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Stereo triangulation lays at the basis of 3D scene recovery and it is used
in a wide variety of areas ranging from urban modelling to robot
localisation and mapping. However, triangulation produces non-
Gaussian 3D estimates from Gaussian image measurements owing to
its nonlinear nature. While previous work demonstrates the presence
of statistical bias and how to correct the depth estimate, in this pre-
sented report, proposed and proven in a Monte Carlo test, is an
enhancement for correcting the full 3D position given the image pro-
jection noise variance.

Introduction: When compared to other sensors, cameras provide infor-
mation of high spatial and temporal resolution. For this reason, the
recovery of a 3D scene structure by means of images acquired by
digital cameras has been for a long time a topic of interest in many
fields such as photogrammetry, remote sensing and computer vision.
Moreover, 3D reconstruction has become a very important step in
many different areas such as urban modelling, underwater mapping,
or robot localisation. Although it is well known that stereo-vision is
more accurate than monocular setups for scene reconstruction, many
successful approaches have been proposed to perform 3D Euclidean
reconstruction using monocular cameras [1]. The most important
reasons for using less-precise bearing-only sensors instead of stereo-
vision are simplicity, price and computational cost. However, nowadays
commercial off-the-shelf stereo systems such as Fujifilm FinePix 3D and
modern computers with high computational resources can be jointly
used as low-cost stereo-vision-based mapping sensors.

Related work: Stereo reconstruction is the problem of determining the
structure of a scene from more than one camera given the fact that a
physical point projects only at a single position in a camera image.
Initial work of Blostein and Huang [2] and Matthies and Shafer [3] in
stereo error modelling used image measurements in terms of discrete
pixels which produced diamond shaped uncertainties in a fronto-parallel
stereo setup (non-verged geometry). While the work of Blostein and
Huang derived very complex probability density functions (PDFs) for
the estimated uncertainty of the reconstructed points, Matthies and
Shafer proposed to approximate them by Gaussian PDFs and the use
of the propagation rule from independent identically distributed (IID)
Gaussian noise in the left and right image measurements to the 3D esti-
mates. Recently, Sibley et al. have shown in [4] that the nonlinearity in
the triangulation equation produces non-Gaussian estimates from
Gaussian image measurements. While close-range measurements can
be well approximated as Gaussian, long-range ones are statistically
biased. Sibley et al. propose a method for correcting the depth from a
disparity variance estimate in long-range measurements. In this Letter
we propose an extension to correct the statistical bias not only in
the depth (z), but also in the x and y co-ordinates in Euclidean 3D
reconstruction using a stereo-rig.
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Fig. 1 Non-verged stereo setup where left {L} and right {R} axes of aligned
cameras are separated by baseline b in the collinear x axis. A world point P
is projected to the left {l} and the right {r} image planes at positions pl and
pr. Image plane frames {l} and {r} are at distance f (focal length) from their
origin in the optical axis direction z. In this configuration the 3D problem
can be reduced to a bidimensional one in the epipolar plane P

Problem statement: A stereo-vision system consists of a pair of fixed
cameras separated by a constant distance, known as the baseline. This
baseline constraint allows us to compute 3D estimates from image
measurements. Given a pair of corresponding points, every one in
each camera, we can triangulate [1] the position of the point in 3D
with respect to the stereo-rig.
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Let us consider the fronto-parallel stereo system illustrated in Fig. 1.
In such a configuration, a stereo correspondence pair lies along the
same horizontal axis (epipolar line) in both image planes. In a practical
setup we achieve this configuration by standard calibration techniques
[1]. High quality open source toolboxes such as Bouguet’s Calibration
Toolbox for Matlabw are publicly available (http://www.vision.caltech.
edu/bouguetj/calib_doc) for obtaining this calibration. Given this
non-verged configuration, the 3D position of a world point observed
in both frames is obtained by stereo triangulation using the following
equation:
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where (xl, yl)
` are the co-ordinates of the projection in the left image

frame, d ¼ xl 2 xr is the disparity, b corresponds to the baseline of the
stereo-rig, f the focal length of the camera and P is a 3D point in
the scene, expressed with respect to the left camera frame. Because of
the obvious nonlinearity in the triangulation equation, if we assume
that image projections are corrupted by IID Gaussian noise [5], the
3D estimates are non-Gaussian. It is shown in [4] that the depth PDF
is heavy tailed and produces statistically biased estimates. To correct
this bias, Sibley et al. formulate P as three functions depending on the
disparity s0(d ), s1(d ) and s2(d ), respectively. Assuming that the
measured d is Gaussian, which is reasonable since we model image
noise in xl, yl and xr, as IID Gaussian [5], and provided that the measured
d̂ is close to the real d, the following second-order Taylor series
expansion in the depth s2(d) may provide a better estimate:

s̃2(d) ≃ s2(d) +
∂s2
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Since expectation E[d̂ 2 d ] ¼ 0 and E[(d̂ 2 d )2] is the variance,
replacing d by d̂, we obtain the unbiased estimate:

s̃2(d̂) ≃ s̃2(d̂) −
1
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where s̃2(d̂) is the biased triangulation using (1). However, in this way,
the same correction cannot be applied to s0(d ) and s1(d ) since these
expressions contain other variables (i.e. xl and yl) that must be taken
into account. Therefore we propose to express P as functions of xl, yl

and xr instead of d, obtaining:

P =
s0(xl, xr) = xl ·b

xl−xr

s1(xl, xr, yl) = yl ·b
xl−xr

s2(xl, xr) = f ·b
xl−xr
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The multivariate second-order Taylor series expansion of (4) may lead to
unbiased estimates for the full 3D position P [6], i.e.:

f (x) ≃ f (s) + Df (a)(x − a) + 1

2
(x − a)`D2f (a)(x − a) (4)

where x is a variable vector (x1,x2, . . . , xn), a is a point (a1,a2, . . . , an),
Df (a) is the Jacobian of f (x) evaluated at point a and D 2f (a) is the
Hessian of f (x) evaluated at a. Then, applying (4) to (3) and following
the same reasoning carried out in (2) about expectation, the first-order
term in (4) is 0. Assuming independence between the variables xl, yl

and xr, the off diagonal elements in the second-order term are scaled
by the covariance between variables, therefore they are 0. Finally,
assuming v the equal variance in x and y image measurement directions,
yields the following bias corrected 3D point estimation equation:

s0(xl, xr) = s̃0(xl, xr) − bv
xl + xr

(xl − xr)3

s1(xl, yl, xr) = s̃1(xl, yl, xr) −
2vbyl

(xl − xr)3

s2(xl, xr) = s̃2(xl, xr) −
2vbf

(xl − xr)3

Results: In Fig. 2 we prove, in a Monte Carlo test, that the method dras-
tically reduces the error in the shortest disparities. The parameters used
in this simulation were obtained from a real stereo calibrated system with
a resolution of 640 × 480 pixels. It can be clearly observed in the plot
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that we significantly correct a valuable percentage (around 7%) of all the
possible disparities.
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Fig. 2 Top row and bottom left pictures demonstrate bias correction of
image co-ordinate (2,200) in 10000-sample Monte Carlo test adding
Gaussian noise �N(m ¼ 0,s2 ¼ 1.5 pixels). In this setup the bias in
longer range estimates (disparities smaller than 40 pixels) is clearly cor-
rected (solid) compared to standard triangulation (dashed). Bottom right
plot shows correction for full 3D position in real experiment using as
ground truth the 3D estimates resulting from a nonlinear optimisation

Conclusion: We have presented a method for correcting the statistical
bias in stereo triangulation for the full 3D point co-ordinates that only
requires the image measurement variance. We carried out experiments
over both synthetic and real data showing the correctness and the per-
formance of the method. Because of the simplicity of the derived
ELECTRONIC
correction, it could be very easily incorporated into any algorithm that
uses standard triangulation, thus increasing its accuracy.
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