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BIAS REDUCTION IN KERNEL DENSITY ESTIMATION BY
SMOOTHED EMPIRICAL TRANSFORMATIONS
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A modification of kernel density estimation is proposed. The first step
is ordinary kernel estimation of the density and its cdf. In the second
step the data are transformed, using this estimated cdf, to an approximate
uniform (or normal or other target) distribution. The density and cdf of the
transformed data are then estimated by the kernel method and, by change
of variable, converted to new estimates of the density and the cdf of the
original data. This process is repeated for a total of k steps for some integer
k greater than 1. R

If the target density is uniform, then the order of the bias is reduced,
provided that the density of the observed data is sufficiently smooth. By
proper choice of bandwidth, rates of squared-error convergence equal to
those of higher-order kernels are attainable. More precisely, & repetitions of
the process are equivalent, in terms of rate of convergence, to a 2k-th-order
kernel. This transformation-kernel estimate is always a bona fide density
and appears to be more effective at small sample sizes than higher-order
kernel estimators, at least for densities with interesting features such as
multiple modes. The main theoretical achievement of this paper is the
rigorous establishment of rates of convergence under multiple iteration.

Simulations using a uniform target distribution suggest that the pos-
sibility of improvement over ordinary kernel estimation is of practical sig-
nificance for samples sizes as low as 100 and can become appreciable for
sample sizes around 400.

1. Introduction. Suppose we have an independent sample Xi,...,X,
from a density fx. Many methods have been proposed for the estimation of
fx. One that has been extensively studied and that is appealing for its sim-
plicity is the kernel density estimator (KDE):

?X(x;h) =n"! ZKh{x -X}.
i=1

Here K, {x} = h~'K{h~x}, where K is a symmetric “kernel” function that
integrates to 1. See Silverman (1986) for an excellent overview of kernel den-
sity estimation.
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The bias at x has a formal asymptotic expansion of the form
Z hz"fj(z")(x) / uZiK(u) du/(2j)!.
J=1

One approach to bias reduction is to choose K so that [u%K(u)du = 0, for
Jj=1,...,k — 1 for some positive integer & [Parzen (1962), Bartlett (1963),
Singh ( 1977 1979)]. A kernel with this property and [u*K(u)du # 0 is said
to be of order 2k. If K is nonnegative, which guarantees that fx is a bona fide
density, then K can be of order at most 2.

Despite their potential bias reduction, the so-called higher-order kernels of
order 4 or more have several drawbacks. They may give a negative density
estimate, although this problem is easily fixed [Gajek (1986)]. More seriously,
exact integrated mean squared error (IMSE) results of Marron and Wand
(1992) suggest that higher-order kernels only improve significantly over the
usual second-order nonnegative kernels for densities without interesting fea-
tures or for enormous samples. Our empirical results in Section 3 corroborate
the results of Marron and Wand (1992) and show that for the densities that
we investigate Gajek’s modification has very little effect on the IMSE of a
higher-order kernel estimate.

A second approach to bias reduction was found by Abramson (1982) and is
called the adaptive kernel estimator by Silverman (1986). Abramson’s estima-
tor is discussed in more detail in Section 3. Also see Jones (1990), Hall and
Marron (1988) and Hall (1990).

A different approach to bias reduction is taken here. First the data are
transformed to Y; = g(X;), where g is a smooth, monotonic function; g will be
chosen so that the density of Y3,

fr(v:8) = fx(e*(¥)) {% g“(y)} ,
has

2056)| = | g i ™)

“small”, at least for j = 1, ...,k for some positive 2. With g chosen in this
manner, fy(y;g) can be accurately estimated by an ordinary KDE. The KDE

.1 fr(vig,h) =n"1> Kply - Y3}
i=1
can then be “back-transformed” by change of variables to an estimator of fx:

(1.2) fx(x:8,k) = fyr(g(x);8,h)g’ ().

We will call ?X(x; g,h) a transformation-kernel density estimator (TKDE).
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For this strategy to be effective, the function g must depend on the X;’s.
In this paper, g = Go FX, where FX is a smooth estimate of the cdf Fy of
X, ...,X,, and G is the inverse cdf of some target distribution, for example,
the uniform or normal distribution.

A uniform target distribution (where G is the identity function) is particu-
larly interesting, since its density has all derivatives equal to 0 so that bias
is asymptotically negligible. For example, suppose K has support [-1,1]1. Ifg
were exactly Fix so that fy were exactly uniform([0, 1], then fy(y;g, h) would be
unbiased for y in [A, 1 — k] and therefore fx(x;g, ) would be unbiased for x in
[g~1(h), g~ 1(1—A)]. Moreover, the bias near the boundaries could be eliminated
by the use of a so-called boundary kernel (see Section 3).

Of course, bias is not completely eliminated when g is only an estimate of
Fy, but in Section 2 an asymptotic study of the TKDE is made. It is shown
that if a uniform target distribution is used, then the order of the bias can be
reduced by the transformation. For example, suppose that g is Fx(x;A,), the
indefinite integral of the ordinary KDE fx(x;h;). If h; = ¢;n~Y/® and ¢; > 0,
for i = 1,2, then the squared error of fx(x; Fx(-; k1), hs) is of order Op(n—8/%)
as n — oo rather than Op(n=%/5) as for an ordinary KDE—see Section 2.
Moreover, this process can be iterated, letting g be Fx(x; Fix(-;h1), hs), the in-
definite integral of fx(x;Fx(-;h1),hs), and so on. By Theorem 2.1, if A; is of
order n=1/@+D for i = 1, ...,t, then the squared error of the ¢-step TKDE is
Op(n '(41)/ @+, Here the 1-step TKDE is the ordinary KDE, the 2-step TKDE
is fx(x; Fx(-; h1), hs), and so on.

Thus, the uniform target TKDE can achieve the rates of squared-error con-
vergence of the higher-order kernels [see Singh (1979)]. Like the higher-order
kernels, TKDE’s will, of course, require the existence of higher-order deriva-
tives of fx, since these derivatives are necessary for the existence of estima-
tors achieving such faster rates uniformly over classes of densities; see Stone
(1980) for details. The empirical work in Section 3 shows that for some den-
sities the TKDE produces noticeably different estimates than do higher-order
kernels. Densities with sharp or multiple peaks are estimated more accurately
by the TKDE than by higher-order kernels. The normal density is somewhat
more accurately estimated by a higher-order kernel estimate, although the

-TKDE is quite acceptable at the normal density and is superior to a second-
order kernel estimate there.

All empirical work in this paper uses the uniform target. However, we
anticipate that other target distributions may prove to be useful. We have had
some success with the normal target, although the results are too preliminary
to report here. In our theoretical work, we assume an arbitrary smooth target

" G whenever this assumption is no more difficult to work with than to assume
a uniform target.

The use of transformations in kernel density estimation has been pro-
posed by Devroye and Gyorfi (1985), Silverman (1986) and Wand, Marron and
Ruppert (1991). Wand, Marron and Ruppert consider only parametric fami-
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lies of g’s, which does not lead to improved rates of convergence. Devroye and
Gyorfi do not recommend nonparametric transformations because of the dif-
ficulties in establishing consistency and rates of convergence of the resulting
estimators. The present paper appears to be the first to investigate nonpara-
metric transformations.

Rudemo (1991) has suggested a parametric TKDE with uniform target. His
proposal is to fit a parametric model to the data and to transform by the
model cdf evaluated at the maximum likelihood estimator. Of course, it is
only assumed that the parametric model provides a rough fit to fx—if fx were
known to belong to the parametric family, then one would stop at the MLE.
Rudemo’s interesting proposal seems worth pursuing, but, like other paramet-
ric TKDE’s, it will not achieve rates of squared-error convergence faster than
O(n~%/5) unless the density actually is a member of the parametric family.

2. Asymptotics. The following assumptions will be used throughout.

(Al) X;, ..., X, are iid from the density fx, fx(x) > 0, ¢ > 1 is an integer
and fx has 2¢ bounded derivatives in a neighborhood of x. Define Fx(x) =

ffoo fx@w)du.
(A2) K is a symmetric kernel with support [-1, 1] and with 2¢ + 2 contin-

uous derivatives.

(A3) G is a (2t + 1)-times continuously differentiable function on [0, 1] and
G'(Fx(x)) > 0. R R

(A4) Forj=1,...,t h; | 0and f; and F; are defined as follows:

fi(x) =Fe (1) =71 Ky {x - X},

i=1
Fy(x) = /_ xm?l(u) du;
if ¢t > 2, then, forj=2, ...,t,
fi(®) =fx(x: G o Fj_1, by)
=73, {01 9] - ClF 0]} O a1
and
B = [ Fw)d
Leq;;‘;.(l)(x) be the I-th derivative of 7}

Our first result shows that using the uniform target distribution achieves
the same rate of convergence as with a higher-order kernel. See Section 5 for
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proofs. In (2.2) and elsewhere, the convergence of the TKDE and its deriva-
tives is established at each x uniformly over a shrinking neighborhood of x.
Although such a result may appear only slightly more general than pointwise
convergence, it should be clear from the proofs why this extra generality was
sought; to study the j-th iterate at x, one needs convergence of the (j — 1)-th
iterate uniformly in a neighborhood of x.

THEOREM 2.1. Let G be the identity function on [0, 1. Define ho = n=1/#+D,
Suppose that t > 2 and, forj=1, ...,t,

(2.1 hj/ho - Cj > 0 asn— oo
Then, for each M >0, 1< j<tand 0 <1< 2t, we have_

f") /‘“ )l ( h}nin(zi, 2:-1)) .

2.2) sup
Jx’ —x| < Mho

The following special case is worth noting.

COROLLARY 2.1. Under the assumptions of Theorem 2.1, we have, for t >

(2.3) sup
lx' —x| < Mhg

?}_(l)(x/) _ f{l)(x/)l =Op (n—(2t—l)/(4t+l)) _

REMARK 2.1. Theorem 2.1 covers only the case where the maximum num-
ber of bounded derivatives of fx in a neighborhood of x is even. Suppose fx
has only 2¢ — 1 bounded derivatives in a neighborhood of x and (2.1) holds for
ho =n~1/%-D_ Then instead of (2.2) one can obtain

sutho |7](l)(x) —fO(x )| (hmm(ZJ 21— 1)),

o’ —x| <
for 1 <j<tand 0 <! < 2t— 1, and instead of (2.3) one can obtain, for
t>j>t-1/2-1/2,

(2.4) sup
|x" —=| < Mhqo

7}1) (x,) ——f“)(x’)‘ =0p (n—(2t—1—l)/(4t—1)) i

Together (2.3) and (2.4) show that rates for squared-error convergence given
by Singh (1979) for higher-order kernel estimators are achievable by a TKDE.
" These rates are optimal within the class of all density estimators, both for fx
and for its derivatives, by results in Stone [(1980), Section 3].

Now consider use of a normal or other nonuniform target distribution. The
following result shows that if 7, converges to 0 more slowly than A, then f;
behaves asymptotically as if one used the exact, rather than the estimated,
transformation to the target.



190 D. RUPPERT AND D. B. H. CLINE

THEOREM 2.2. Let t =2 in (A1)(A4). Let G~ be a cdf so that the cdf of Y
is Fy = G™L. Let hy and hy satisfy

hy=cin"Y5(log n), for somecy >0 and n'/5hy —cy > 0.
Let T' = G o Fx. Then, for any fixed M > 0 and letting hy = n=1/5,

(2.5) sup fo(x') — (3 T, hz)l =op (n%/%).

I —x| <Mho

Let k) = [u?K(u)du and kg = [ K*(u)du. Then
w15 (o) - )

(2.6) 2
o N (AP TR, o mafe TR @) ).

With the bandwidths given as in Theorem 2.1, the asymptotic distribution
of fi(x) appears quite complicated. In contrast, Theorem 2.2 shows the asymp-
totics to be rather simple for nonuniform targets. As the proof of Theorem
2.2 reveals, the reason for the simple asymptotics when using a nonuniform
target is that higher rates of convergence are not being achieved. However,
the bias of the KDE at the Gaussian distribution can be reduced by using
a Gaussian kernel and correcting for variance-inflation; see Jones (1991).
Using Jones’ estimator after an estimated transformation to normality seems
promising, but is beyond the scope of this paper. On the other hand, when
using the normal target, the following theorem shows that if one is willing to
sacrifice a little on the rate of convergence, then one can get a simple asymp-
totic distribution. This could be useful for obtaining confidence intervals. Note
also that (2.6) forms the basis for selecting the constant ¢, and that ¢; plays
no role in the asymptotic distribution.

THEOREM 2.3. Let G and hg be as in Theorem 2.1, suppose that t > 2, that
2.1) holds for j=1,...,t — 1 and that

@1 Befhi_q — 0.
Then

(2.8) (nhe)'/2 (?,(x) —Fe(@ Fx, k) = 0p(1),

so that

2.9) (nhe)2 (Fi() - F(®)) = N (0, malfic())2),

where ks is as in Theorem 2.2.
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3. Examples. We implemented a discretized TKDE by linearly prebinning
the data to 160 bins [see Jones (1989) for a definition of linear prebinning].
Since the bin width is much smaller than the bandwidths used, prebinning
has little effect on the IMSE of the estimate [Jones (1989)]. In fact, we were
unable to see any effects of prebinning when comparing prebinned and non-
binned estimates visually.

In every iteration, the bandwidth was 2 = H xIQR, where H is a “bandwidth
factor” that is fixed across iterations and I@QR is the interquartile range of
the transformed data, the initial transformation being the identity function.
Some initial experimentation showed no advantage in terms of accuracy of the
estimate in allowing H to vary between iterations—we have not yet pursued
the idea suggested by Theorem 2.3 of letting the final H be smaller than
the others for inferential purposes. The Gaussian kernel ¢ was used for the
first iteration. To handle the boundaries of the uniform target distribution, in
subsequent iterations we replaced the Gaussian kernel by the boundary kernel

s 1o (52) oo (57) 0 (52}

for 0<y,Y; <1

A referee questioned the use of a noncompactly supported kernel because
of the boundary effects after transformation. While this might be a problem
with larger bandwidths, it did not seem to be a problem here. In particular,
we also tried the compacted supported triweight kernel, scaled to have vari-
ance equal to 1, and found virtually no difference between the triweight and .
Gaussian kernels.

The second row of plots in Figure 1 shows the first, second and sixth it-
erates of the TKDE with H = 0.23 applied to five random samples of size
n = 400 from the normal mixture, %N 0,1+ %N (1,(0.2)%). On this plot we show
the integrated squared bias (IBIAS), integrated variance (IVAR) and IMSE es-
timated from 500 Monte Carlo samples with integration of the squared bias,
variance and mean squared error performed over the interval (—4, 4). The
value of H was chosen to minimize the estimated IMSE of the sixth iteration.
The true density is plotted as a dotted curve. The first iterate is the ordinary
KDE and has a substantial bias near the peak at 1. This bias is gradually re-
moved by iteration, although the estimates become somewhat more variable
with iteration. Keeping H = 0.23, we computed 12 iterations and found that the
iterates did not converge but instead became increasingly variable. Of course,
this nonconvergence does not contradict the theoretical results of Section 2.

For comparison, we plotted kernel density estimates (KDE) in the top row
and Abramson’s (1982) adaptive kernel density estimator (AKDE) in the bot-
tom row for the same five samples. In the top row, KORD is the order of
the kérnel. The kernels for the KDE’s were the Gaussian-based kernels of
Deheuvels (1977) [see also Wand and Schucany (1990)], so KORD = 2 means
the Gaussian kernel. The KDE’s were converted to bona fide densities by
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Fic. 1. KDE, TKDE and AKDE. All estimates are calculated at the same five samples of n = 400
obseruations from the normal mixture, $N(0, 1) + N(1,(0.2)%): fixed bandwidth factor H; (dotted
curve) true density; (solid curves) estimates. IBIAS, IVAR and IMSE based on 500 Monte Carlo
repetitions. KORD is the kernel order. The KDE with KORD > 4 uses Gajek’s modification.
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Gajek’s (1986) algorithm. The values of H used in each plot of the top row
minimize the estimated IMSE for the estimator in that plot.

We used the implementation of Abramson’s estimate proposed by Silverman
[(1986), page 101]—that estimator is

fa(x) = (nhr) ™t Zn: K{xh_)j{i } , where )\ = {»@}—1/2,

m
i=1 &

f is a pilot estimate of fx, and gm is the geometric mean of fx(Xy), ..., x(Xy).
The first iteration was the ordinary KDE. In subsequent iterations, the
pilot estimate was the estimate from the previous iteration. H = 0.35 min-
imizes IMSE for iteration 6. The overall impression from Figure 1 is that
the TKDE and ADKE perform quite similarly for this density and sample
size. The TKDE is somewhat more successful than the AKDE at showing the
bimodal structure—this is true not only at the five estimates illustrated here
but at larger numbers of samples that we have examined. The higher-order
kernels do reduce bias compared to the KDE, but higher-order kernel esti-
mators have larger IMSE’s and have a far “wigglier” appearance than the
TKDE’s and AKDE’s. We feel that the IMSE of the higher-order estimates is
acceptable but their visual appearance is not. Of course, the higher-order ker-
nel estimates can be made as smooth as the TKDE and AKDE'’s by increasing
H, but that leads to a notable underestimation of the peaks and a sizable
increase in IMSE. The original higher-order kernel estimates were never far
below zero, and Gajek’s algorithm had very little effect on the appearance
of the higher-order kernel estimator and decreased their integrated bias and
variance by less than 0.1%.

In an interesting paper, Hall and Marron (1988) show that the second iter-
ate of the AKDE attains the rate of Op(n=8/?) but further iteration does not
improve this rate. We found that the IMSE of the AKDE decreases at least till
the third or fourth iterate, but does stabilize after that. H = 0.33 minimizes
the estimated IMSE of the fourth iterate.

Figure 2 compares the kernel estimators for n = 400 standard normal ob-
servations. Again, the comparison is among TKDE, AKDE and KDE'’s of order
2, 4 and 6. In each plot, estimates of IBIAS, IVAR and IMSE based on 500
Monte Carlo repetitions are shown, and H in each plot was chosen to minimize
the IMSE estimates. This is a case where the higher-order kernels perform
somewhat better than the TKDE and AKDE, while the latter two estimators
are rather similar.

In the two Monte Carlo experiments exhibited here and in a third experi-
ment with lognormal data that we will not report, bias reduction (either by a
higher-order kernel, the TKDE or the AKDE) does lead to reduction in IMSE
compared to the KDE with a second-order kernel. None of the three meth-
ods of bias reduction dominates the other two. The AKDE and TKDE are
noticeably better than higher-order kernel estimators at multimodal data, es-
pecially if the peaks are sharp. For lognormal data, none of the estimators
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Fic. 2. KDE, TKDE and AKDE, All estimates are calculated at the same five samples of n = 400
observations from the standard normal distribution: fixed bandwidth factor H; (dotted curve)
true density; (solid curves) estimates. IBIAS, IVAR and IMSE based on 500 Monte Carlo
repetitions. The KDE with KORD > 4 uses Gajek’s modification.

discussed here compares well with the parametric TKDE of Wand, Marron
and Ruppert (1991).

The TKDE and AKDE were computed for the Buffalo snowfall data, winters
1910/11 to 1972/73 [Silverman (1986)]. The first (dotted curve) and sixth (solid
curve) iterates are plotted in Figure 3. We also included the KDE with KORD =
2 (dotted curve) and KORD = 8 (solid curve). The upper plots are the TKDE at
H =0.20 and 0.30, the middle plots are the AKDE at H = 0.40 and 0.50 and the
bottom plots are of the KDE at H = 0.35 and 0.45. Here and in the following
“incomes” example, the values of H were chosen subjectively to make the
smoothness of the TKDE, AKDE, and KDE comparable. After discretization,
IQR 5 34.4 for the untransformed data, so, for example, H = 0.20 corresponds
to h = 6.88. An interesting but unresolved question is whether these data come
from a unimodal or trimodal density. The rightmost plots in Figure 3 suggest
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Fic. 8. Estimates for the Buffalo snowfall data: (dotted curve) first iterate of TKDE or AKDE or
secong-order kernel KDE; (solid curve) sixth iterate of TKDE or AKDE or eighth-order kernel
KDE with Gajek’s modification.
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a compromise position, that the density is unimodal but with a sharp spike
at the center and “humps” in the shoulders. The TKDE plots in Figure 3 are
similar to those of the parametric TKDE in Ruppert and Wand (1992). The
three estimators are different, and having all three does give us more insight
into the shape of this distribution than having only one.

In Figure 4, we plot the TKDE, AKDE and KDE for the “incomes data”
discussed in Wand, Marron and Ruppert (1991). The data are the incomes
of slightly more than 7000 British subjects for the year 1975 and have been
standardized to have a mean of 1. The I@QR is 0.74 for the untransformed data,
80 H = 0.11 corresponds to & = 0.0814. As in Figure 3, the dotted curve is the
ordinary KDE and the solid curve is the sixth iterate of TKDE or AKDE or
KORD = 8. The TKDE indicates two well-defined peaks. The AKDE and KDE
with KORD = 8 has a somewhat shorter left peak and a rougher right peak.
Compared to the KDE with second-order kernel, the TKDE and AKDE—as
well as the parametric TKDE of Wand, Marron and Ruppert (1991)—can show
the bimodal structure in the data without having extensive random variation
in the right tail.

4, Further comments. The bandwidths in Theorem 2.1-2.3 are deter-
ministic sequences. It would be possible to extend these results to data-based
bandwidths. In fact, the empirical process theory used in Section 5 would be
ideal for doing this—see Pollard’s (1984) study of random bandwidths for the
KDE. To emphasize the main ideas, we have avoided the additional technical-
ities of random bandwidths.

The TKDE is similar to the proposals of Abramson (1984) for transforming
locally to a density that is linear. Abramson does not consider rates of conver-
gence or the possibility of iteration. He uses a generalized nearest neighbor
estimator, to use the terminology of Silverman (1986). If we transformed to
a linear density function, rather than a constant density function, then bias
reduction would still be achieved in the interior, but boundary bias would
necessitate a boundary kernel not everywhere nonnegative [Rice (1984)1.

For extremely skewed or heavy-tailed densities, the poor behavior of the
preliminary KDE may seriously degrade the performance of the TKDE. In
such situations we recommend using an initial parametric transformation as
discussed in Wand, Marron and Ruppert (1991) and in Ruppert and Wand
(1992). Similarly, if the density has compact support, then the boundary bias
of the initial KDE will persist in later iterations. This problem can be avoided
by using a parametric TKDE developed by Marron and Ruppert (1995) to
get the initial estimator. When tested on compactly supported densities with
sharply peaked modes, the combination of initial boundary transformation
and then the TKDE developed in this paper has proved very successful. An
advantage of the nonparametric TKDE presented here is that it fits into a
family of parametric and nonparametric transformations that can estimate
a wide variety of estimators. It is doubtful if any single estimator such as a
higher-order KDE will have nearly the flexibility of this family.

Why are the AKDE and TKDE more similar to each other than either is
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TKDE, H = .11, lter. 1 and 6 TKDE, H = .16, Iter. 1 and 6
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Fic. 4. Estimates for the incomes data: (dotted curve) first iterate of TKDE or AKDE or
secogd-order kernel KDE; (solid curve) sixth iterate of TKDE or AKDE or eighth-order kernel
KDE with Gajek’s modification.
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to the higher kernel estimates? The KDE with kernel of any order applies
a constant amount of smoothing—as measured by the bandwidth—across the
range of x. The AKDE smooths more where fx is small than where the density
is large. If as a heuristic we use the approximation x = X;, then the effective
bandwidth of the AKDE at x is A(fx(x))~1/2. By the heuristic argument in
Wand, Marron and Ruppert (1991), the TKDE effectively has a local band-
width of size h(fx(x))~!. Of course, these heuristics should not be pushed too
far. Applied to bias, they would erroneously suggest that the AKDE and TKDE
cannot reduce the order of the bias. However, they do give some insight into
the similarity between the TKDE and AKDE.

It is unlikely that a uniformly best method of density estimation exists.
What is needed in practice is a variety of estimation methods and an un-
derstanding of their differences. The various TKDE’s provide a very flexible
family of estimators. The nonparametric TKDE presented here seems ideal
for densities with sharp peaks. The parametric TKDE’s in Wand, Marron and
Ruppert (1991), Ruppert and Wand (1992), and Marron and Ruppert (1995)
are designed for positive right-skewed densities, roughly symmetric heavy-
tailed densities and compactly supported densities, respectively. One can of
course use a parametric TKDE as the initial estimator for the nonparametric
TKDE, which increases the flexibility of the TKDE approach.

Miiller and Zhou (1991) discuss another approach to kernel estimation,
local bandwidths, that we have not considered here because this methodology
does not improve the rate of convergence of a kernel estimator. Nonetheless,
local bandwidths could lead to improvements in the IMSE and the ability to
estimate peaks. It would be interesting to compare local bandwidth kernel
estimation with the TKDE and AKDE, but that companson is beyond the
scope of this paper.

5. Proofs. The main purpose of this section is to prove Theorems 2.1-2.3.
First we need some introductory lemmas. Recall that (A1)-{A4) are assumed
throughout. We will use the following notation: if {U,} and {W, } are sequences
of random variables, then we write U, = Op(W,,) if, for each £ > 0, there exist
M and N depending on ¢ such that P{|U,| < M|W,|} >1—¢, foralln > N.

LEMMA 5.1. Fix D > 0 and suppose that h = h,, is a sequence such that
h>0,h—0and nh — co. Forl=1, ...,2t define, for s € [0,1],

Xi(s) = Vnh®D {f0 (« + Dh (s - §);h) ~ B (x + Dh (s - });h) },
and let X! be a stationary, mean-zero Gaussian process on [0,1] with

Cov (X!(s), X!(s')) = fc(x) / K®(u +D(s — ') K (u) du.

Then X! converges weakly to X' in C[0,1], as n — oo, and
(5.1) sup |XP(s)| =0p(1) asn — oo.
s€l0,11
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PROOF. (5.1) will follow from the weak convergence since

sup |X¥(s)| < co with probability 1,
s€l0,1]

by standard results on the continuity of stationary (Gaussian processes
[Leadbetter, Lindgren and Rootzén (1983)]. Convergence of the finite-dimen-
sional distributions is a standard calculation. To show that X} is tight, set

s e (57 0o ).
Then

E(X4(s) — X4(s"))"

< nE(Yn,i(s) — Yu,i(s"))”

el ) e s

1

- [{K® @+D(s-5) -k W)} f(x—hu~Dh( -
=/{K(l+1) (u+0(s—s’))D(s—s')}zf(x—hu—Dh (s’—%))
=D?(s /{K(“l) u+0(s—s))}f(x hu —Dh (s —§>> du

<M(s-s')?,
where 9 depends on u and is bounded by D. From this it is easy to see that
E (X}(s) ~XL(¢))" <M(s-o)?

uniformly in n,s,s’. Tightness follows from Theorem 12.3 and (12.51) of
Billingsley (1968) with y=2 and a =2. O

du

LEMMA 5.2. Suppose that h = cn=Y**D for some ¢ > 0, A = h(logn)'/? and
C > 0. Define

= Jg: g is a (2t + 1)-th degree polynomial, g(x) =0,
(5.2) lg™(x) — (GoFx)™(x)| <A form=1,...,2t
and |g<2t+1> — (G o Fy)®*V (x)l < c}.

[Recall from (A1) that x is in the interior of supp X. G depends on x but this will
not be made explicit in the notation.] Let fx(-;g,h) be defined by (1.2). Then,
for any fixed n > 0, M > 0 and nonnegative integer | < 2t,

(53 sup sup 7P ((x):e.h) — BFY (g( )i h)| = Op (R*).

26 Jr'—x <
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PROOF. Since fy(g(x');g,h) is unchanged if we replace g(:) by g(-) — g(x),
there is no loss in generality when we assume that g(x) = 0 for all g in G.

Fix M >0and let! € {0,1,...,2¢}. Since G o Fx has a positive derivative
at x and A — 0, there exist N > 0 and M; > 0 such that, for all n > N, for all
x' and «” in [x — Mh, x + Mh] and for all g in G, we have

(5.4) lg(x') —g(x")| > M x' — x").
Since supp K =[-1,1], by (6.4)
P (e=);g.h)

O SR ) - s ) < k),

for alln > N, g in G and x’ such that |x — x'| < Mh. Define
Ky{ -, 1} =h7 KO {h7( - x)}

and

k(;+'.g,1) =K?® (g__.__() —hg(x’)) _K® (G°FX(') —hGOFX(x')> _

(Note that the dependence on n and 4 is suppressed here as elsewhere.) Con-
sider the class of functions

HO = {k{ ;x,g,l}:g€G and ' €[x—Mh,x+Mh]}.

We will show that the L;(Fx) covering numbers [Pollard (1984), page 25] of
H® satisfy
(5.6) Nl (E, H(l)) < Mzs—(2t+2),

for some M5 and all € > 0. My, M5 and the the constants M3, ..., My intro-
duced later in the proofs are independent of n, [, & and ¢. If g € G, then we
can write

2t+1

g(x) = Zam/m!(x' —x)™

where |a;, — (G o Fx)™(x)] < Aform =1, ...,2¢, and |ay, — (G o Fx)™(x)| < C
for m = 2t + 1. For each ¢ > 0, consider G., the set of all g* in G whose
coefficients o}, are of the form

o, = (G o Fx)™(x) + jA. forj an integer and |j| < [e™}+1form =1, ...,2¢,
and

031 = (GoFx)#*V(x) 4 jCe, forj an integer and |j| < [e7!] + 1.
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There exists M3 > 0 such that, for every g € G, there exists g* € G. such that

(6.7 sup lg(x’) —g* ()| < Mse.
lo’ ~x| < (M+3M1)h

There exists M, such that, for all € > 0 and for all n,
(5.8 card [G.] < Mye~®*D,

Suppose g and g* satisfy (5.7), |’ —x| < Mh and |x’ —x"| < e. Then there exist
M5z, Mg, M such that

/ KO (g(u) ;g(x’)) _K® (‘ﬂ‘l%ﬁi@)‘ dlf

< MsIiom,h < | 2| <e} / T <mih) *+ Ljuar| <aipy) du

M6 M1k / s, f
5.9 +TI{|x'—x”|52M1h}/ (|g(x +v)—g (x +U)|
—3Mh '
+ (') —g* (@) +|g"(«') —g*(x")]) dv
< Mye.

Applying (5.9) twice (once with g and g*, as it stands, and once with g =g* =
G o Fy), there is Mg such that

E|k(X;x',g,1) — k(X;x",8%,1)| < Mse.

If Y(e) = [x — Mh,x + Mh1N {(hej):j € Z}, where Z is the set of integers, then,
for some My > 0,

(5.10) card[V(e)] < Mge™!

for all € > 0 and for all n. By (5.7) and (5.9), we can cover H¥ by L,(Fx) balls
with centers in the set

HY = {k(;',8,1):g € Ge and x’ € Y(e)}

and L{(Fy) radii equal to Mg, for some M,y. By (5.8) and (5.10), card 'H(sl) <
Mye~@*2 for some My;. Therefore, (5.6) holds.

By (5.2)forg € G, |x'—x"| < Mih, |x' —x| < (M+Myh and |x" —x| < (M+M1)h,
there exist M2, M3 and M4 so that

lg(«”) —g(x') — GoFx(x") + GoFx(x')| < /x, lg'(u) — (GoFx)'(u)| du
< 2M1h (M12A +M13h2t) < M14hA.
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By (5.5) there are M5 and My such that
Ek2(X1; ,)g, l)
M
< ZRE{ I oy (€(X1) — 8() - G0 Fx(Xy)

+GoFx())*} < Migha®.

(5.11)

Since card HY < My~ and by (5.11) one can apply Theorem 37 of
Pollard [(1984), page 34] with 6, = vMgh'/2A and, with n > 0 fixed, o, =

(Qog n)M+7 [(n2)) 2 3o that
8205 = 8, ((logn)7/n)""% = O (h2*2(logn)*7/2) .
To simplify notation, let
. (g, k) =P (v:8,h) - BFP (v, 1).

One gets from the application of Pollard’s theorem that

sup - sup |A) (¢(x');8,h) 1Y, (GFx(%')); Go F, )|

le’—x] <Mh g€

(5.12) = sup sup

R k(X;x',g,0) - Bk(X;;2,g,1
jx'—x] <Mh ge€g Z{ g ) i )}‘

i=1

= o(h~"1620,) = o(h*Y),
almost surely, as n — co. By Lemma 5.1

D (G (Fx(x'));GoFx,h
e 2. (G (Fx()):G o Fx.h)|

(5.13)
=0p (h—1/2—ln—1/2) = Op(h2t—l)_
Hence, by (5.12) and (5.13),

sup  sup A, (a(w ;g h)| = Op (%),
|#’—x| <Mh g&G

which proves (5.3). O

LEMMA 5.3. Suppose that t > 2. Let c; = 2cj, let A, = M and, for j =
t—1,...,1,let Aj = Aji1 +cj, M1, where M satisfies (5.4). Suppose (2.1) holds
and note that h; < ciho for n large, j = 1, ...,t. Suppose, for some j < t, that
(2.2) holds with M =Aj. Then, for every | < 2t,

F (B Boya) = 19 (B )i Fy)| = Op (ESEOD20)

sup
I’ —x| < Ajaho
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PROOF. Let v > 0. Define ﬁ}(x’ )= Z,z,f:%f}(.”')(x)(x’ —x)™/m!. Then, by (2.2)
with M = 4;,

(5.14) sup

Jo’—x] < Ajho

FO) - FO(@)| -

Op (h:)nin(zl', 2:-z+1)) ,

for 1 <1 < 2¢+ 1. [The summation in the definition of i’, starts at 1, not 0,
so that i‘, is in G. This does not affect the validity of (5.14) for I > 1.] Thus
with G equal to the identity function there are an N and a C such that for all
n > N the probability that f’, € G is at least 1 —v. To establish Op convergence
rates, it suffices to limit our discussion to the event 17', € G since v may be
arbitrarily small.

By Lemma 5.2, therefore,

s ) g,k _Ef® ):g b R
(5.15) Ix’—aclusijh0 iy (e('):e:hi) Y (&(x');8, hjur) o
=0Op (hjzfl 1) ,

foralll < 2¢t.

There are Q, ;(x';g), polynomials in g/, ...,g%*1~™, such that

R e)e) = &)™ IZsz (58)m (&),

m=0

Therefore, for 0 < I < 2t, there is M1; such that, for g € G,
sup

I/ —2) < Az1ho 1Y («):8) -7 (Fx(x');Fx)‘
sup Zlﬂm)

(5.16) Ix’—xl <Ambho 5

| @)™ Qual+se)
~ (@)™ Qm1 (s Fx) l

<My sup Z 'g(m) Ff{")(x') )

[# —x| <Ajiho o7y

In particular, using (5.14) in (5.16),
sup (R (Fi(w): By hjor) — A (Fiel'); ) |
|’ —x| < Aj1ho

=0p (hjnrlnmj,zt l))

(5.17)

Forl <2t-2,g€ G and |[x —x'| <Aj1ho,

EfY (g(x'); 8 hit) — £ (@(%');8)
(5.18) h.lg*'l 2 1+2) '
=5 /w K (w)f*? (g(x') + hjn1bow; g) dw,
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where |0;| < 1 and depends on w. Let M; be as in (5.4). For |x' — x| < Aj,1hq,
the mean value theorem gives g(x') + hj,10ow = g(x"), where

|x” —x] < ( i+l +cC +1M1)ho =Ajho.

For [ > 0, of course, f(Fx(x'); Fx) = 0. Applying (5.16) to f#*? in (5.18), we
have, for some Mg,

[ER (&8, ha) ~ £ (6()i8)| 5

=F‘
l+3 !
(5.19) SMlghj sup lF(m) ) F(m)( )
' —x| <Ajho ry
=0p (h +1hj“+‘11n(21,2t -l 2)) Op (hjnrln(zou) 2 — z))

Similar mean value arguments establish (5.19) for [ = 2¢ — 1,2¢ with rates
Op(hj,1) and Op(1), respectively. By (5.15) and (5.19),

sup [P (Fi(x);Fyyhywa) — A9 (F@):F)]
(5.20) joe? —x} SAj+1h0
=0p (hjxglln(z(ﬁl) 2t l))
Since
sup ﬁ'j(x') _f;.j(x/)\ <2 sup F(2t+1)( )2t+1 Op (h 1231)
|« —x| < Ajho ' —2| < Ajho

then, for some My,

sup RO (F ()i hn) - f?(i}(x’) 17*,-,h,-+1)|

|2’ —x] <Ajnho
hl+1 Z

|’ —x| <Ahg T vl =1

< sup

T1%, - < My}

. .S- F' F ){
| .1( ) j( )\) {I“( x,|<1‘41ﬂj+1}

<oy, swp  |R()-F()

' —x| < Asho

= 0p (hfjl ’)

S > Hoxer <t
e —x| <Asho TWj00 i=1
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Just as in (5.16), there is My, such that, for 0 <[ < 2¢,
sup

|x'—x|<A+1hof(Y (F(x) ) ) (F(x) )l
sy S |(F) " @na (45F)

|x’—x|<AJ,,1 ¢ m=0
(5.22) _ ( ;(x/))‘ -
1+1

<Myp sup > IF( ™ (') Fj("n)(x')

|x' —x| < Ajaho
_ 2t—1
= 0p (h271).

The result thus follows from (5.20)—(5.22). DO

m=1

REMARK 5.1. What is interesting here (and surprising) is that the target
uniform density is not approached at the new, faster rate, at least not until
the next iteration; see (5.17). What is approached at the faster rate is the
density from which a back-transformation using Fy gives fx; after all, this is
the back-transformation used in the estimate.

PROOF OF THEOREM 2.1. Fix M > 0. Let A; be as in Lemma 5.3. We will
prove (2.2) with M replaced by A; > A; = M. The proof will be by induction on

J. For the case j = 1, note that ?1 is an ordinary KDE and, by assumption (A1),
fx has at least 2¢ bounded derivatives in a neighborhood of x, so for I < 2¢ -2,

(5.23)  sup [FO() —P()| = Op (B} +n"V2R{TV2) = 0p (D),

Ix,_x|< Y 0

by Lemma 5.1 and the standard result that the asymptotic bias of ﬁl)(x' ) is
proportional to A2f} 1+2(x') uniformly over |x’ — x| < Ajhq. Thus (2.2) holds for
1<2t—2. Forl=2t—1andl =2, [fPk) - EfP(")| = Op(hy) = Op (h#~!) and
Op(1), respectively. Therefore, (2.2) holds for / = 2¢ — 1 and 2¢ as well.

Now suppose ¢ > 1 and (2.2) holds for / € {0, ..., 2t} and some integer j less
than ¢. We will prove that (2.2) holds for [ € {0, ...,2¢} and j + 1, which will
complete the induction.

There exist P,, ;(x',g), polynomials in g, ...,g%1~™, such that

R (<5g,h) = Zf* g(«');8,h) Pm,i(+',8)

m=0

and .

) = Z ™ (g(x');8) Pm,1(¥',8)-

m=0
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Taking g = f'j, therefore, and using Lemma 5.3,
R (3 Fnhy) - ()
I

< sup Zlffz'") (F}(x');f‘,-,hj+1) - (ﬁ}(x’);ﬁ})HPm,,(x’,ﬁ}),

| —x| < Ajho 2

_ min(2(+1), 2¢—1)
= Op (R} ). o

sup
[ —x| < Ajyiho

REMARK 5.2. If fx has (2t — 1) bounded derivatives in a neighborhood of
x, then (5.23) will hold for / = 2¢ — 2 with h% on the RHS replaced by Ai.
This is the first step toward proving the result in Remark 2.1, whose proof is
otherwise quite similar to that of Theorem 2.1. )

PROOF OF THEOREM 2.2. Let T'= G o F; and

7~’(x') = if‘(’")(x) (x' —x)™ /m).

Using (5.12) in the proof of Lemma 5.2 with ¢ = 1, one can show that, for any
M > 0 and any 5 > 0,

sup ?Y,* (T'(x)’i‘:h2) _?Y,* (T(x),T,hz),
(5.24) |x* —x] < Mhq

= op (h3(logn)1+m/2) = op (n=2/%).

Using Lemma 5.1 and the fact that n'/5h; — oo, one can show that, for any
M >0,

sup |fP(x') - 1 (+')
(5.25) %' —x| < Mhyq
= OP (n_1/2h1—(1/2+l)) = Op(l), for l= 0’ 1 and 2’
and
(5.26) sup [FO() ()| = Op (V27 77%).

%/ —x| < Mhyg

Next, by calculations similar to those leading to (5.21) and using (5.26) and
the fact that Ay/h; — 0,

Fr (T ):Toha) ~Fr (T(); T )|

i)

=0p (hgn—1/2h;7/2) =op (n—1/2h1—1/2) =o0p (n~%/5).

sup
(%’ —x| < Mhy

fv(3)(x/)

=0 sup
(5.27) P | —x| < (M+My)hg
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By (5.25) and a standard approximation of bias to order h2, one can show that

(IE?Y (g(x');g, hz)) L,J — Bfy (T(x'); T, hs)

sup
(5.28) |*'—x| < Mhq

= 0p(h3) = op (n~2/5).

By (5.24), (5.27) and (5.28),

629 sup [fy (P Buha) o (1) Do) = o (20,

I 2| < Mhq
Next,

sup  |fy (TA‘(x’), T, hz) T'(x') —fr (T(x'); T, hs) T'(x')l

%' —x| < Mhy
fr (T(x); Tohe) (T () - T'(2!
(5.30) Slx'—ilustho fY( &) 2) ( W) -T( )) l
o 28 | (T Toba) —Fr (107, 0) 76
=op (n=%/5).

This proves (2.5). By standard results,
o~ 2
w0 (i Te) = e 7)) = N (GrffnT).cs i) ).

This and (2.5) imply (2.6) since ?X(x; T,hy) = ?y(y; T,he)T'(x). O

PROOF OF THEOREM 2.3. This proof is similar to that of Theorem 2.1. In
the latter, we already verified by induction that (2.2) holds for Jj=1,...,t-1.
Using (2.7), we can show that

(Efy (&(x):s, ht)) 'F;, . ~fr(Feo1(x);Fs_y)

= Op(hgt) =op (n—2t/(4t+1)) .

(6.31)

Also, since Fx(X;) is exactly uniform(0,1) and K has compact support, for all
large n,

(5.32) Efy (Fx(x); Fx,he) = fr (Fx(x); F)
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By (5.31) and (5.32) and since fy (Fx(x); Fx) F,(x) = fx(x) = fy (Fx); F) F'(x),
X

| (&R @hienh)) | Fia) — B (Bl i) Fie)

< l (]Ef‘y (g(x);8, ht)) |g='f,_1~£_l(x) —fr (l:"t—l(x);ﬁ't—l) Fi_i(x)

Efy (Fx (x); Fx, he)Fi (x) — fr (Fx (x); Fx) Fi (=)
—2t/(4t+1)) .

(5.33)

+

=op(n

By the same type of argument that established (5.12),

fy,« (g(x); g, 7e) ~fr,s (FX(x);FX,ht).

(5.34) g=F,_,
=op (n—2t/(4t+1)) )
Also,
A «glx);8,h F'(x) - Fi(x
535 fro ()| () - Fyle)
= 0p (n—2t/(4t+1)) ]

By (5.34) and (5.35),

l?y,* (g(x); g, he) |g Fo F'(x) — fr.« (Fx(x); Fx, hs) Fy(x)

(5.36)

= op (n~2/4+D)

By (5.33) and (5.36),

(5.37) |?Y (FX(x);FX’ht) F&(x) —?Y (Ft—l(x);i't—lyht) f’;_l(x)‘
. = op (n~2/4D)

Finally, by an argument similar to that establishing (5.21),

(5.38) l?Y (ﬁt—l(x);i‘t—laht) ﬁ£_1(x) —?Y (i‘t—l(x);i‘t—l ht) F't'_l(x)|
) =op (n—2t/(4t+1))

(5.37) and (5.38) prove (2.8). Then (2.9) follows easily from (2.8). O
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