}E(%“¢) & (wit, ;)]
= %Zi(m,@) + %Z(M(xn)—E[M(xzt)]) + 26 E[M (z4)]
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such that

T 1
1 1 1 Tio—v
Pr | sup |—= E ZTit,®)| >T107 7 < Prf||l— E Tit, @5 )| >
l¢€£ T P g( it d)) \/T i g ( (17 ¢J) 3
T 1
1 Tio—v
+PI‘ T t:E - (M (1’1',5) —F [M (IELt)]) > 3

By Lemma (4), it follows that both terms on the right are of order o (7~%), where the orders are uniform
in 4. Since M (g) = O (T?/?) it follows that

T
TPr % ;g (it ¢)| > TV | =nT-0(T7) -0 <T”/2> =0 <T2*‘1+”/2> =o(1).

max
%

Lemma 6 Assume that x;; satisfies Condition (2) and let & (i, @) be a function indexed by the parameter
¢ € int @ where @ is a convex subset of RP. For any sequence ¢; € int ® assume E [§ (zit, ¢;)] = 0.
Moreover supy [|€ (i, ¢)|| < M (2i1) such that E [M(z4)*] < co. Then

1 n T

T 2D E i) N (0,5%)

i=1 t=1

~

where £ =lmn =t Y1 55 with £5£ =32 E (€ (wir, ¢) € (i—j 63)']-

]

Proof. First note that by Condition (2) and the fact that the mixing property is preserved by
measurable transformations of finitely many elements x;¢, £ (x4, ¢;) is mixing with exponentially decaying
mixing coefficients. Let p’ = dim (§). By the Cramer-Wold theorem it is enough to consider v; , 7 =
OS2 2w = 05,7 = YL € (@i, @) for all £ € RY[|¢]] = 1 where S,p = Y1, 5% with X5, =
Var <\/L:F Zthl & (zy, qu)) . The Lindeberg-Feller condition requires that for any ¢ > 0

n
ZE [UZ-27,,L7T1 {|vin,r| > 5}} — 0.
i=1

Let &, = & (zit, ¢;), and note that

E [0, {vinel > )] = B[lvinal® Hlvingl > e}] < [[€5724]" B [1Zir]* 1 {vin2] > €}]
< e2|espl B (1Zal'] = e 2|05t T Y B [gh G bin,]
t1,..,ta

where 1{|v;, 1| >¢c} <1 {||Z,L4T||2 > e/ HE’E;%KHZ}. Let the j-th element of £, be denoted by ¢; ;
such that

p
E [&hgitz&%gim} = Z E [gjl,itlgjl,it2§j2,it3€j2,it4]

J1,J2
p
= Z {E [Ejlyitlgjlyit2] E [Eh,itsgjz,ihj +E [€j2,it3§j1,it2J E [gjl,itlgh,im]
J1,J2
+FE I:Ejéyitaé.jlﬂltl} E [§j17it2€j2 ,it4] + Cum (Ejl,itl ) EjlyitQ’ §j27ita’ §j27it4)} :

13



>From Andrews (1991, Lemma 1) it follows that th7--,t4 sup;, Cum (gjl,z'tl7Sjl,itzvgja,itygja,im) < 0o0.
>From Hall and Heyde (1980, Corollary A.2) it follows that E([&;, i1, &), .it,] < 8E [|£j1)it1 ﬂ E I:}EjlyitZ |4} a(ty — t2)1/2
such that 77137, E([&, i85, < @ ZIT:O (1-1/T) (\/E)l < oo for all T and some constant
cp < oo. >>From Z’E;%E < maxy /\,;1 = 1/ming A\ with \; eigenvalues of ¥,r and the fact that

. P L 114
ming A\p > ninf; inf7 \;7 implies that Hé’ En%éH < ¢on~? for some constant ¢y < oco. These arguments

show that
E [UZ'Q,n,T]- {|Ui,7L,T| > 5}} < CTL72

uniformly in ¢,7 for some constant ¢ < oo such that the Lindeberg-Feller condition is satisfied. The

result then follows from the fact that

l & / !
sup |25 — 5| < '—T'Z [Cov (€ €ie-d)ll + D [Cov (i &iui) |
¢ I=—T [1[>T+1
1 o0 , oo
< 5 > Cov (€| +e Yo A=l/T) (Va) — 0as T — o12)
l=—o0 [1>T+1

such that iterated and joint limits are the same such that X,7 — f¢¢. m

A.2 Consistency

Definition 1

N 1
G (0,0) = 7 S Y (@iiba), G (0,0) = E Y (20, 0)]
t=1

Lemma 7 For alln > 0 that

Pr Lrg%xn (s;)ui)) G (0,0) — Gy (9,01)) >n|=o0(T7")
Proof. Let n > 0 be given. We note that
Pr Lrgag sup |Gy (6, 0) = Gy (0,0)| = | < S Pr fsup |Gy (6,0) = Geoy (6,)| 2| . (13)
SIS (9,a) i—1 (6,a)

Let € > 0 be chosen such that 2e max; E'[M (z;)] < 3. Divide T into subsets Y1, Ya,... , Ty such

that |(6, ) — (6',a’)| < & whenever (6, a) and (¢',/) are in the same subset. Let (6;, ;) denote some

point in T; for each j. Then,

~

Gy (0.0) = Gy (0,0)| = maxsup |Gy (0,0) = Gy (0, )]

sup
(0,0)

and therefore

M(e)

Pr | sup é(i) (0,0) — Gy (9,0[)‘ > 77] < Z Pr
j=1

(0,a)

sup ‘é(i) (0,0) — G (97a)) > 77] (14)

14



For (6,a) € T;, we have

" (M (i) — E M ()

t=1

‘é(i) (0,0) = Gy (0, ) ‘ )G(l (05,05) — Gy (05, a5) )JF + 26 E [M (zit)]

£
T

Then,

Pr Hé(i) (Gj,aj) - G(i) (ej’aj)) > g}

Pr

IN

sup ‘é(i) (0,a) = G (97a)‘ > 77]

T
1 n
v D0 (M (i) = E[M (zi)])| > 3—]
t=1
= o(T7? (15)
by Lemma 4. Combining (13), (14), (15), and n = O (T'), we obtain the desired conclusion. m

Theorem 4 Pr H@ — 90‘ > 77} =0 (T_l) for every n > 0.

Proof. Let 5 be given, and let ¢ = inf; [G(Zv) (00, i0) = SUD{(9,0):](0,0)— (00,ai0)| >0} G i) (B5@)| > 0.
With probability equal to 1 — o (%), we have

n n
max n Gy (0,0;) < max n G (0,
|9—90|>7]70417~~- e 7% ; ( ) ( ) ‘(0,0413)— 90,04¢0)|>7] Z ( ) ( )
< max -1 ZG(Z 0, ;)

[(6,c0)— 90,%0)|>n

< n! ZG(i) (0o, o) — §5

n
< ’rL_l ZG(’L) (90,0@0) — 55,

where the second and fourth inequalities are based on Lemma 7. Because

max n! Zé(z’) (0, 05) = n~* Zé(i) (0o, cvio)
i=1 i=1
by definition, we can conclude that Pr H/ﬁ\ — 90‘ > 77} =0 (T_l). ]

Theorem 5 Pr[maxi<;<, |0 — o] > 1] =0 (T_l)

Proof. We first prove that

G (@, a) — G (90,a)) > n} —o(1) (16)

for every n > 0. Note that

T Pr | max sup
1<i<n o

~

iz | Coo (B.0) =G (o)
< lréllag(nsgp G( i) @, a) -G <§, oz)‘ + lrg%l sgp G (9,a> -G (90,04)‘
<  max sup ’G(i) (0,0) = Gy (9,0[)‘ + max F[M (x)] - ’/9\ - 90‘ .

1<i<n (0,0 1<i<n

15



Therefore,

) , A yer n
T Pr [1@?<Xn Sl(ip G (9,04) -G (Ho,a)) > n} < TPr 113{a<xn (seu(g G(l) (0, 0) — G (G,a)) > 21
+TPr De 00| > U
2 (1 + maxi<;<n E [M (l‘zt)])

= o(1)

by Lemma 7 and Theorem 4.
We now get back to the proof of Theorem 5. It suffices to prove that
_ > —_
TPr LI?% la; — ol n} o(1)
for every n > 0. Let n be given, and let ¢ = inf; [G(i) (0o, o) — SUP{ ;i —aso| >0} G i) (Go,ai)} > 0.
Condition on the event {maxlgign sup,, CAi(i) (@, a) — G (0o, a)) < % } which has a probability equal
to 1 —o (%) by (16). We then have

~ 1 2 ~ [ 1
max G () <9;04i> < max G(i) (90,0&1‘) + gé‘ < G(i) (90,(3(1‘0) - gE < G(i) (9,0@0) — gE

|a; —cio|>n [os —aio|>n
This is inconsistent with @(i) (5, ai) > é(i) (5, aio), and therefore, |@; — a;0| < n for every i. ®
B Expansion
Let
T
a; (0) = argmax Z ¥ (2it;0,a)
¢ =1

Notice that & can be given an alternative characterization:

0= argmaxzzw Xt ¢, Q; (€))

i=1 t=1

Therefore, we can see that 0 solves

330 (st (7).

i=1 t=1
Let F = (Fy,...,F,) denote the collection of (marginal) distribution functions of x;;. Let F =
(ﬁl, . ,ﬁn>, where ﬁi denotes the empirical distribution function for the stratum ¢. Define F'(¢) =

F+eJT (ﬁ - F) for e € [0,771/2]. For each fixed 6 and €, let a; (6, F; (¢)) be the solution to the

estimating equation

0= / Vil0,a; (6, F; (6))] dF; (c)

16
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and let 0 (F (¢)) be the solution to the estimating equation

NE

/ Ui (2010 (F () 0 (0.(F; (), F: (6))) dF (e).

1

-
Il

By a Taylor series expansion, we have

0 (ﬁ) —9(F) = %ef 0) + % (%)29“ (0) + % (%)39 @, (17)
where 0° (¢) = df (F (¢))/ de, 0 () = d?0 (F (¢))/ dé?, ..., and € is somewhere in between 0 and T~1/2.
We therefore have

VaT (6(F) - 6(F)) = \/n_T\/lf )+ VnT= (ﬁ) 6 (0) + %\/g%e @). (18)

Let
hi(-,€) = U; (50 (F (), ai (6 (F (), Fi (€))) (19)

The first order condition may be written as

== [hi9dR (20)

Differentiating repeatedly with respect to €, we obtain

0 %i/dhid(f Z/ €) dAsr (21)
0 = —Z / d62 dF €) +2— Z / dhi ( dAlT (22)
0 = —; / dF €) + 3= Zl / d62 dAlT (23)

where A;r =T (E — E)

B.1 6(0)
Because

dhL (', 6) - 6hL (-,6) @ GhL (-,6) 8ai @ Ghz (', 6) 8041'

de 90 Oe Oa; 90’ Oe Oo;  Oe

we may rewrite (21) as

_ 1 6h (9hL(,€)6O£L@ 8h¢(',€)80&¢ :
0 = Z/( T ae i 00 9 T oy o )

41 Z / &) dAr (24)
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Evaluating at € = 0, and noting that E [U;**] = 0, we obtain

0 (0) = (% Zz) _ (% Z / UidAiT> (25)

We therefore have

n T

Lo — (1sg) (1 sy
\/n_Tﬁﬁ 0) = (nZL> (ﬁﬁ22u>

i=1 i=1 t=1

~ N (o,z*lg (I’)‘1>
B.2 of and of
In the ith stratum, «; (6, F; (€)) solves the estimating equation

[Vitst.0. 0. (@) dF (0 =0 (26)
Differentiating the LHS with respect to 6 and e, we obtain

. /aw (09 415 (o) (/ ama(;ie,e)dﬂ (6)) 0oy (6, Fi (1))

00 00
B oV; (-, 0,¢) Oa; (0, F; () ‘ ‘
0 = ( / G dar, (e)) L) / Vi (-,0,€) dAr.
Observe that
dai (6, F; (c)) Vi (-,0,¢) o / Vi (-.0,¢)
—_— = - ————2dF; —— 1 2dF; ,
90 / 90, 1) o9 49
8@1‘ (97FZ (6)) 8‘/1 ('7976) - /
_— = = _— Fz i (0, Al .
9 / D, dF; (e) Vi (+,0,¢) dA;r
Equating these equations to zero and solving for derivatives of a; evaluated at € = 0 gives
E[%:
5 5]
_ T
a = - Sy Vu__ TP Vi (28)
el el
where of = 7&)%(%?(0))7 and af = 76”(%?(0)).

B.3 %, of, and o

Second order differentiation (68—022, 62_(2‘)57 g—;) of (26) yields

COV(00 L 00 (0,Fi(9) [ [ PVil,6,)
0 = / 000 O+ 55 ( 0,00 U (€)>
2‘-6 a; (U, L' € il,0,¢€ Zai’ie
([ Facgyar o) G ([ R Dar o) T T
0?V; (+,0,¢€) Oa; (0, F; (e)) Oa; (0, F; (e))
+</ 9az IF (6)) a6 o0
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Vi (-0, ¢) 90 (0, F; (e)) Vi (-.0,¢) 0 (6, F; ()
0 = ( 000, L (€)> de +</ o, (6)) 000¢

n (/ 0?V; (+,0,¢) JF, (e)) Oa; (0, F; (¢)) Oa; (0, F; (€))

da? o0 e
a‘/z ('7976) . a‘/l ("976) . 80&1‘ (Q’Fz (6))
+/TdA1T + (/ (90(1' dAzT 89 ?

and

0 ( / Wil,0.9 e <€)) Pai (0. F () | ( / PVi(0.0) <e>) (_5% (6. F, <e>>>2

O O¢€? da? Oe
i\ Y, 1 ) Fz
49 /8V( 0 E)dAiT da; (0 (e))
ooy Oe
These three equalities characterizes yaég)égf(é)), yaiézg:"(é)), and w

Lemma 8

TPr| max

0(c) — | >77] ~o(1)

and

TPr| max max |a;(e) —ap| >n| =0(1)
1§z’§n0§5§ﬁ

for every n > 0.

Proof. Only the first assertion is proved. The second assertion can be proved similarly. Let 1 be

given, and let € = 11’lfL |:G(L) (90,0(1'0) — Sup{w,a):|(0,a)7(00)ai0)‘>n} G(z) (9, a) > 0. Recall that

F(e)EFJre\/T(ﬁfF), e {O\/LT]
We have

/ g (-0, () dF; (¢) = (1 - eﬁ) G (0,0;) + VT Gy (0, )

and
\ [9:0.0:0)dF (- Gy 0,00)

< (1-eVT) |Giiy (6, 0) = Gy (0,0)] < |Geiy (0, 0) = Gy (6,0

By Lemma 7, we have

Prl max max sup /g(';Q,ai (0))dF; (€) — Gy (0,)| > 1 :O(T_l)

. .
0<e<—= 1<i<n (g9.q)
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Therefore, for every 0 < e < % with probability equal to 1 — o (%), we have

! 50,05 (0)) dF; < -1 / 0,0, (0))dF;
0=B0l>mert, ;/g( i (0)dFi(e) < - mex o0 Z 9(30,0:(0)) dFi (e)

ey Oy

—1
< G (0, a4)
(0,00~ (B i) |51 Z Ol

_ 2
< n IZG 90,0&10 —58

_ 1
< n 12/9(';907%0)(15 (€) — 3¢
i=1

We also have

-1 -1
earlnax n ;/ (0, ;) dF; (e Z/ (+;00, ajp) dF; (€)

by definition. It follows that

*12/ (6,04 (0 dF()< Jmax nIZ/ (50, ;) dF; ( )7—5
i=1 0,0 i=1

max
[0—00|>n,0u1,... ;an

~

0 () —90‘>n}—0(%) ]

for every 0 < e < \/— We therefore obtain that Pr [max0<6<

Lemma 9 Suppose that K; (-;0 (¢),a; (0 (€) ,¢)) is equal to

OmMtm2a) (14400 (€) , vy (0 (€) ,€))
80’"11 8@;712

for some m1 +mgo < 1,...,5. Then, for any n > 0, we have

n

3 EACICRAUCIRIICER ) S L)

> n] =o(T7")

maX
O<E<

and

Pr mzaxoglgx /K a; (0 (€) ,€)) dF; (€) — E[K; (xit; 0o, cvio)]| > 77] =o(T71).
Also,

Pr mzax 0<I£13X /K a; (0(€),¢e))dAp| > CTH V| =0 (T

for some constant C >0 and 0 < v < (100q + 120)71
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Proof. Note that we may write
| [ 5500000000 R0 - [ Ki(36() i 0. 0) dF,

< |00 a0@.0m0 - [KG600.0 0005 @

#| [ 00000 .00 a0 - [ Ki50©).0:00).0)ar;

< /M(wit) (116 (e) = Ol + i (6(e), €) — cui|) d| F; (€)]

LT /Ki(-;Q(O) i (00),0)d (F, - )

Therefore, we have

. Z/Ki (50(0), 02 (0 (€), ) dF: (0) — + > B K (i 0o, )]
=1

i=1

n

T
< ool 5> (E [0 ()] + 5 ZM%))

=1 f t=1
1 n 1/2 1 n 1 T 2\ 1/2
+ (g Z (Oéi (9 (6) ,e) — O‘z’)2> (ﬁ Z (E [M (:c“g)] + T ZM (th)> )
=1 =1 =

t=1
T
> (% S K (@i 01(0) 0 (61(0),0)) = E[K; (@36 (0) .1 (6 0) ,o»]) H ,

the RHS of which can be bounded by using Lemmas 4 and 8 in absolute value by some n > 0 with
probability 1 — o (T_l).

Because

we can bound

max max
b OsesTE

/Ki ('; 0 (6) , O (9 (6) s 6)) dE (6) - F [KZ (l'it; 90,0[1‘0)]

in absolute value by some 7 > 0 with probability 1 — o (T‘l).

Using Lemmas 5, we can also show that

/Ki (50(e), 0 (0(e) ) dAsr

max
7
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can be bounded by in absolute value by CT v for some constant C' > 0 and v such that 0 < v < l—éo
with probability 1 — o (T‘l). [

Lemma 10

Pr

max max }af(e)|>C] = o(T™)
2 Ogegﬁ

Pr |max max |af (e)|>CT%o—’U
g Ogegﬁ

for some constant C > 0 and 0 < v < (100g + 120)"".

Proof. >From Appendix B.2, we obtain

Using Lemma 9, we can see that

(5 amo)

is uniformly bounded away from zero with probability 1—o (T‘l). We can also see that, with probability
1—o(TY),

AV (-, 0,¢)
/Tdﬂ (€)

is uniformly bounded by some constant C', and
[vito0dnn
is uniformly bounded by CT". m

Lemma 11

= O(T_l)

1
Oses 77

Pr l max  |6¢ ()] > CT "

for some constant C' > 0 and 0 < v < (100qg + 120)_1.

Proof. >From (24), we have

0°(e) = - [%§/<8hégfe) +6h5§;6) ZZf)dFi . -
[%Z_; e ([ Feitam) +%§/m(~,e> Air

Using Lemmas 9, and 10, we can bound the denominator of 8¢ (¢) by some C' > 0, and the numerator by
some CT'75~V with probability 1 — o (T~1). m
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Lemma 12

Pr |max max a?rar' (e)‘ >C| = o(T™)
? ogegﬁ |
Pr lmax max ale (e)’ SCOTH V| = o (T71)
i 0<e<—= ]
2
Pr lmax max |as€(e)| > C (T%7“> = o(T™)
i 0<e<—L
= 7\/? ]

0.0, 2

7

[e3

or some constant C' > 0 and 0 < v < (100q + 120 - Here, a
[

1ol
00,
Proof. >From Appendix B.3, we have

o o [ERCOA g BRI ([PUCLD )

r€

. . 9
50,00 We similarly define o

0000’ 06 da; 00"
2‘-6 a; (U, L' € il,0,¢€ Zai’ie
([ S hamca) S ([ 5 an o) i
0?V; (+,0,¢€) Oa; (0, F; (€)) Oa; (0, F; (€))
* ( / ez IF (6)) a6 o0
0V (+,0,¢) Oa; (0, F; (e€))
0 = —oa . AFi () ) ————
000ay; Oe
( Vi (-, 0,¢) IF: > %a; (0, F; (¢)) 02V (+,0,¢€) JF Oa; (0, F; (€)) 0a; (6, F; (€))
* ( / e, 1(6)) 000c ( / a2 1(6)) 26
aV; (-, 0,¢) oV; (-, 0,¢) da; (0, F; (€))
+ / A+ ( / o dAiT) e,

and

0 = ( / Mdﬂ(e)) 9% (0, F; (€)) +( /6214(-,9_76)@(6)) (_aai(97ﬂ(6))>2

Oy Oe2 da? Oe
+2 / 8‘/; ('7976) dALT 8@1 (97Fi (6))
ooy Oe

The result then follows by applying the same argument as in the proof of Lemma 10. m

Lemma 13

2
€€ 1—10—11 — -1
Pr [ogI?SXlT |0 (¢)] > C (T ) ] o(T1)

for some constant C >0 and 0 < v < (100q + 120)71.

Oe

Proof. The conclusion follows by using the characterization of 6 (¢) in Appendix C, and Lemmas

9,10, 11, and 12. m
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Lemma 14

Pr |{max max afre“e“' (e)‘ >C| = o(T™)
? ogegﬁ
Pr |max max afrer/e (e)’>C’Tﬁ—’U = o(T™)
i 0<e<— ]
)
Pr {max max |a) (e)‘ >C’(T1_107“> = o(T™)
? ogegﬁ |
E
Pr |[max max |a (e)|>C(T%0_”) = o(T™)
i Ogegﬁ

for some constant C' > 0 and 0 < v < (100qg + 120)_1.

Proof. It was seen in Appendix B.3 that

B Vi (0, .\ dai (6, F; (e)
0 = ( 90,00, (€)> De

n (/ ov; ('797€)dFi (6)) 9% (0, F; (€)) + (/ 32‘/}‘('7976)613 (6)) Oa; (0, Fj (€)) Oci (0, Fi (¢))

ooy 00,.0¢ da? 00, Oe
a‘/l ('7976) ) a‘/z ('7976) . 80&1‘ (ean (6))
+ / Jo i+ ( / G -

and

0 = ( / Mdﬂ(e)) 9% (0, Fy (€)) +( /6214(-,9_76)@(6)) (_aai(97ﬂ(6))>2

O Oe2 da? Oe
42 / 8‘/; ('7976) dALT 8@1 (97Fi (6))
Oy Oe
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We therefore obtain

[ OPVi(L0,e) BV (-0, ¢) da; (0, F; (€))
0 = | 300000, O+ ( D0,00,00,, 1 (€ )> 90,
P (0, F; (¢)) PVi(,0,€) . da; (0, Fi (€)) Vi (0 ¢)
50,00, ki) BTy B9800, 1 (9
| Dai (0, F; (¢)) Oa; (0, F; (€)) PVi(,0,€) .
a0, 90, dax 289 dFi(e)
93V (- 90 (0.Fi(0) | ( [V (:0:9) 1 () 26 Fi (9) D (0, F (o)
8a189 aew 00, 90200, " \° 90, 90,

n 02V (- 82% 0, F; (

aazae aaﬂaer,/

0a; (0, F; ( 0?V; (+,0,¢) da; (0, F; (€)) 0%a; (0, F; (¢))
* ( aazaew (€ ) 20, aer, = ( / aaz 4k (6)> 090, 90,00,/
ba; (0, F; (¢))

* ( aaz ’(6)) 20 aewaew
n Oa; ( 9F ) Ocv; (0, F; (¢€))

6a2897u 6 897/
N 804z )) Oa; (0, F; (€)) Oav; (0, F; (€))

897/ 897,//
N Do ( 9 F )) Oc; (6, F; (€))
39 aerﬁ 697#
+ 8 Ozz' (9, FIL' (6))
90,00,
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i (0,F;i(€))
which characterizes 2 ae 90,00 1 °

0 = ( Mdﬂ (€)> 9a; (0, F; (¢)) + ( Mdﬂ (€)> da; (0, F; () 0a; (0, Fi (€))

00,.00, Oav; Oe 90,002 00, Oe
0?V; (+,0,¢) D?a; (0, F; (€))
- ( 20, 8% o (6)) 30, e
02V (- D?a; (0, F; (€)) 0?V; (+,0,¢) da; (0, F; (€)) 0%a; (0, F; (¢))
* ( ae aaz aF; (6)) 26,0 T ( / aaz F (6)> 20, 00,0¢
83@1 (97 Fi (6))
* ( aaz Fie )) 26, ae ae
dav; ) Oci (6, F; (¢))
* ( aeT,aa (¢ ) De
n 83V 80[1 )) Oa; (0, F; (€)) Oav; (0, F; (€))
ae p 26, Be
. Pay )) e (6, F; (€))
ae ae De
n 82V Oa; ( 0%a; (0, F; (€))
06, 9c
80{1' (97 Fi (6))
* / ae aew Danr + ( 20 aaz dALT) a6,
6@1 (97Fl( )) 82‘/1 ('7976) ) 6@1‘ (97FZ (6)) 6@1‘ (97E(€))
* ( ae 8a1 dALT) 00, / a3 OAT 26, a6,
& (0, Fi (¢))
* ( 8% dAzT) 00,00,

. . Bgai G,FI €
which characterizes AH 90,,9c

0 — ( 0?V; (-,0,¢) dF: (€)> 02, (0, F; (¢)) n (/ 62{/;6(.,2975)dﬂ (€)> da; (0, F; (€)) 0%a; (0, F; (¢))

00,00 Oe? ok 00, Oe?
n ( / aV; (;-,e,e) dr, (6)) 83&:5(905 F;(e))
(6% ~O€
+ ( 33;;;5 cfé_e) iF (q) (6% (Héer' <e>>>2 N ( / 733‘%9’ 2 (e)> da (g,e F (©) (aai wéem <e>>)2
off 02%@(-,;9, ar () L LA P50 1

Do (0, F; (€)) 92V (-,0,¢) da (8, F; () da; (6, F, (¢))
+2 ( ae 8a1 A”) 9e 12 ( / da2 dA"T) 26, De
( D?a; (0, F; (€))

+2 80{1 dAzT) 697 e 3
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3 s )
which characterizes %, and

0 — (/ Vi (0, ¢) dF, (6)> dai (0, Fi (¢)) 0% (0, Fi () n (/ Vi (-, 0,¢) dA”) Pai (0, Fi (e)

da? Oe Oe2 O O¢€?
8‘/1 ('7 97 6) 83a’i (97 FZ (6))
+ (/ B ro— dF; (e)) — 55

(]2 (2 ] i) ()

PV (,0,0) . Do (6, F () %0 (6, Fi (€)
w2 ([ Sadanio) 24, o

" ( / 82‘452;2 0.9, Am) (aai (9565 <e)))2 s ( / av; éae) p AiT) 0o gf ().

03
which characterizes %. Inspecting these derivatives and applying Lemmas 9, 10, and 12, we

obtain the desired result. m

Theorem 6

3

Pr l max |0°“ (e)] > C (Tl_lo_’”) ] =o(T7")
0<e< =

L

for some constant C >0 and 0 < v < (100q + 120)71

Proof. >From (23), we have

Z/ dF €) + 3~ Z/ dAzT

3
Combining Lemmas 9, 10, 11, 12, and 13, we can bound l Z": M(z"e)dAiT by C (Tl_ltf“> with

- 2h(”( &) p d?hi(e) -
probability 1 —o (T ) It was seen in Appendix C that the r-th component of — 5= is equal
to

Ph) (0 _ 00(.0) P (.99 P () (9a; 90 0 A (-.c) Do 0B
de? o Oe 06006’ Oe 00'day; 90" O¢ ) D¢ 00'da;;  Oe Oe
+_8h§7') (¢) 0%0
90" Oe?
O*h (,€) 90 9a; 90 | 9°hY (e) (9o 90N® | 8*h{) (- €) (Da; D0 Da
00'0c;  Oe 00’ e da? 00" e da? 00’ de ) e
+ah§” (.0) (00 0%0; \ 00 on"” (-, €) *a; 90 . Oh" (-,€) da; 9°0
Oa; de 0000 ) e da;  90'0e Oe da; 00" Oe?
Ph () 90 da;  8*h () (90 99\ dai | Ph{ (@) (i
00'0a; e Oe Oa 00’ de ) O¢ da? Oe
+8h§7') (,e) 8%a; 99 O () Py
Oa;  0edd Oe Ooy; Oe? ’
Using Lemmas 9, 10, 11, 12, and 13 again, we can conclude that 1 S S d” h( F; (¢) is equal to

L \3
(Tll S ﬁ,—ldF (e )) 92 plus terms that can all be bounded by £ ZZ S A;Ez—ldAiT by C (Tﬁ_”)
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with probability 1 — o (T~!). Because (% S [ e

9, we obtain the desired conclusion. m

C Proof of Lemma (2)

ahi(~,6

)

-1
dF; (e)) is bounded away from 0 by Lemma

Note that
d?h; (-, €) 0h; (,€) (Oa; 00\ 00 ~ 0%h; (-, €) Oa; OO
e = 969t T, (ae’ ae) 9c T To00a; e de
6hL (-,6) 629
06 e
02h; (-,€) 00 0c; 00 9%h; (- €) [Da; DO\ 0%h; (-, €) (Do DO Doy
06'0c; e 90’ De da2 (Wa) da2 (Wa) e
L Ohi(e) (a_a' oy > 30 | Ohi(-€) Ba; 99 hi (-, €) Da; 0°0
O O¢ 0000' ) Oe Oa; 00’ 9e O¢ Oa; 06 Oe?
2h; (-,€) 00 0c;  %h; (€) (Do DO\ oy D2hy (-, €) (Do \”
900c; 0c e | da? (ae'&) e T 0a2 (E)
Oh; (-, €) O%*a; 80 Oh; (- €) 0%y
dai  0e0f de ' Doy 02

where G; (-, €) is a R-dimensional column vector such that its r-th element Qi(r) (-,

90 () " (,€) 90 (-, )

LS e e [2h]

€) is equal to

02U;
F { 907 }

7

oU;
Oay

T

T+ = Z /

CYA
R N A
and hgr) (-, €) denotes the r-th element of h;.
Evaluating each term of (22) at ¢ = 0, and noting that F [U;*'] = 0, we obtain
0 = —ZEL%,]G“ 0)
€ v € g - e (pe (N A0
+nZai E {89'8@} 0 (0)+n;ai (6° (0)
02U,
0° (0)' of —16°(0
oy Z L [aeaaz} O+5 2
ZU‘
e { 07 }
+= Z 0° (0) + 2 i 6° (0)' ) /
89' n =
where
. n 92U ¢
0 (0) (:ﬁ ) 1E[a—é£)*w]>9 O
Gg=
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from which we obtain

( Zz)eﬁﬁ f%i { U%%iag /gUdALTJrT (29)

? i=1

= (5] o+ (250 E[%a%a%')m
+2< E:/“ dAm) (2 m'@ﬁY>9%m

+Q+E§:mm)

+ 295 ) [33 (30)

Note that we may rewrite

for

!
n T AV, n -1 n T
2 oU; {Mﬂ> E %3] 1 1
+—=3> - - N7 (=Y u
( nT = = (89' 0o ( E [8{\;] n nT = — !

where

n n 2 ‘(1) n - n
(\/% 2i1 23:1 Uilt) ( Zz 1 z) (% i B {%{9_/}) (Tll >im1 L) ' (\/i—T >im1 23:1 Uit)

n n 2y n n
(\/}L_T Z'L':l Z?:l Uz/t> (n ZZ 1 z) <% Zi:l E |:889({90’ :|> (n ZZ 11—) ' <\/71L_T EiZl Z?:l Uit)
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Next note that

S o[]S (E0E)

. n 1/2 T . T
Za; : GT.;dAz'T = *%Z—T [%‘t/_}l Vit (%Z(Uﬁ E[Uﬁ]))
i=1 v i= Do =1

and that by Lemma (6) it follows that

(i Z;a v [aifg; D 6°(0) = O,
( iwﬁm

0°(0) = O,

e e e
Sl 3= 3= 3|~
~ O~ " ~—_

These arguments establish that

1 n 711 n T,1/2 ZT Vv 2
€€ — g - ;o t=1 Vit
0 (0) = (5 ZL) ~> EU; ](—B_VL} )
i=1 i=1

E I:(‘)oz.;
n -1 n —1/2 T -
) (% ZL> % Z T . [%:;_}1 Vit (LT Z (Ulam — E [Ulal])>
i=1 i=1 EE
10, (%)
1 n -1 1 n
(o)

i=1

~+
—

Therefore, we have




Let
- B,
) AR\

Then, Z;r are independent across ¢ and
vy E UM
lz [ézit] — ﬁ;;/v _ [ 7 ] 5 }g}/
Blg] (e [5))

where ZVV =71 ZZSZI E[VyU?'] and BYY =T71 ZZSZI E [Vi1V/.]. Next note that

T E [Vh Vi US UL } _syUsyU
Var(ZiT) = T_2 Z : Lt s

2
ty,...ta=1 (E [g_;/ﬂ)
FE I:Uzczaal] (E I:V;tl‘/it‘L‘/itSULtg} EVVEVU/)

(e[

(E [Vit, Vi, Vi, UL | = 217517 ) E (Ui
2 (e [34])
[Uftgal] [Uzctlgal] (E [Vitl Vit2 V;ta V;t4] - E}%VE%V)
(e [8])

are random variables measurable with respect to the filtration generated by z;;. By

Note that Vi, ,Uj’

ity
Condition (3) sufficient moments exist to apply Corollary A.2 of Hall and Heyde (1980, p.278) as well as
Lemma 1 of Andrews (1991). First note that for any element (jq,j2) we have

ito its it it3

B Vi ViU US| = [SHSR], 5, = EVie Vie B U U5

,v17.j2
+E [VitlUgﬂ E [muwl] + Cum( sy Viey, USE0 U%J’a)

ito ito » Yty

ito

follows from Corollary A.2 of Hall and Heyde (1980, p.278) and Condition (2) that

< (i ) (o o []) (o)

with similar inequalities holding for the remaining second moments. These arguments establish that

where Cum (Y/;tl,%t4, U qi’jl, U;zéj 2) is uniformly summable. For § > 0 and some constant 0 < ¢ < oo it

U(XUJI

ito

sup ‘E [VitlUﬁ;’jl}
i

sup | T Z B [V Ve Ui Usys| = S SR = 0(1)

ito
t1,..,ta=1

and the same can be established for the remaining terms in Var(Z;r). By the Markov inequality it follows
that

1
— >y (Zir — EZiT)| >

Pr[
n

77]  Sup; Var(Z;r) _
nn
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such that 1 >°" | Z;p = 157" | F[Zir] + Op(n~1/2). By the same argument as in (12) it then follows
that sup; }E — fVUa| — 0 and sup; |EVV — fVV} — 0 as T' — oo. Uniformity of convergence then

implies that joint and iterated limits exist and agree such that 1 L3 L EZir] — ¥ Therefore, we have

ﬁ%(%) 6 (0) = \/7< Zz) 1q/+op(1).

D Proof of Theorem (3)

D.1 Expansion for

Let
a; (e) = argmax/ip <x¢t;§(e) , a) dF; (e)
>From the first order condition

0= /v (69,8 (0)) dF: (o).

Using the same arguments as earlier, we are looking for the expansion
ai(e)_aiO—T a; (0 )+ia“(5)

for some € € [O,T‘l/z] . Let
vi (-, €) = Vi (0 (F (€), i (Fi (€))) -

The first order condition may be written as

0= / vi (- €) dF; (¢)

Differentiating repeatedly with respect to €, we obtain

= (WG e o a [ o dA,
0 = [FLan @+ [utodan (39)
0 = / LACL) vée(:;’e)dFi (€) +2 / d“id(e"e) dAir (40)

where Ay = VT (1?’1 — E)

D.2 a(0)
Because
dvi (-,€)  0v; (-, €) @ ov; (-, €) Oay
de 90 Oe Doy Oe

we may rewrite (39) as
= Ovi ( ) ) 90 v ( ) ) 80(1 ) ) .
0= / ( 90 0c T oo O dF; (e) + / v; (-, €) dAgr
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Evaluating at ¢ = 0 we obtain
e an—1 {1 1 00U (zi;600, i) .
a0 = - () (= Ti, 2t g 7)o o)
where 6° (0) is defined in (25). It also follows that
~€ o 8U’i ('76) - 61)1' ('76) €
a; (e) = — ( Taidﬂ (e)) {/ ( 50 dF; (e) 0° (e) + /vZ (,€)dA;r| .

Next, consider

d?v; (- e) @’ﬁvi (,€) 90 | Ovi(e€) 020 2(%1» (,€) 90 0c;
de? e 0000 Oe 00’ (86)2 00'dc; Oe Oe
0%v; (-, €) (80@)2 ov; (-, €) oy
T + 3
(0c;) Oe o (9e)
such that i (€) is characterized by
e 6111' € € avi € €€
0 = o [ 2 dar 0@+ [PbDar o o
avi ('7 6) € ~€ 821}1 ('7 6) ~€ 2
#2 [ G aR O a5 @ + [ 2o an 0 @ (o)
avi ('76) ‘ ~¢€€ avi ('76) ) € avi ('76) € -
+ da dF; (e) a5 (e) + o0 dA;70 (e)+/ T, dASai ()
Lemma 15 Let Conditions (1),(2),(3) and (4) be satisfied. Then
Pr [max sup [a5(e)|>T™ Y| = o (T71),
b oeef0,1/VT] |
Pr [max|a; 0)] > Tl—%*v} = o(T™Y),
1 2_
Pr {max sup [a (¢)| > <T1_0*“> = o(T™),
v EE[O,I/\/T]
Pr [max ‘\/T(&Z - aio)‘ > Tl/lo_”} = o(T7),

for 0 < v < (100g + 120) "

Proof. Note that the last claim follows as a consequence of the first three claims. In order to prove

the first claim, we note that

Pr| sup [6°(e)]| > T V| =o(TY)
e€[0,1/VT]

from Lemma (11). By Lemma (9), we also have

/ (au%(é; €)> dF; () — E [Gvgg/ﬁ)} H S

Pr |max sup

b eef0,1/VT]

Pr [max sup Mdﬂ () — FE {M} ' >n| = o(T™).
3 66[0,1/\/ﬂ (90{1‘ (90(1‘
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By Lemma (9) again, it follows that

Pr [max sup v; (-, €) dA;p| > TV = (Tﬁl) .

b eef0,1/VT]

This proves the result for a5 (¢). For @;(0) the result follows directly from (41) and Lemmas (9) and (11).

For @;° (¢), the result follows from representation (43) as well as Lemmas (9), (11), and (13). =

D.3 Consistent Covariance Matrix Estimation for Dynamic Panel Models

Lemma 16 Let kit = k (244500, a0) and Eit =k (xit;g, @i) where ;1 satisfies Condition (2), k;: satisfies
Condition (3) and 0, @; are defined in (1). Assume that E [kit] = 0 fori,t. Let A; be conformable matrixz of
constants such that max; ||A;|| < co. Let f* =322 E [kikl,_;| and f** =lim,_con™t >0, A; fFF.
Then,

m  min(T,T+1)

YA Y R | - M =00
=1

l_fm t=max(1,l)
where m, T — oo such that m = o (T1/2).
Proof. Let 71 = max(1,l) and ro = min(T,T + 1) and define K; , = >0, S22 Kk, We

first show that 1 " | A;K; ,, — f** = 0,(1). This follows if £ 37" | A;E(K;,,) — f* = o(1) and
Var (E S AZKZ,,”) = o(1). Since f** —n~1 S A; fF* = o(1) by definition, we first consider

1 1K m] = £

22 A P+ S B k)|

m
l=—m

IN

m 2 l
< 5 2B k] [+ S 1B [kt |

m 1 |l| A\ i S s \!
l=—m T ( +b) +(a2+b) 2 (a2+b) — 0asm,T — oo

IA

where the last inequality follows from Condition (2) and the fact that for any two elements k;; j, and
Eit—1j, of kix and kg it follows from Corollary A.2 of Hall and Heyde (1980) that |E [kit j, kit—i,5,]| <

P 121
8 < “kit,jl |2+§D o ( [|kzt l,g2|2+§]> (aT for some 6 > 0. Since the bound on || 4;]| HE im)] ff’“H
is uniform it therefore follows that 1 " | A;F [K; ,,] — f** = o(1). Next we show that

1
Var (E Z;L:l AiKi,m)

1 2
< LA )]

IN

1
sup [[Ail] = 325 [ Var (Kim)|| = o(1).
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To show this we may assume without loss of generality that k; is scalar. The variance can then be

evaluated as
Var (K; )
= % S oo 2ot gy (B [Rity Kit— 1, Kity Kity—1,] — E [Kit, Kit—1, Ekity Kit,—1,))
= % Dot bty (B [Kity Kity Ekit 1, ity —1,] 4 E [Kity Kity—1, kit kit 1, ])

1 m T
+ﬁ le,lngm t12,t2:r1 Cum (kj’itlkit*llkih kit2*l2)
= 0(1)

where the last equality follows from the same arguments as in the proof of Lemma (6) such that Var (X; ;)
is uniformly bounded in 4. It now follows that 1 Y% | K; ., — f* = 0,(1) by Markov’s inequality.

Next we turn to showing that
1 n 1 m T2 N /
E Zi:l Ai? l=—m Zat=rq (kitkitfl - kitkitfl) = Op(l)-
We use the decomposition
Il Zl——m :2—7 (kitk;tfl - kitk§t7l>
'~ '~ !
= = Zl——m . (kit - kit) (kitfl - kitfl)

+— szfm 2 kit (k\itfl _kitfl) += Zlf,m e (Ezt —kit) i

1 m T2

and consider the term 7 ,— . > ;2. (7(5\“5 — kit> ki.. Use a first order Taylor approximation to

Fio = kie = K, (0= 0) + k5 (@i — aio)

where kY, = Ok <xit;é,&i> /00" and k& = Ok <xit;él,&,'i> /Oa with é,di,él,&; such that HéfHOH <
ool o<l

each row of 9k (;0, d; /08’ needs to be evaluated at a different 6 but in slight abuse of notation we

, etc. by the multivariate version of the mean value theorem. Note that

do not make this explicit. Then
1 m o -
? l=—m t=r1 vec |:AZ (kit - kit) 'Iit71:|
- zl:m 2, (10 A) (ki@ 1) (0-0)

+< W S ity (I ® Ay) vee [k, )] Y

t=r1

and consider # Zl,ﬂn Sz, (ki @ kY) . Without loss of generality assume that (kii—; @ kf) is a
scalar. Then by the Cauchy-Schwartz inequality

) 1/2
T Lot it ikl

g ( ST g l>1/2 <% ST sup (0 (z:1; 0, ) /89')2>
< (3 zf_le_z)?)w( ST, M(ea) )1/2
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1/2 .
such that E |4 Y2 - ki—ikf,| < (% ZthlE [M (it—1) D < Zt 1 [ (xzt)ﬂ) = O(1) uni-
formly in ¢. It thus follows from the Markov inequality that

1 n 1 m r i)
=YL T @A) 2 X 0, (ki k) (8- 6) = Op(m/T).

We now turn to the second term in (44) where

1 n aL — @ m o «
Ly way Gty s vee kg (45)

T I=—m 2at=r,
= Iy veanZRsr s ke ok
p 2i= 52 ]
Ly reay B e s ko).
Define kg (0, a) = Ok (z41;0, ) /6a and k% (0, ) = k% (0,a) — E [k$ (0,a)] and consider

1 Qs O m T2 [e%
Ha S (e A) S S S ket )

_Zz IZl—mHT?ﬂ St [ i1 D kS (9’,&’)]

5 S 9 40 SRR L G mineine, ) min( = e k-1 [ (7))

IA

a; (01 ® A

For the first term we assume without loss of generality that k;_; ® Ef; (é/, 6/) is scalar such that

1/2
o (7~ 1 1 .,
kzt ( ) Q¥ > < (T t 1 |k” l| > <T t2:7‘1

1
ST t= 71|k1t l|

k2 (é', 3 )

1 e
‘f 1oy Kit—iky <970/>

by the Holder inequality. Then

B ‘l 2, ke (0,0

IA

T t=r1

] = ()] e me])
(E (% :irlM(xit_l)2)2D1/2 (E (% :Q—TIM(:cit)Q)QDW

which is uniformly bounded in i.By (41) it follows that E [|a;. (O)ﬂ is bounded uniformly in i. From the

IN

Markov inequality it then follows that

P o (7,

For the second term let m; = (m + min(min(¢,m), min(7 — ¢,m)) and again assume that k;—; ® k% is

1 Zn m
n i=1 l=—m

& O 1@ Aill = 0, (m/T2).

scalar. Then

Pl S e s 1))

T
< ﬁ Zs,t:l mims

B [k (7.a)]||B [k (7.8) ]| 1B likss)] = O(m?/7%)
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by the mixing inequality in Hall and Heyde (1980). This establishes that

1 @; (0)
HE YL (e A) ) T3/2 D 2, ki @ kG| = Op(m/T?).
For the second term in (45) use the bound
l n azee (E) m T2 (e
i= i) Ty =—m t=r it— i
[FRRUEYDEELS > it © 5]
a; (6) 1 n m 1,
< Sll}p 11 ® Al max e[()Slll})\/T] T1/5—2v | yT4/5+20 Dic1 Dieem T tor [Kit—1 @ ki3]
where F ki—1 @ k%]|| = O(1) by previous arguments and max; sup _al% = 0,(1
T t 1 ec[0,1/VT] | T1/5 P
by Lemma (15). Tt follows that
1 n a:g (E) m T2 a 1/2
g Zi:l (I®A;) T2 l=—m Zat=ry [kitfl ® kit] = op(m/T )-

‘We now turn to

= Zl__m 12, vee (it — kit ) (Rie—t - kit,l>l
= % TS (K @ k) vee (9 9) (57 9)'+% S S (K ® k) (@ — au) vec (éf 9)'
i % N N (5 - 9) (@i — aio) + % St S, (@ — i) vec (kﬁkﬁl,l)
such that

1 n o~
S U AV F T, B, @ - ) v (kiks H

- 1 A
< sup |1 ® A max|a; — aiol - >y |y — ol Zl——m t2,, vec <kztkzt z) ‘
7
< sup [ ® A;]| max |a; — aiol 1 S [a: )] S V2 vec (kq o )
— i i n \/_ l=—m t=r1 it"vit—l
= ~€€ 1 n m 1 I8 ’
o 1@ Ao — il sup 619 1 X S| i, v (k) |
i e€(0,1/vVT
= op(m/T?)

t=r1

where by the same arguments as before |@; (0)| is uniformly bounded and H T Ol VeC <knkn l) H =
O(1) uniformly in i such that the first term is o,(m/T"/?) by the Markov inequality and the fact that

~EE

max; |@; — aio| = 0p(1). The second term is 0, (m/T*/?) because max; SUP.efo,1/vT] |0 ()] = O, (T52)

by Lemma (15) and - S,

[ % :2:“ vec (kﬁk;{_l) H = O,(mT~1) by the Markov inequality.

l=—m t=r1

o~ '~ /
All the remaining terms in 7 LS "2 vec (k:it — kit> <k:z-t_l — kit_l> are o, (m/Tl/Q) by similar
arguments. |
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Proof of Theorem (3). We only need to show that B— B = op(1). First consider B Vo] =
T ZtT:1 Vit (»’Uit;g, ai). We have

T T
I N 1 PR N
HE[Vi T-EVHM]| < T ZVM <$it;9,0éi> -7 ZVM (2it; 0o, vio)
t=1 t=1
L I
iz Z Vit (@it; 0o, i) — E [Vig" (wie; Oo, cvio)] |
t=1
1 o -
< (? 3 |M(1:it)|> (He - 9” + max [@; ai0|)
t=1
1 T
+max || ZVS" (@it; 0o, cvio) — E [V (wir; 0o, vio)] |
t=1

so that

max | B V] - B[V;]
7

< (max—ZHM Tit ||> (H9 9H —l—max|aZ —ai0|)

T
Z (@it; 0o, cvio) — E[Vig" (wit; 0o, ctio)]

+ max
(2

By Lemma (5) the second term tends to zero with probability 1 —o(7~!). Applying Lemmas (4) and (5)

to the first term, we obtain

max||B V] - B[V

’ =op(1)
In the same way, we obtain
01 _ 0 _
max | B[V - B[ = o,(1)

mas |[B [U7] ~ B (U7

Let E [V = E[V] 4+ 0p(1), which holds uniformly in . Thus,

(13 ) ) (8 - 6] + max @ — ool ) +0,(1).

Since |@; — o] < ﬁ a5 (0)] + 3 |af° (€)| with max; 710 @S (0)| = 0,(1) and max; T |65 (¢)| =
0p(1) by Lemma (15), it follows that max; ||Z; (1) such that n=* Y7 | 7, -T= op(1).

Using these results we now have

_ JWU& Jﬂ/UG
: ) B | .

E O da;

and

i E U (xzt,eag]f _ B[UR (230, 00)] £V

1 K3
n OVi(wuibar) " 5—| = op(1).
5 | () ()
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In order to establish the result we thus need to apply Lemma (16) to show that

n _E[Uiai“i( it 0, a;)] Jﬂi/m *fz'VUa
% 2 xEt {;(—(M)} ) =0p(1)

8041;

and

ol B A o
Pt ( I [avi,gme,aiz})?
- Oa;

= op(1).

The result follows by Lemma (16) since inf )E [%%2} ‘ > 0 by Condition (5) and || E [U“ (z4;0, ou)]|| <
E[M(zy)] <oco. m

E Linear Dynamic Panel Model with Fixed Effects

It can be shown that

so (i3 b, 0i) = 2yi—1 (yar — i — Oyir—1)
S0 (Tit; 0,05) = =2y
Sa (Tit; 0,0) = 2(yir — a; — Oyir—1)
Saa (Tit; 0,04) = =2
Pio = E[%z;til] = E[yit—1]
Vie = 2(yi — i — Oyir—1) = 2eq
Vi = -2
Ui (i;0,05) = 2yir—1 (Wit — @ — OYir—1) — pio - 2 (Yir — @ — 0Yir—1)
= 2(yit—1 — pio) (Yt — @i — Oyir—1)
= 2(Yit—1 — Pio) €it
Ul (zi;0,00) = —2y2_1 + 20;0Yit—1 = —2Yit—1 (Yit—1 — Pyo)
Ui (i 0, 06) = =2 (yit—1 — pio)
Uf (x44;0,05) = 0
Vi (wit;0,05) U (w330, 06) = —4deit (Yir—1 — pio)

We can see that

1 n T . B 1 n T 4 | 4(0_2)2 B
WZZUi(mtﬁ,ai)— ﬁﬁZZ2(yn_l—pm)gn_>N<o, 192> = N(0,0)

i=1 t=1 i=1 t=1
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. 1 - 1 V;t (mit' 0 Ozi) 1 ) B FE [Uvaiai (mit' 0 Ozz)]
o= plim= Y (= ST L EEREU NP8 (140, 0) — —— DLV (@i 0, )
n < [ T~ g avi,@,&,ie,m)} VT =\ ' 28 [avi(ag&;e,ai)}
11 & 1 &
= plim2< — Z — Zﬁit — Z (yit—1 — F [yit—l])
ni= T Ti=
2
g
=2 1-6
and
) 2 20’2
I=—-E[U} (zi;0,04)] = 2E [yit—1 (Yit—1 — pio)] = 2E [(yitq — Pio) } “1_

It follows that

2k (1 —0) o2
g = ffl\p:fw = Vi (1+0)
1-02
4(02)2
I—lQI—l — 1-62 =1— 92

and hence

VT (8- 80) = N (—Vr(1+6),1-6?)
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