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Abstract In this study, we consider a bias reduction of the conditional maximum likelihood
estimators for the unknown parameters of a Gaussian second-order moving average (MA(2))
model. In many cases, we use the maximum likelihood estimator because the estimator is con-
sistent. However, when the sample size n is small, the error is large because it has a bias of
O(n−1). Furthermore, the exact form of the maximum likelihood estimator for moving aver-
age models is slightly complicated even for Gaussian models. We sometimes rely on simpler
maximum likelihood estimation methods. As one of the methods, we focus on the conditional
maximum likelihood estimator and examine the bias of the conditional maximum likelihood
estimator for a Gaussian MA(2) model. Moreover, we propose new estimators for the unknown
parameters of the Gaussian MA(2) model based on the bias of the conditional maximum like-
lihood estimators. By performing simulations, we investigate properties of this bias, as well as
the asymptotic variance of the conditional maximum likelihood estimators for the unknown pa-
rameters. Finally, we confirm the validity of the new estimators through this simulation study.
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1 Introduction

Estimators of unknown parameters must be consistent. The consistency is ensured
when we have large samples. The estimators might have a bias if the sample size is
small. In recent years, some computational methods has been developed to compute
estimates for unknown parameters. However, an analytical solution for the bias en-
ables us to know a relationship between unknown parameter and the bias. It means
that the bias changes depending on unknown parameters. Many analytical evaluations
for the bias for a class of nonlinear estimators in models with i.i.d. samples have been
conducted for many years. Tanaka (1983) [14] provided asymptotic expansions of
the least square estimator for the first-order autoregressive process AR(1) and com-
puted its bias. Tanaka (1984) [15] also gave asymptotic expansions of the maximum
likelihood estimators for autoregressive moving average (ARMA) models, including
AR(1), AR(2), MA(1), and MA(2), and also computed their bias. Cordeiro and Klein
(1994) [8] derived the bias of the maximum likelihood estimators for ARMA models
in another way although the result for MA(2) was not shown. Cheang and Reinsel
(2000) [7] developed a way to reduce the bias of AR models using the restricted
maximum likelihood estimation.

Practically, we often rely on the conditional maximum likelihood estimation for
reducing the computational cost of the maximum likelihood estimation and for a pre-
diction of an unobserved variable which is the next value of the observed data (see
Section 2 for the definition of the conditional maximum likelihood estimation). The
conditional maximum likelihood estimation is often referred as the quasi-maximum
likelihood estimation (QMLE). Statistical properties of the conditional maximum
likelihood estimation have been discussed in some literatures (see [3] and [4] by Bao
and Ullah, for example). Giummolè and Vidoni (2010) [9] showed the bias of the con-
ditional maximum likelihood estimator for a Gaussian MA(1) model in a process of
obtaining improved coverage probabilities for ARMA models. However, the bias of
the estimator for a Gaussian first-order moving average (MA(1)) model was slightly
strange. Hence, Kurosawa, Noguchi, and Honda (2017) [12] corrected the bias and
deduced a simple expression for the bias using a method by Barndorff-Nielsen and
Cox (1994) [5]. We also should note the recent remarkable results by Y. Bao (2016)
[1] and (2018) [2]. We shall discuss his results in Remark 3.4 below.

In this study, we show the bias of the conditional maximum likelihood estima-
tors of unknown parameters for a Gaussian second-order moving average (MA(2))
model followed by the method in [12]. In Section 2, we introduce a Gaussian MA(2)
model and the conditional maximum likelihood function. In Section 3, we derive
both the bias and the mean squared errors (MSEs) of the conditional maximum likeli-
hood estimator for a Gaussian MA(2) model, and then propose new estimators based
on the O(n−1) term in the bias of the conditional maximum likelihood estimators.
Moreover, we show that the proposed estimators are less biased and have the lower
MSEs than those of the conditional maximum likelihood estimators. In Section 4, we
conduct a simple simulation study to verify our results. Furthermore, we apply our
method to GNP in United States of America as an illustrative example of our method
in Section 6.



Bias reduction of MA(2) models 437

2 A Gaussian MA(2) model and the conditional maximum likelihood estimator

Let {Yt } be a Gaussian MA(1) model (see, e.g., [6, 10]) defined by

Yt = μ + εt + ρεt−1, εt
i.i.d.∼ N(0, σ 2) (t ≥ 1), (1)

where |ρ| < 1. Kurosawa, Noguchi, and Honda (2017) [12] computed the bias of the
conditional maximum likelihood estimator under the condition that

ε0 = 0 (2)

for the Gaussian MA(1) model. Assumption (2) is a useful condition for not only an
estimation problem but also a prediction problem, since εT (T ≥ 1) can be written by
a linear combination of Y1, . . . , YT . Then, the best linear unbiased estimator ŶT +h of
YT +h (h > 0) given S = {Y1 = y1, . . . , YT = yT } is described using a finite linear
combination of ε1, . . . , εT (see, e.g., [12]). They gave the following:

Theorem 2.1 ([12]). The bias of the conditional maximum likelihood estimators of
the unknown parameters given (2) for the Gaussian MA(1) model is

E[μ̂ − μ] = o(n−1),

E [̂σ − σ ] = −5σ

4n
+ o(n−1),

E[ρ̂ − ρ] = 2ρ − 1

n
+ o(n−1).

In this study, we consider a Gaussian MA(2) model defined by

Yt = μ + εt + ρ1εt−1 + ρ2εt−2 (t ≥ 1), (3)

where εt
i.i.d.∼ N(0, σ 2) and θ = (μ, σ, ρ1, ρ2)

� is a vector consisting of the unknown
parameters. Although the MA(2) model has the property of stationarity regardless of
the values of ρ1 and ρ2, we assume the invertibility, which means

ρ1 − ρ2 < 1, ρ1 + ρ2 > −1, −1 < ρ2 < 1,

to identify the model uniquely. Otherwise, the maximum likelihood function takes
the same value at different points.

If we consider an estimation problem for the maximum likelihood function with
Y1, . . . , Yn, then the likelihood function can be expressed using the infinite number of
εs. To avoid the problem of infinite number of εs, we solve the conditional maximum
likelihood function given

ε0 = ε−1 = 0 (4)

for the Gaussian MA(2) model. In this case, Y1, . . . , Yn can be transformed using the
finite number of εs. The conditional log-likelihood function using the finite number
of εs for the Gaussian MA(2) model given (4) is expressed as

L (θ; y) = −n

2
log(2π) − n

2
log(σ 2) −

n∑
t=1

{εt (θ; y)}2

2σ 2 . (5)
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The likelihood function with (4) is referred as the conditional likelihood function
(see [11, p. 653] and [17]). We use the following lemma to compute the bias of the
unknown parameters in the Gaussian MA (2) model.

Lemma 2.2. Let Y = (Y1, . . . , Yn)
� be a vector of random variables generated by a

Gaussian MA(2) model in (3). Assume that (4) holds. Then, we have

εt (θ; Y ) = εt =
t−1∑
k=0

(
t−k−1∑
l=0

λl
1λ

t−k−l−1
2

)
(Yk+1 − μ) (t ≥ 1), (6)

where

λ1 = −ρ1 + �

2
, λ2 = −ρ1 − �

2
, � =

√
ρ2

1 − 4ρ2. (7)

The proof will be in the Appendix. We know that

εt = 1

(1 − λ1L)(1 − λ2L)
(Yt − μ) =

∞∑
k=0

k∑
l=0

λl
1λ

k−l
2 (Yt−k − μ)

=
t−1∑

k=−∞

(
t−k−1∑
l=0

λl
1λ

t−k−l−1
2

)
(Yk+1 − μ)

since the process is invertible. The lemma suggests that the coefficients of Yt (t ≤ 0)

are zero when ε0 = ε−1 = 0.
Since the conditional likelihood function is expressed as a function of indepen-

dent samples ε1, . . . , εn, we can apply the following lemma in [5] to the conditional
log-likelihood function. We apply Lemma 2.3 for i.i.d. random variables ε, not Y .
The high-order differentiations of the conditional log-likelihood function (5) are re-
quired to obtain the bias and the MSEs of the maximum likelihood estimators and
Lemma 2.2 will be used for the calculations. An asymptotic expansion of the bias of
the maximum likelihood estimator is given by the following:

Lemma 2.3 (See Barndorff-Nielsen and Cox (1994) [5, p. 150]). Let θ =
(θ1, . . . , θd)� be a vector of unknown parameters for a random variable Z, and
θ̂ = (θ̂1, . . . , θ̂d )� be a vector of the maximum likelihood estimators of θ for a vector
of random samples Z = (Z1, . . . , Zn)

�. Then, the bias of θ̂r (1 ≤ r ≤ d) is given by

EZ[θ̂r − θr ] = 1

2

d∑
s=1

d∑
t=1

d∑
u=1

iθr θs iθt θu(νθsθt θu + 2νθsθt ,θu) + O(n−3/2)

(r = 1, . . . , d),

where L (θ; Z) is the log-likelihood function for Z = (Z1, . . . , Zn)
�,

lθs = ∂L (θ; Z)

∂θs

, lθsθt = ∂2L (θ; Z)

∂θs∂θt

, lθsθt θu = ∂3L (θ; Z)

∂θs∂θt ∂θu

,

iθr θs =
(
In(θ)−1

)
r,s

, νθsθt θu = EZ[lθsθt θu ], νθsθt ,θu = EZ[lθsθt lθu ],

and In(θ) is the Fisher information matrix for Z.
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3 Main results

In this section, we compute the biases of estimators for the unknown parameters of the
Gaussian MA(2) model using the conditional maximum likelihood estimate, and also
propose new estimators for these parameters. Before obtaining the results on bias,
we observe the MSEs. The MSEs appear in the diagonal elements in the covariance
matrix by

E[(θ̂ − θ)(θ̂ − θ)�] = In(θ)−1 + o(n−1),

where In(θ) is the Fisher’s information matrix. It can be simplified by applying
asymptotic properties

lim
n→∞ nIn(θ)−1 = J (θ).

Therefore,

E[(θ̂ − θ)(θ̂ − θ)�] = J (θ)

n
+ o(n−1). (8)

Theorem 3.1. The elements in the asymptotic covariance matrix of the conditional
maximum likelihood estimators of the unknown parameters under (4) for the Gaus-
sian MA(2) model in (3) is given by E[(μ̂ − μ)(̂σ − σ)] = E[(μ̂ − μ)(ρ̂1 − ρ1)] =
E[(μ̂ − μ)(ρ̂2 − ρ2)] = E[(̂σ − σ)(ρ̂1 − ρ1)] = E[(̂σ − σ)(ρ̂2 − ρ2)] = o(n−1) and

E[(μ̂ − μ)2] = σ 2(ρ1 + ρ2 + 1)2

n
+ o(n−1), E[(̂σ − σ)2] = σ 2

2n
+ o(n−1),

E[(ρ̂1 − ρ1)
2] = 1 − ρ2

2

n
+ o(n−1), E[(ρ̂2 − ρ2)

2] = 1 − ρ2
2

n
+ o(n−1),

E[(ρ̂1 − ρ1)(ρ̂2 − ρ2)] = ρ1(1 − ρ2)

n
+ o(n−1).

The proof is given in Section 5.1. By applying Lemma 2.3 to (5), we obtain the
bias of the conditional maximum likelihood estimators.

Theorem 3.2. The bias of the conditional maximum likelihood estimators of the un-
known parameters under (4) for the Gaussian MA(2) model in (3) is given by

E[μ̂ − μ] = o(n−1), (9)

E [̂σ − σ ] = −7σ

4n
+ o(n−1), (10)

E[ρ̂1 − ρ1] = ρ1 + ρ2 − 1

n
+ o(n−1), (11)

E[ρ̂2 − ρ2] = 3ρ2 − 1

n
+ o(n−1). (12)

The proof is given in Section 5.2. We observe that the bias of the conditional
maximum likelihood estimators for the Gaussian MA(2) model is the same as that
for the full maximum likelihood estimators for a Gaussian MA(2) model (see Tanaka
(1984) [15]). Although (11) looks different from the result by Tanaka, we can deduce
the same result for the bias of σ̂ 2 (see (14)).
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Remark 3.3. We note that MA(2) is reduced to MA(1) if we put ρ2 = 0 in (3).
However, the bias for ρ(= ρ1) in Theorem 2.1 is not obtained even if we put ρ2 = 0
in (11). The results in Theorem 3.2 with ρ2 = 0 are obtained from a solution of the
maximum likelihood estimate in four dimensions. The bias of MA(1) in Theorem 2.1
can be considered as the bias of MA(2) given ρ2 = 0 in Theorem 3.2. This im-
plies that Theorem 3.2 is not result under the assumption with algebraic relationships
among unknown parameters such as ρ2 = 0, ρ2 = 1, � = ρ2

1 − 4ρ2 = 0, and so on.
Namely, we do not assume any algebraic relationships among the unknown parame-
ters in advance. Thus, � 	= 0 which is equivalent to λ1 	= λ2 is used in the proof of
Theorem 3.2 and Propositions and Lemmas in the appendix except for Lemma 2.2.

Remark 3.4. We have recently found the notable results by Y. Bao (2016) [1] al-
though we originally proved Theorem 3.2. The abstract in [1] claims that the bias of
the conditional Gaussian likelihood estimation with nonnormal errors is derived. The
gap between the “Gaussian” and the “nonnormal errors” imply that he used likelihood
function (5) even if the errors follow a nonnormal distribution. For the calculation of
the bias, we require the values of the skewness γ1 and the kurtosis γ2. Namely, he
derived the bias regarding the likelihood function as the Gaussian likelihood function
without the conditions γ1 = 0 and γ2 = 3 for a normal distribution. He gave the bias
of various models including MA(2) with a matrix representation which was originally
studied by Corderio and Klein (1994) [8], while we use the roots of the characteristic
function for the derivation of the bias. We purely focus on the Gaussian MA(2) model
with the conditional likelihood function and evaluate the corrected bias. Furthermore,
we propose a new estimator below based on the corrected bias and discuss the cor-
rected estimators under a pure Gaussian MA(2) model in detail using the (estimated)
bias and the MSE in the simulation study.

Using (10), (11), and (12), we propose the following new estimators for the Gaus-
sian MA(2) model:

σ̃ = σ̂ + 7σ̂

4n
, ρ̃1 = ρ̂1 − ρ̂1 + ρ̂2 − 1

n
, ρ̃2 = ρ̂2 − 3ρ̂2 − 1

n
. (13)

As we can see, the proposed estimators are asymptotically equal to the usual estima-
tors. We consider the MSEs of the new estimators:

E [̂σ ] =
(

1 − 7

4n

)
σ + o(n−1), E [̂σ 2] =

(
1 − 3

n

)
σ 2 + o(n−1). (14)

Thus, we have

E[(̃σ − σ)2] = σ 2

2n
+ o(n−1).

In other words, the MSEs of σ̃ and σ̂ are asymptotically the same as well:

E[ρ̂2
1 ] = ρ2

1 + 1 − ρ2
2

n
+ 2ρ1

ρ1 + ρ2 − 1

n
+ o(n−1),

E[ρ̂2
2 ] = ρ2

2 + 1 − ρ2
2

n
+ 2ρ2

3ρ2 − 1

n
+ o(n−1),
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E[ρ̂1ρ̂2] = ρ1ρ2 + ρ2
3ρ1 + ρ2 − 1

n
+ o(n−1).

Therefore, we have

E[(ρ̃1 − ρ1)
2] = 1 − ρ2

2

n
+ o(n−1), E[(ρ̃2 − ρ2)

2] = 1 − ρ2
2

n
+ o(n−1).

In other words, the MSEs of ρ̃1 and ρ̂1 are asymptotically the same, as are the MSEs
of ρ̃2 and ρ̂2.

4 Simulation study

In this section, we conduct a simulation study in order to verify Theorems 3.1 and 3.2
and evaluate the validity of the new estimators. Let μ = 1 and σ = 1. For a fixed
n and a fixed ρ, we generate y = (y1, . . . , yn)

� 30,000 times from the Gaussian
MA(2) model. For each y, we calculate a vector of the conditional maximum likeli-
hood estimators θ̂ = (μ̂, σ̂ , ρ̂1, ρ̂2)

�. Using the 30,000 replications, we calculate the
estimated bias and MSEs using Monte Carlo simulations. In Subsetions 4.2 and 4.3,
we also compute the full maximum likelihood estimators θ̂MLE to compare it with
our estimators.

4.1 Evaluation of asymptotic variances

We evaluate how much the MSEs of the conditional maximum likelihood estimators
change depending on the true values of the unknown parameters. Table 1 shows the
estimated MSEs and the values of J (θ)/n obtained in Theorem 3.1 of the conditional
maximum likelihood estimators for each unknown parameter.

Table 1. Comparisons of the estimated MSEs and J (θ)/n for each unknown parameter (upper:
the estimated MSE, lower: J (θ)/n)

(ρ1, ρ2) = (0.25, −0.25) (ρ1, ρ2) = (−0.40, −0.59)

n μ̂ σ̂ ρ̂1 ρ̂2 n μ̂ σ̂ ρ̂1 ρ̂2
50 0.02046 0.01133 0.03102 0.03684 50 0.01412 0.01146 0.04705 0.02783

0.02000 0.01000 0.01875 0.01875 0.01312 0.01000 0.01304 0.01304
100 0.01020 0.00526 0.01136 0.01233 100 0.00691 0.00578 0.01566 0.00944

0.01000 0.00500 0.00938 0.00938 0.00656 0.00500 0.00652 0.00652
150 0.00675 0.00346 0.00706 0.00739 150 0.00453 0.00386 0.00921 0.00564

0.00667 0.00333 0.00625 0.00625 0.00437 0.00333 0.00435 0.00435

(ρ1, ρ2) = (0.15, −0.55) (ρ1, ρ2) = (0.15, 0.55)

n μ̂ σ̂ ρ̂1 ρ̂2 n μ̂ σ̂ ρ̂1 ρ̂2
50 0.00786 0.01148 0.03108 0.03334 50 0.05849 0.01099 0.01943 0.02612

0.00720 0.01000 0.01395 0.01395 0.05780 0.01000 0.01395 0.01395
100 0.00379 0.00526 0.01051 0.01123 100 0.02907 0.00520 0.00814 0.00937

0.00360 0.00500 0.00698 0.00698 0.02890 0.00500 0.00698 0.00698
150 0.00248 0.00346 0.00597 0.00620 150 0.01932 0.00343 0.00511 0.00559

0.00240 0.00333 0.00465 0.00465 0.01927 0.00333 0.00465 0.00465

We conducted simulations under the four settings. The top-left table is prepared
for checking of performance under the condition that the true parameters are within
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the invertibility condition. On the other hand, the top-right table is close to the bound-
ary of the invertibility condition. The two bottom tables are made for checking the
symmetry of ρ2. It is clearly observed from Table 1 for all the settings that the esti-
mated MSEs decrease when the sample size n is large. The estimated MSE of σ̂ does
not depend on the values of ρ1 and ρ2, which coincides with the result that J (θ)/n of
σ̂ in Theorem 3.1 does not include ρ1 and ρ2 in the expression. Since J (θ)/ns of ρ̂1
and ρ̂2 depend on the value of ρ2 but are independent of the value of ρ1, we expect
that the estimated MSEs of ρ̂1 and ρ̂2 on (ρ1, ρ2) = (0.15,−0.55) and (ρ1, ρ2) =
(0.15, 0.55) are close, but the results show different values in the small sample size
n = 50. This result may be the influence of o(n−1). We compare n times the esti-
mated MSEs and J (θ) on (ρ1, ρ2) = (0.15,−0.55) and (ρ1, ρ2) = (0.15, 0.55) of
n = 50 and n = 1000 to verify the influence by o(n−1) in Table 2.

Table 2. Comparisons of n times the estimated MSEs and J (θ) of n = 50 and n = 1000

(ρ1, ρ2) = (0.15, −0.55)

μ̂ σ̂ ρ̂1 ρ̂2

n × the estimated MSE
n = 50 0.39307 0.57401 1.55412 1.66715

n = 1000 0.36061 0.51210 0.72833 0.71769

J (θ) 0.36000 0.50000 0.69750 0.69750

(ρ1, ρ2) = (0.15, 0.55)

μ̂ σ̂ ρ̂1 ρ̂2

n × the estimated MSE
n = 50 2.92462 0.54941 0.97164 1.30611

n = 1000 2.88205 0.51144 0.69979 0.71517

J (θ) 2.89000 0.50000 0.69750 0.69750

Generally, n times the estimated MSEs converge to J (θ) if n is large. The result
shows that the estimated MSE of ρ̂1 is close to ρ̂2 for n = 1000. Next, we present the
behavior of the estimated MSEs for ρ1 = 0.25 and ρ2 = −0.25 when the sample size
is small in Table 3.

Table 3. Behavior of the estimated MSEs when the sample size is small

n μ̂ σ̂ ρ̂1 ρ̂2
10 0.14485 0.09400 0.41133 0.36819
11 0.12914 0.08262 0.34886 0.33276
12 0.11453 0.07419 0.29700 0.29798
13 0.10000 0.06659 0.26646 0.27767
14 0.08955 0.06034 0.23022 0.25188
15 0.08262 0.05502 0.21125 0.23577
16 0.07426 0.05051 0.18974 0.21314
17 0.06889 0.04616 0.17351 0.19723
18 0.06413 0.04295 0.15869 0.18569
19 0.05969 0.04028 0.14624 0.17146
20 0.05529 0.03762 0.13552 0.16067

The estimated MSE becomes smaller as the sample size becomes larger.
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4.2 Estimator of σ

We express the bias of σ̂ as

E [̂σ − σ ] = e1 + e2, e1 = −7σ

4n
, e2 = o(n−1),

which implies that

e1 + e2 is the bias of the conditional maximum likelihood estimator,
e2 is the bias of the conditional maximum likelihood estimator without the term

O(n−1).

Table 4. Evaluation of the estimated bias of σ̂

(ρ1, ρ2) = (0.25, −0.25) (ρ1, ρ2) = (0.15, 0.55)

n e1 + e2 e2 n e1 + e2 e2
50 −0.03579 −0.00079 50 −0.02814 0.00686

100 −0.01635 0.00115 100 −0.01322 0.00428
150 −0.01035 0.00132 150 −0.00825 0.00342

The bias of σ̂ does not depend on the value of ρ1 and ρ2, which coincide with
(10). Moreover, |e2| is smaller than |e1 + e2| because of the exclusion of the term
O(n−1). Next, we compare the bias and MSEs of σ̂ and the proposed estimator σ̃ for
ρ1 = 0.25 and ρ2 = −0.25. We also compute the full maximum likelihood estimator
σ̂ MLE.

Table 5. Comparison of the bias and MSEs of σ̂ and σ̃

Bias MSE
n σ̂ σ̂MLE σ̃ n σ̂ σ̂MLE σ̃

50 −0.03579 −0.04193 −0.00204 50 0.01133 0.01195 0.01077
100 −0.01635 −0.01820 0.00087 100 0.00526 0.00531 0.00517
150 −0.01035 −0.01142 0.00120 150 0.00346 0.00347 0.00343

The estimated bias of σ̃ is lower than those of σ̂ and σ̃ MLE. On the other hand,
there is no difference among the three estimated MSEs. This result certainly is in
accordance with the discussion in Section 3.

4.3 Estimators of ρ1 and ρ2

We express the bias of θ̂i (i = 3, 4) as

E[θ̂i − θi] = e1 + e2, e1 = O(n−1), e2 = o(n−1),

where e1 = (ρ1 +ρ2 −1)/n for i = 3, e1 = (3ρ2 −1)/n for i = 4. Then, e1 +e2 and
e2 imply the bias of the conditional maximum likelihood estimator and the bias of the
conditional maximum likelihood estimator without the term O(n−1), respectively.

Except for the case where ρ1 and ρ2 are close to the boundary condition (ρ1, ρ2)=
(0.40,−0.59), |e2| is smaller than |e1 + e2|. The bias of ρ̂1 depends on the value of
ρ1 and ρ2. The bias of ρ̂2 depends on the value of ρ2 but not ρ1, which coincides with
(12). Next, we compare the bias between ρ̂1 and ρ̃1 and between ρ̂2 and ρ̃2. We also
compute the full maximum likelihood estimators ρ̂MLE

i .
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Table 6. Evaluation of the estimated bias of ρ̂1 and ρ̂2

(ρ1, ρ2) = (0.25, −0.25) (ρ1, ρ2) = (0.40, −0.59)

ρ̂1 ρ̂2 ρ̂1 ρ̂2
n e1 + e2 e2 e1 + e2 e2 n e1 + e2 e2 e1 + e2 e2
50 −0.03591 −0.01591 −0.04913 −0.01413 50 −0.13333 −0.10953 −0.00976 0.04564

100 −0.01319 −0.00319 −0.01969 −0.00219 100 −0.07309 −0.06119 0.01046 0.03816
150 −0.00847 −0.00181 −0.01271 −0.00104 150 −0.05414 −0.04621 0.01191 0.03037

(ρ1, ρ2) = (0.15, −0.55) (ρ1, ρ2) = (0.15, 0.55)

ρ̂1 ρ̂2 ρ̂1 ρ̂2
n e1 + e2 e2 e1 + e2 e2 n e1 + e2 e2 e1 + e2 e2
50 −0.06690 −0.03890 −0.06690 −0.01390 50 −0.00862 −0.00262 0.00769 −0.00531

100 −0.02493 −0.01093 −0.02765 −0.00115 100 −0.00305 −0.00005 0.00247 −0.00403
150 −0.01475 −0.00542 −0.01663 0.00104 150 −0.00250 −0.00050 0.00095 −0.00338

Table 7. Comparisons of estimated bias for the estimator of ρ1 and ρ2

(ρ1, ρ2) = (0.25, −0.25)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 −0.03591 −0.03166 −0.01421 −0.04913 −0.05512 −0.01118

100 −0.01319 −0.01087 −0.00286 −0.01969 −0.02115 −0.00160
150 −0.00847 −0.00716 −0.00166 −0.01271 −0.01338 −0.00079

(ρ1, ρ2) = (0.40, −0.59)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 −0.13333 −0.08952 −0.10667 −0.00976 −0.05341 0.04623

100 −0.07309 −0.03134 −0.06057 0.01046 −0.01752 0.03784
150 −0.05414 −0.01796 −0.04592 0.01191 −0.01095 0.03014

(ρ1, ρ2) = (0.15, −0.55)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 −0.06690 −0.06346 −0.03622 −0.06690 −0.09484 −0.00988

100 −0.02493 −0.01971 −0.01041 −0.02765 −0.03755 −0.00032
150 −0.01475 −0.01109 −0.00521 −0.01663 −0.02199 0.00137

(ρ1, ρ2) = (0.15, 0.55)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 −0.00862 −0.00733 −0.00260 0.00769 0.02588 −0.00577

100 −0.00305 −0.00265 −0.00004 0.00247 0.00854 −0.00410
150 −0.00250 −0.00223 −0.00049 0.00095 0.00473 −0.00340

The biases of the proposed estimators ρ̃1 and ρ̃2 are less than those of ρ̂1 and ρ̂2,
respectively, except for the case as mentioned the above. Moreover, the calibration of
ρ̃1 and ρ̃2 depends on the values of ρ̂1 and ρ̂2. Next, we compare the MSEs between
ρ̂1 and ρ̃1, and between ρ̂2 and ρ̃2.

There is no difference between the estimated MSEs of ρ̂i and ρ̃i (i = 1, 2), which
certainly coincides with the discussion in Section 3.

5 Proof of theorems

We show our main Theorems 3.1 and 3.2 using lemmas and propositions in Ap-
pendix A.
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Table 8. Comparisons of the estimated MSEs for the estimators of ρ1 and ρ2

(ρ1, ρ2) = (0.25, −0.25)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 0.03102 0.03332 0.02822 0.03684 0.04005 0.03055

100 0.01136 0.01157 0.01090 0.01233 0.01264 0.01124
150 0.00706 0.00711 0.00686 0.00739 0.00748 0.00695

(ρ1, ρ2) = (0.40, −0.59)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 0.04705 0.03905 0.03866 0.02783 0.03581 0.02665

100 0.01566 0.01050 0.01364 0.00944 0.01016 0.01021
150 0.00921 0.00579 0.00826 0.00564 0.00569 0.00619

(ρ1, ρ2) = (0.15, −0.55)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 0.03108 0.03492 0.02635 0.03334 0.04263 0.02561

100 0.01051 0.01124 0.00972 0.01123 0.01288 0.00985
150 0.00597 0.00613 0.00568 0.00620 0.00668 0.00569

(ρ1, ρ2) = (0.15, 0.55)

n ρ̂1 ρ̂MLE
1 ρ̃1 ρ̂2 ρ̂MLE

2 ρ̃2
50 0.01943 0.01993 0.01848 0.02612 0.03126 0.02306

100 0.00814 0.00818 0.00795 0.00937 0.00993 0.00883
150 0.00511 0.00513 0.00503 0.00559 0.00577 0.00538

5.1 Proof of Theorem 3.1

The second derivatives are given by the inverse of the Fisher information matrix and
the components of the matrix can be obtained by the expectation of the second deriva-
tive of the log-likelihood functions. The expectations of the components are given in
Proposition A.4, and then the Fisher information matrix is

In(θ) =

⎡⎢⎢⎣
iμμ 0 0 0
0 iσσ 0 0
0 0 iρ1ρ1 iρ1ρ2

0 0 iρ1ρ2 iρ2ρ2

⎤⎥⎥⎦ ,

where

iμμ = −E[lμμ] = 1

σ 2

n∑
t=1

d2
t−1, iσσ = −E[lσσ ] = 2n

σ 2 ,

iρ1ρ1 = −E[lρ1ρ1 ] =
n∑

t=1

t−1∑
k=1

(ϕ1(k))2,

iρ2ρ2 =−E[lρ2ρ2]=
n∑

t=1

t−2∑
k=1

(ϕ1(k))2, iρ1ρ2 =−E[lρ1ρ2] =
n∑

t=1

t−1∑
k=2

ϕ1(k)ϕ1(k − 1).
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The functions ϕ1 and dt are defined in (A.3) and (A.5), respectively. Thus, the inverse
matrix is given by

In(θ)−1 =

⎡⎢⎢⎣
iμμ 0 0 0
0 iσσ 0 0
0 0 iρ1ρ1 iρ1ρ2

0 0 iρ1ρ2 iρ2ρ2

⎤⎥⎥⎦ , (15)

where

iμμ = 1

iμμ

= σ 2∑n
t=1 d2

t−1

, iσσ = 1

iσσ

= σ 2

2n
,

iρ1ρ1 = M−1iρ2ρ2 , iρ1ρ2 = −M−1iρ1ρ2, iρ2ρ2 = M−1iρ1ρ1 ,

M = iρ1ρ1 iρ2ρ2 − (iρ1ρ2)
2.

We shall compute the limiting values for iμμ, iσσ , iρ1ρ1 , iρ1ρ2 , and iρ2ρ2 . Using
the different expression (B.4) for ϕ1, we have

dt−1 =
t∑

t=1

ϕ1(k) = 1

1 + ρ1 + ρ2
+ ρ2ϕ1(t) − ϕ1(t + 1)

1 + ρ1 + ρ2
. (16)

We consider the summation from t = 1 to n of d2
t−1 to get iμμ. The second term in

dt−1 is not a main term for the summation as n → ∞. Therefore,

iμμ = σ 2(1 + ρ1 + ρ2)
2

n
+ o(n−1).

Similarly, we have

t−1∑
k=1

(ϕ1(k))2 = 1

�2

(
λ2

1 − λ2t
1

1 − λ2
1

− 2
ρ2 − ρt

2

1 − ρ2
+ λ2

2 − λ2t
2

1 − λ2
2

)

and

t−1∑
k=2

ϕ1(k)ϕ1(k − 1) = 1

�2

(
λ2

1 − λ2t−1
1

1 − λ2
1

+ ρ1
1 − ρt

2

1 − ρ2
+ λ2

2 − λ2t−1
2

1 − λ2
2

)
,

and then

iρ1ρ1 = iρ2ρ2 = 1

�2

(
λ2

1

1 − λ2
1

− 2
ρ2

1 − ρ2
+ λ2

2

1 − λ2
2

)
n + o(n)

= − 1 + ρ2

(1 − ρ2
1 + 2ρ2 + ρ2

2)(1 − ρ2)
n + o(n)

and

iρ1ρ2 = 1

�2

(
λ1

1 − λ2
1

+ ρ1

1 − ρ2
+ λ2

1 − λ2
2

)
n + o(n)
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= − ρ1

(1 − ρ2
1 + 2ρ2 + ρ2

2)(1 − ρ2)
n + o(n).

Thus,

M = iρ1ρ1 iρ2ρ2 − (iρ1ρ2)
2 = − 1

(1 − ρ2
1 + 2ρ2 + ρ2

2)(1 − ρ2)2
n2 + o(n2).

Therefore, we obtain

iρ1ρ1 = iρ2ρ2 = 1 − ρ2
2

n
+ o(n−1), (17)

iρ1ρ2 = ρ1(1 − ρ2)

n
+ o(n−1). (18)

5.2 Proof of Theorem 3.2

Eq. (9) is trivial by Lemma 2.3 and Proposition A.6. We show (10) using Lemma A.7.
The lemma can be reduced to

E[θ̂r − θr ] = 1

2
iθr θr

d∑
t=1

d∑
u=1

iθt θu(νθr θt θu + 2νθrθt ,θu) + O(n−3/2) (19)

if iθr θs = 0 for all s 	= r . We see iσμ = iσρ1 = iσρ1 = 0 from (15), and then we can
apply (19) for the bias σ̂ . The components in the sum (19) are

iμμ(νσμμ + 2νσμ,μ) = σ 2∑n
t=1 d2

t−1

(
− 2

σ 3

n∑
t=1

d2
t−1

)
= − 2

σ
, (20)

iσσ (νσσσ + 2νσσ,σ ) = σ 2

2n

(
−2n

σ 3

)
= − 1

σ
, (21)

iρ1ρ1(νσρ1ρ1 + 2νσρ1,ρ1) = M−1iρ2ρ2

(
− 2

σ
iρ1ρ1

)
= −2iρ1ρ1 iρ2ρ2

Mσ
, (22)

iρ2ρ2(νσρ2ρ2 + 2νσρ2,ρ2) = M−1iρ1ρ1

(
− 2

σ
iρ2ρ2

)
= −2iρ1ρ1 iρ2ρ2

Mσ
, (23)

iρ1ρ2(νσρ1ρ2 + 2νσρ1,ρ2) + iρ2ρ1(νσρ2ρ1 + 2νσρ2,ρ1)

= 2iρ1ρ2(νσρ1ρ2 + νσρ1,ρ2 + νσρ2,ρ1)

= −2M−1iρ1ρ2

(
− 2

σ
iρ1ρ2

)
= 4(iρ1ρ2)

2

Mσ
. (24)

The summation of (22), (23), and (24) is

−4iρ1ρ1 iρ2ρ2

Mσ
+ 4(iρ1ρ2)

2

Mσ
= − 4

σ
.

By adding (20) and (21) on the above, we obtain (10).
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Next, we show (11) and (12) using Proposition A.8. The 10 components of the
equation in Lemma 2.3 which are used for the calculation of the biases of ρ1 and ρ2
are given by merely substituting the results in Proposition A.8:

iμμ(νρ1μμ + 2νρ1μ,μ) =
−2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k)

n∑
s=1

d2
s−1

,

iσσ (νρ1σσ + 2νρ1σ,σ ) = 0,

iρ1ρ1(νρ1ρ1ρ1 + 2νρ1ρ1,ρ1) = M−1iρ2ρ2

n∑
t=1

(S1,t + 2T0,0,t ),

2iρ1ρ2(νρ1ρ1ρ2 + νρ1ρ1,ρ2 + νρ1ρ2,ρ1) = −2M−1iρ1ρ2

n∑
t=1

(S2,t + T0,1,t + T1,0,t ),

iρ2ρ2(νρ1ρ2ρ2 + 2νρ1ρ2,ρ2) = M−1iρ1ρ1

n∑
t=1

(S3,t + 2T1,1,t ),

and

iμμ(νρ2μμ + 2νρ2μ,μ) =
−2

n∑
t=1

t−2∑
k=1

dt−1dt−k−2ϕ1(k)

n∑
s=1

d2
s−1

,

iσσ (νρ2σσ + 2νρ2σ,σ ) = 0,

iρ1ρ1(νρ2ρ1ρ1 + 2νρ2ρ1,ρ1) = M−1iρ2ρ2

n∑
t=1

(S0,t−1 + 2T1,0,t ),

2iρ1ρ2(νρ1ρ2ρ2 + νρ1ρ2,ρ2 + νρ2ρ2,ρ1)=−2M−1iρ1ρ2

n∑
t=1

(S1,t−1 + T1,1,t + T0,0,t−1),

iρ2ρ2(νρ2ρ2ρ2 + 2νρ2ρ2,ρ2) = M−1iρ1ρ1

n∑
t=1

(S2,t−1 + 2T0,1,t ),

where Sp,q and Tp,q,t are defined in (A.26) and (A.27), respectively. Now, we want to
know the limiting values of the right-hand side of the above equations and to evaluate
the sum of the first 5 equations and the remaining 5 equations. Let U and V be the sum
of the first 5 equations and that of the remaining 5 equations, respectively. We see that

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k) = 1

(ρ1 + ρ2 + 1)3 n + o(n),

n∑
t=1

t−2∑
k=1

dt−1dt−k−2ϕ1(k) = 1

(ρ1 + ρ2 + 1)3 n + o(n)
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by (16). What regards the other summations, the values are constructed by Sp,q and
Tp,q,t . The components of Sp,q and Tp,q,t are given by using (B.4) and (B.5) which
are a sort of geometric series. We consider the summations of Sp,q and Tp,q,t with
respect to t from 1 to n as n → ∞. Since the components are expressed as a sort of
geometric series, the following limiting evaluations are useful.

n∑
t=1

t∑
k=1

αk = α

1 − α
n + o(n),

n∑
t=1

t∑
k=1

(k + 1)αk+1 = α2(2 − α)

(1 − α)2 n + o(n),

n∑
t=1

t∑
k=1

t−k∑
m=1

αkβm = αβ

(1 − α)(1 − β)
n + o(n)

for any |α| < 1 and |β| < 1. Then, the summations of Sp,t and Tp,q,t with respect to
t are

n∑
t=1

S1,t = 2ρ1(ρ2 + 1)

(ρ2 − 1){ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

S2,t = 2{ρ2
1 − ρ2(ρ2 + 1)2}

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

S3,t = 2ρ1{−ρ2
1 + 2ρ2(ρ2 + 1)}

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

S0,t−1 = 2{1 + ρ2(2 − ρ2
1 + ρ2)}

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

S1,t−1 = 2ρ1(ρ2 + 1)

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

S2,t−1 = 2{ρ2
1 − ρ2(ρ2 + 1)2}

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

T0,0,t = −2ρ1(ρ2 + 1)

(ρ2 − 1){ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

T0,1,t = −2{ρ2
1 − ρ2(ρ2 + 1)2}

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

T1,0,t = ρ2
1 + (ρ2 + 1)2

(ρ2 − 1){ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

T1,1,t = ρ1(1 + ρ2
1 − 2ρ2 − 3ρ2

2)

(ρ2 − 1)2{ρ2
1 − (ρ2 + 1)2}2

n + o(n),

n∑
t=1

T0,0,t−1 = −2ρ1(ρ2 + 1)

(ρ2 − 1){ρ2
1 − (ρ2 + 1)2}2

n + o(n).
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Now, we are ready to use Lemma 2.3. Using the above evaluations, we have

U = −2

ρ1 + ρ2 + 1
+ 4ρ1(ρ2 + 1)2 − 2ρ1{ρ2

1 + (ρ2 + 1)2}
{ρ2

1 − (ρ2 + 1)2}2
+ o(1),

V = −2

ρ1 + ρ2 + 1
+ 4ρ1(ρ2 + 1){ρ2

1 − ρ2(ρ2 + 1)2} + 2ρ2
1(1 + ρ2

1 − 2ρ2 − 3ρ2
2)

(1 − ρ2){ρ2
1 − (ρ2 + 1)2}2

+ o(1).

By (17) and (18), the biases of the unknown parameters ρ̂1 and ρ̂2 are

E[ρ̂1 − ρ1] = 1

2
iρ1ρ1U + 1

2
iρ1ρ2V = ρ1 + ρ2 − 1

n
+ o(n−1)

and

E[ρ̂2 − ρ2] = 1

2
iρ1ρ2U + 1

2
iρ2ρ2V = 3ρ2 − 1

n
+ o(n−1).

Therefore, we obtain (11) and (12).

6 Practical examples

We provide a practical example using quarterly U.S. GNP from 1947(1) to 2002(3),
n = 223 observations. The original data which are provided by the Federal Reserve
Bank of St. Louis [16] are introduced after being adjusted as a good example for
MA(2) in [13] when the data are transformed to compute the GNP rate from Xt by

Yt = ∇ log(Xt ), (25)

where Xt is the U.S. GNP. The adjusted data which are different from the original
can be obtained from the web site by the author of the book.

We do not know true values for unknown parameters in the MA(2) but we assume
that the GNP rate follows

Yt = 0.0083 + εt + 0.3028εt−1 + 0.2036εt−2, (26)

where the coefficients are calculated by the (full) maximum likelihood estimation
using n = 223 − 1 = 222 observations because we need to take the difference by
(25) and confirm whether the bias using the model with the last 20 samples is reduced
by our method or not.

For an unknown parameter θ (θ = μ, σ, ρ1, ρ2), MLE and QMLE in Table 9
correspond to the maximum likelihood estimate θ̂MLE and the conditional maximum
likelihood estimate (quasi-maximum likelihood estimate) θ̂ using n = 20 observa-
tions. The corrected MLE and corrected QMLE correspond to the result by Tanaka
(1984) [15] and θ̃ defined in (13), respectively. The reason why there are dashes (–)
in the table for μ is that the correction is not required for μ. The four biases in the
table from the bottom correspond to those for MLE, QMLE, corrected MLE, and cor-
rected QMLE. We note that the corrected MLE is expected to be the best when we
use n = 20 observations because the estimate uses the full maximum likelihood esti-
mation. The both corrections work well, namely the bias for true model (26) become
small against the models without the corrections.
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Table 9. MLE and conditional MLE with a correction for U.S. GNP using MA(2)

μ σ ρ1 ρ2
TRUE (n = 222) 0.0083 0.0094 0.3028 0.2036

MLE (n = 20) 0.0071 0.0060 0.1446 0.1370
QMLE (n = 20) 0.0072 0.0060 0.1564 0.1321

corrected MLE – 0.0065 0.1824 0.1680
corrected QMLE – 0.0065 0.1939 0.1639

Bias for MLE −0.0012 −0.0035 −0.1582 −0.0666
Bias for QMLE −0.0012 −0.0035 −0.1464 −0.0714

Bias for corrected MLE – −0.0029 −0.1204 −0.0356
Bias for corrected QMLE – −0.0029 −0.1089 −0.0397

A Lemmas

We show the derivatives of the conditional log-likelihood function and expectations.
Let

λ1 + λ2 = −ρ1, λ1 − λ2 = �, λ1λ2 = ρ2 (A.1)

and

λ2
i + ρ1λi + ρ2 = 0 (A.2)

for i = 1, 2. Furthermore, we define the following functions:

ϕ1(k) =
k−1∑
l=0

λl
1λ

k−1−l
2 , (A.3)

ϕ2(k) = −2
∂ϕ1(k)

∂ρ1
, (A.4)

and

dt =
t+1∑
k=1

ϕ1(k). (A.5)

These functions reduce calculation costs. We list the lemmas and propositions in the
following. Their proofs are provided in Appendix B except for Lemmas A.3 and A.5
because Lemmas A.3 and A.5 just list the derivatives of the log-likelihood function
and they are easily obtained by the chain rule for (A.6) and (A.7).

The first derivatives of the conditional log-likelihood function (5) for the Gaussian
MA(2) model are given by

lμ = 1

σ 2

n∑
t=1

dt−1εt , lσ = − n

σ
+ 1

σ 3

n∑
t=1

ε2
t , (A.6)

lρ1 = − 1

σ 2

n∑
t=1

εt

∂εt

∂ρ1
, lρ2 = − 1

σ 2

n∑
t=1

εt

∂εt

∂ρ2
. (A.7)
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Lemma A.1. The first derivatives of εt in (6) are given by

∂εt

∂μ
= −dt−1, (A.8)

∂εt

∂ρ1
= −

t−1∑
k=1

ϕ1(k)εt−k = −
t−1∑
k=1

ϕ1(t − k)εk, (A.9)

∂εt

∂ρ2
= ∂εt−1

∂ρ1
= −

t−2∑
k=1

ϕ1(k)εt−k−1 = −
t−2∑
k=1

ϕ1(t − k − 1)εk. (A.10)

Lemma A.1 implies that ∂εt /∂ρ1 does not depend on εt , but is expressed as a
linear combination of ε1, . . . , εt−1. Furthermore, ∂εt/∂ρ2 does not depend on εt−1
and εt , but depends on ε1, . . . , εt−2.

Lemma A.2. The second derivatives of εt in (6) are given by

∂2εt

∂μ∂ρ1
= ∂dt−1

∂ρ1
= −

t−1∑
k=1

ϕ1(k)dt−k−1, (A.11)

∂2εt

∂μ∂ρ2
= ∂2εt−1

∂μ∂ρ1
= ∂dt−1

∂ρ2
= −

t−2∑
k=1

ϕ1(k)dt−k−2, (A.12)

∂2εt

∂ρ2
1

=
t−2∑
k=1

ϕ2(k + 1)εt−k−1 =
t−2∑
k=1

ϕ2(t − k)εk, (A.13)

∂2εt

∂ρ1∂ρ2
= ∂2εt−1

∂ρ2
1

=
t−3∑
k=1

ϕ2(k + 1)εt−k−2 =
t−3∑
k=1

ϕ2(t − k − 1)εk, (A.14)

∂2εt

∂ρ2
2

= ∂2εt−2

∂ρ2
1

=
t−4∑
k=1

ϕ2(k + 1)εt−k−3 =
t−4∑
k=1

ϕ2(t − k − 2)εk. (A.15)

Similarly, ∂2εt/∂ρ
2
1 is expressed as a linear combination of ε1, . . . , εt−2,

∂2εt/∂ρ1∂ρ2 is a linear combination of ε1, . . . , εt−3, and ∂2εt/∂ρ
2
2 is that of

ε1, . . . , εt−4.
Lemma A.3. The second derivatives of the conditional log-likelihood function (5)
for the Gaussian MA(2) model are given by

lμμ = − 1

σ 2

n∑
t=1

d2
t−1, lμσ = − 2

σ 3

n∑
t=1

dt−1εt , lμρ1 = 1

σ 2

n∑
t=1

(
εt

∂dt−1

∂ρ1
+ dt−1

∂εt

∂ρ1

)
,

lμρ2 = 1

σ 2

n∑
t=1

(
εt

∂dt−1

∂ρ2
+ dt−1

∂εt

∂ρ2

)
, lσσ = n

σ 2
− 3

σ 4

n∑
t=1

ε2
t , lσρ1 = 2

σ 3

n∑
t=1

εt
∂εt

∂ρ1
,

lσρ2 = 2

σ 3

n∑
t=1

εt
∂εt

∂ρ2
, lρ1ρ1 = − 1

σ 2

n∑
t=1

{(
∂εt

∂ρ1

)2
+ εt

∂2εt

∂ρ2
1

}
,

lρ1ρ2 = − 1

σ 2

n∑
t=1

(
∂εt

∂ρ1

∂εt

∂ρ2
+ εt

∂2εt

∂ρ1∂ρ2

)
, lρ2ρ2 = − 1

σ 2

n∑
t=1

{(
∂εt

∂ρ2

)2
+ εt

∂2εt

∂ρ2
2

}
.
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Since ∂εt/∂ρ1 is a linear combination of εk (k = 1, . . . , t − 1), and ∂εt /∂ρ2 is a
linear combination of εl (l = 1, . . . , t −2) by Lemma A.1, their expectations equal 0.
Lemma A.3 is easily obtained by the first derivatives (A.6) and (A.7) with the chain
rule.

Proposition A.4. The expectations of the second derivatives of the conditional log-
likelihood function (5) for the Gaussian MA(2) model are given by

E[lμμ] = − 1

σ 2

n∑
t=1

d2
t−1, E[lσσ ] = −2n

σ 2 ,

E[lμσ ] = E[lμρ1] = E[lμρ2] = E[lσρ1] = E[lσρ2] = 0,

E[lρ1ρ1] = −
n∑

t=1

t−1∑
k=1

(ϕ1(k))2,

E[lρ1ρ2] = −
n∑

t=1

t−1∑
k=2

ϕ1(k)ϕ1(k − 1),

E[lρ2ρ2] = −
n∑

t=1

t−2∑
k=1

(ϕ1(k))2. (A.16)

Lemma A.5. The third derivatives of the conditional log-likelihood function (5) for
the Gaussian MA(2) model are given by

lμμμ = 0, lμσσ = 6

σ 4

n∑
t=1

dt−1εt , lμρ1ρ1 = 1

σ 2

n∑
t=1

(
dt−1

∂2εt

∂ρ2
1

+ εt
∂2dt−1

∂ρ2
1

+ 2
∂εt

∂ρ1

∂dt−1

∂ρ1

)
,

lμρ2ρ2 = 1

σ 2

n∑
t=1

(
dt−1

∂2εt

∂ρ2
2

+ εt
∂2dt−1

∂ρ2
2

+ 2
∂εt

∂ρ2

∂dt−1

∂ρ2

)
,

lμρ1ρ2 = 1

σ 2

n∑
t=1

(
∂dt−1

∂ρ1

∂εt

∂ρ2
+ ∂εt

∂ρ1

∂dt−1

∂ρ2
+ εt

∂2dt−1

∂ρ1∂ρ2
+ dt−1

∂2εt

∂ρ1∂ρ2

)
,

lσμμ = 2

σ 3

n∑
t=1

d2
t−1, lσσσ = − 2n

σ 3
+ 12

σ 5

n∑
t=1

ε2
t , lσρ1ρ1 = 2

σ 3

n∑
t=1

{(
∂εt

∂ρ1

)2
+ εt

∂2εt

∂ρ2
1

}
,

lσρ2ρ2 = 2

σ 3

n∑
t=1

{(
∂εt

∂ρ2

)2
+ εt

∂2εt

∂ρ2
2

}
, lσρ1ρ2 = 2

σ 3

n∑
t=1

(
∂εt

∂ρ1

∂εt

∂ρ2
+ εt

∂2εt

∂ρ1∂ρ2

)
,

lρ1μμ = − 2

σ 2

n∑
t=1

dt−1
∂dt−1

∂ρ1
= 2

σ 2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k),

lρ1σσ = − 6

σ 4

n∑
t=1

εt
∂εt

∂ρ1
, lρ1ρ1ρ1 = − 1

σ 2

n∑
t=1

(
3
∂2εt

∂ρ2
1

∂εt

∂ρ1
+ εt

∂3εt

∂ρ3
1

)
,

lρ1ρ2ρ2 = − 1

σ 2

n∑
t=1

(
∂εt

∂ρ1

∂2εt

∂ρ2
2

+ 2
∂εt

∂ρ2

∂2εt

∂ρ1∂ρ2
+ εt

∂3εt

∂ρ1∂ρ2
2

)
,

lρ1ρ1ρ2 = − 1

σ 2

n∑
t=1

(
∂εt

∂ρ2

∂2εt

∂ρ2
1

+ 2
∂εt

∂ρ1

∂2εt

∂ρ1∂ρ2
+ εt

∂3εt

∂ρ2
1∂ρ2

)
,
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lρ2μμ = − 2

σ 2

n∑
t=1

dt−1
∂dt−1

∂ρ2
= 2

σ 2

n∑
t=1

t−2∑
k=1

dt−1dt−k−2ϕ1(k),

lρ2σσ = − 6

σ 4

n∑
t=1

εt
∂εt

∂ρ2
, lρ2ρ2ρ2 = − 1

σ 2

n∑
t=1

(
3
∂2εt

∂ρ2
2

∂εt

∂ρ2
+ εt

∂3εt

∂ρ3
2

)
.

We easily obtain the third derivatives in Lemma A.5 by Lemma A.3 and the chain
rule. The following three propositions are derived from the expectations of the third
derivatives and the products of the first and second derivatives of the conditional log-
likelihood function (5). The three propositions correspond to the unknown parameters
μ, σ , ρ1 and ρ2, respectively.

Proposition A.6. The expectations of the third derivatives and the products of the first
and second derivatives of the conditional log-likelihood function (5) for the Gaussian
MA(2) model are given by

νμμμ = νμσσ = νμρ1ρ1 = νμρ2ρ2 = νμρ1ρ2 = 0,

νμμ,μ = νμσ,σ = νμρ1,ρ1 = νμρ1,ρ2 = νμρ2,ρ1 = νμρ2,ρ2 = 0.

Proposition A.7. The expectations of the third derivatives and the products of the first
and second derivatives of the conditional log-likelihood function (5) for the Gaussian
MA(2) model are given by

νσμμ = 2

σ 3

n∑
t=1

d2
t−1, νσσσ = 10n

σ 3 ,

νσρ1ρ1 = 2

σ
iρ1ρ1, νσρ2ρ2 = 2

σ
iρ2ρ2, νσρ1ρ2 = 2

σ
iρ1ρ2,

νσμ,μ = − 2

σ 3

n∑
t=1

d2
t−1, νσσ,σ = −6n

σ 3 , νσρ1,ρ1 = − 2

σ
iρ1ρ1,

νσρ2,ρ2 = − 2

σ
iρ2ρ2 , νσρ1,ρ2 = − 2

σ
iρ1ρ2 , νσρ2,ρ1 = − 2

σ
iρ1ρ2 .

Proposition A.8. The expectations of the third derivatives and the products of the first
and second derivatives of the conditional log-likelihood function (5) for the Gaussian
MA(2) model are given by

νρ1μμ = 2

σ 2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k), νρ2μμ = 2

σ 2

n∑
t=1

t−2∑
k=1

dt−1dt−k−2ϕ1(k),

(A.17)

νρ1σσ = 0, νρ2σσ = 0, (A.18)

νρ1ρ1ρ1 = 3
n∑

t=1

S1,t , νρ2ρ1ρ1 =
n∑

t=1

(S0,t−1 + 2S2,t ), (A.19)

νρ1ρ2ρ2 =
n∑

t=1

(S3,t + 2S1,t−1), νρ2ρ2ρ2 = 3
n∑

t=1

S2,t−1, (A.20)
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νρ1μ,μ =− 2

σ 2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k), νρ2μ,μ =− 2

σ 2

n∑
t=1

t−2∑
k=1

dt−1dt−k−2ϕ1(k),

(A.21)

νρ1σ,σ = 0, νρ2σ,σ = 0, (A.22)

νρ1ρ1,ρ1 =
n∑

t=1

(T0,0,t − S1,t ), νρ2ρ1,ρ1 =
n∑

t=1

(T1,0,t − S2,t ), (A.23)

νρ1ρ2,ρ2 =
n∑

t=1

(T1,1,t − S1,t−1), νρ2ρ2,ρ2 =
n∑

t=1

(T0,1,t−1 − S2,t−1),

(A.24)

νρ1ρ1,ρ2 =
n∑

t=1

(T0,1,t − S0,t−1), νρ2ρ2,ρ1 =
n∑

t=1

(T0,0,t−1 − S3,t ), (A.25)

where

Sp,t =
t−p−1∑
k=1

ϕ1(k + p)ϕ2(k + 1), (A.26)

Tp,q,t = −
t−p−1∑
k=1

t−k−1−p−q∑
m=1

ϕ1(k)ϕ1(k + m + p + q)ϕ1(m)

−
t−1∑
k=1

t−k−q−1∑
m=1

ϕ1(k)ϕ1(k + m − p + q)ϕ1(m). (A.27)

B Proof of lemmas and propositions

B.1 Proof of Lemma 2.2

We show that the solution of{
εt = Yt − μ − ρ1εt−1 − ρ2εt−2 (t ≥ 1),

ε−1 = ε0 = 0

coincides with (6) by a mathematical induction. For t = −1 and 0, the values of the
both sides of (6) are 0. Then, (6) holds when t = −1, 0.

We assume that

εs−2 =
s−3∑
k=0

(
s−k−3∑

l=0

λl
1λ

s−k−l−3
2

)
(Yk+1 − μ),

εs−1 =
s−2∑
k=0

(
s−k−2∑

l=0

λl
1λ

s−k−l−2
2

)
(Yk+1 − μ)
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hold for s ≥ 1. By (A.1) and (A.2), we have

εs = (Ys − μ) − ρ1εs−1 − ρ2εs−2

= (Ys − μ) − ρ1

s−2∑
k=0

(
s−k−2∑

l=0

λl
1λ

s−k−l−2
2

)
(Yk+1 − μ)

− ρ2

s−2∑
k=0

(
s−k−3∑

l=0

λl
1λ

s−k−l−3
2

)
(Yk+1 − μ)

= (Ys − μ) +
s−2∑
k=0

{
s−k−3∑

l=0

λl
1λ

s−k−l−1
2 − ρ1λ

s−k−2
1

}
(Yk+1 − μ)

= (Ys − μ) +
s−2∑
k=0

(
s−k−1∑

l=0

λl
1λ

s−k−l−1
2

)
(Yk+1 − μ).

Therefore, (6) holds for all t ≥ −1.

B.2 Proof of Lemma A.1

First, we show (A.8). We see that εt can be written using ϕ1 as

εt =
t−1∑
k=0

ϕ1(t − k)(Yk+1 − μ). (B.1)

Thus,

∂εt

∂μ
= −

t−1∑
k=0

ϕ1(t − k).

Therefore, (A.8) follows by (A.5).
Next, we show (A.9). We have, by (A.4) and (B.1),

−2
∂εt

∂ρ1
=

t−1∑
k=0

ϕ2(t − k)(Yk+1 − μ)

=
t−1∑
k=0

ϕ2(t − k)(εk+1 + ρ1εk + ρ2εk−1)

=
t−2∑
k=1

(ϕ2(t − k + 1) + ρ1ϕ2(t − k) + ρ2ϕ2(t − k − 1))εk

+ (ρ1ϕ2(1) + ϕ2(2))εt−1 + ϕ2(1)εt (B.2)

since ε−1 = ε0 = 0. We note that ϕ2(2) = −2( ∂λ1
∂ρ1

+ ∂λ2
∂ρ1

) = 2 and ϕ2(1) = 0. Thus,
the function does not contain εt in the linear combination. We know by (A.2) that

ϕ1(k + 1) + ρ1ϕ1(k) + ρ2ϕ1(k − 1) = 0. (B.3)
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Therefore,
ϕ2(k + 1) + ρ1ϕ2(k) + ρ2ϕ2(k − 1) = 2ϕ1(k),

and then the coefficient of εk (1 ≤ k ≤ t − 1) in (B.2) is 2ϕ1(t − k).
Finally, we prove (A.10). By (B.3), we have

∂ϕ1(k + 1)

∂ρ2
+ ρ1

∂ϕ1(k)

∂ρ2
+ ρ2

∂ϕ1(k − 1)

∂ρ2
= −ϕ1(k − 1),

and then

∂εt

∂ρ2
=

t−2∑
k=1

(
∂ϕ1(t − k + 1)

∂ρ2
+ ρ1

∂ϕ1(t − k)

∂ρ2
+ ρ2

∂ϕ1(t − k − 1)

∂ρ2

)
εk

+
(

ρ1
∂ϕ1(1)

∂ρ2
+ ∂ϕ1(2)

∂ρ2

)
εt−1 + ∂ϕ1(1)

∂ρ2
εt = −

t−2∑
k=1

ϕ1(t − k − 1)εk

by the same way as in (B.2).

B.3 Proof of Lemma A.2

First, we show (A.11). Eqs. (A.8) and (A.9) yield

∂dt−1

∂ρ1
= − ∂2εt

∂ρ1∂μ
=

t−1∑
k=1

ϕ1(k)
∂εt−k

∂μ
= −

t−1∑
k=1

ϕ1(k)dt−k−1.

By applying the same way to (A.10), we have

∂dt−1

∂ρ2
= − ∂2εt

∂ρ2∂μ
= − ∂

∂μ

∂εt−1

∂ρ1
= ∂dt−2

∂ρ1
.

Then, we obtain (A.12).
Next, we show (A.13). First, we express ϕ2 in a different form. By (A.1), we have

∂�

∂ρ1
= ρ1√

ρ2
1 − 4ρ2

= ρ1

�
,

∂λ1

∂ρ1
= −� + ρ1

2�
= −λ1

�
,

∂λ2

∂ρ1
= −� + ρ1

2�
= λ2

�
.

We note that we do not have any algebraic relationship among unknown parameters
(μ, σ, ρ1, ρ2) such as � = ρ2

1 − 4ρ2 = 0, μ = 0, etc., which makes a different
problem. Using these derivatives, we have

ϕ1(k) = λk
1 − λk

2

�
, (B.4)

ϕ2(k) = 2

�2

{
ρ1ϕ1(k) + k(λk

1 + λk
2)

}
. (B.5)

This implies

2
k∑

l=1

ϕ1(l)ϕ1(k + 1 − l) = ϕ2(k + 1)
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and then, we get with (A.4)

∂

∂ρ1

∂εt

∂ρ1
= −

t−1∑
k=1

{
∂ϕ1(k)

∂ρ1
εt−k − ϕ1(k)

t−k−1∑
l=1

ϕ1(l)εt−k−l

}

=
t−2∑
s=1

{
−∂ϕ1(s + 1)

∂ρ1
+

s∑
k=1

ϕ1(k)ϕ1(s + 1 − k)

}
εt−s−1

=
t−2∑
s=1

ϕ2(s + 1)εt−s−1.

This gives (A.13), and we also obtain (A.14) and (A.15) by (A.10).

B.4 Proof of Proposition A.4
We show only (A.16) because the remaining equations are trivial by Lemma A.3. The
reason why they trivial is that ∂dt−1

∂ρ1
in lμρ1 is not a function of εs (1 ≤ s ≤ t). As

for lσρ1 , it contains ∂εt

∂ρ1
, but ∂εt

∂ρ1
is a linear combination of ε1, . . . , εt−1 by (A.9). The

expectation of εt εs (1 ≤ s ≤ t − 1) vanishes. So, we only consider (A.16) carefully.

E[lρ1ρ2] = − 1

σ 2 E

[
n∑

t=1

∂εt

∂ρ1

∂εt

∂ρ2

]

= − 1

σ 2 E

[
n∑

t=1

t−1∑
k=1

t−2∑
m=1

ϕ1(k)εt−kϕ1(m)εt−m−1

]

= − 1

σ 2 E

[
n∑

t=1

t−1∑
k=2

ϕ1(k)ϕ1(k − 1)ε2
t−k

]
= −

n∑
t=1

t−1∑
k=2

ϕ1(k)ϕ1(k − 1).

B.5 Proof of Proposition A.6
The log-likelihood functions appearing in the first line in Proposition A.6 are linear
functions of εk . Thus, the expectations vanish because the expectation for εk is 0.
For the expectations in the second line, we see that the first or the cubic power of
εk appears in the product of the first and the second derivatives of the log-likelihood
functions as in

νμμ,μ = E[lμμlμ] = − 1

σ 4 E

[
n∑

t=1

n∑
s=1

d2
t−1εsds−1

]
= 0,

νμσ,σ = − 2

σ 6
E

[
n∑

t=1

n∑
s=1

dt−1εt ε
2
s

]
= 0.

We also see that the functions in the expectations of the following values are ex-
pressed as the product of three linear combinations of εk . At least, the first power or
the cubic power of εk is included in the expression. Therefore, we have

νμρ1,ρ1 = − 1

σ 4 E

[
n∑

t=1

n∑
s=1

εt

∂dt−1

∂ρ1
εs

∂εs

∂ρ1
+

n∑
t=1

n∑
s=1

dt−1
∂εt

∂ρ1
εs

∂εs

∂ρ1

]
= 0,

νμρ1,ρ2 = νμρ2,ρ1 = νμρ2,ρ2 = 0.
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B.6 Proof of Proposition A.7
Unlike Proposition A.6, the product of the first and the second derivative of the log-
likelihood function is expressed as the sum of the second or the fourth power of εk .
The expectations are obtained by presenting courteously the power of εk as

νσμ,μ = − 2

σ 5
E

[
n∑

t=1

n∑
s=1

dt−1εtds−1εs

]
= − 2

σ 5
E

[
n∑

t=1

d2
t−1ε

2
t

]
= − 2

σ 3

n∑
t=1

d2
t−1,

νσσ,σ = − n2

σ 3 + n · nσ 2

σ 5
+ 3n · nσ 2

σ 5
− 3

σ 7 E

[
n∑

t=1

n∑
s=1

ε2
t ε

2
s

]

= 3n2

σ 3 − 3

σ 3 n(n + 2) = −6n

σ 3 .

Similarly, the following expectations are given by the second and the forth moments.
The resulting values are expressed using iρ1ρ1 , iρ1ρ2 , and iρ2ρ2 which are components
in the Fisher information matrix.

νσρ1,ρ1 = − 2

σ 5
E

[
n∑

t=1

n∑
s=1

εt

∂εt

∂ρ1
εs

∂εs

∂ρ1

]
= − 2

σ 5
E

[
n∑

t=1

ε2
t

(
∂εt

∂ρ1

)2
]

= − 2

σ 5
E

[
n∑

t=1

t−1∑
k=1

t−1∑
m=1

ε2
t ϕ1(t − k)εkϕ1(t − m)εm

]

= − 2

σ 5

n∑
t=1

t−1∑
k=1

(ϕ1(t − k))2σ 4

= − 2

σ

n∑
t=1

t−1∑
k=1

(ϕ1(k))2 = − 2

σ
iρ1ρ1 ,

νσρ2,ρ2 = − 2

σ

n∑
t=1

t−2∑
k=1

(ϕ1(k))2 = − 2

σ
iρ2ρ2 ,

νσρ1,ρ2 = − 2

σ 5
E

[
n∑

t=1

n∑
s=1

εt

∂εt

∂ρ1
εs

∂εs

∂ρ2

]
= − 2

σ 5
E

[
n∑

t=1

ε2
t

∂εt

∂ρ1

∂εt

∂ρ2

]

= − 2

σ 5
E

[
n∑

t=1

t−1∑
k=1

t−2∑
m=1

ε2
t ϕ1(t − k)εkϕ1(t − m − 1)εm

]

= − 2

σ 5
E

[
n∑

t=1

t−2∑
k=1

ε2
t ϕ1(t − k)ϕ1(t − k − 1)ε2

k

]

= − 2

σ

n∑
t=1

t−1∑
k=2

ϕ1(k)ϕ1(k − 1) = − 2

σ
iρ1ρ2 ,

νσρ2,ρ1 = − 2

σ 5
E

[
n∑

t=1

n∑
s=1

εt

∂εt

∂ρ2
εs

∂εs

∂ρ1

]
= − 2

σ
iρ1ρ2 .
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B.7 Proof of Proposition A.8

Eqs. (A.17) and (A.18) are trivial by the expressions of lρ1μμ, lρ2μμ, lρ1σσ , and lρ2σσ .
First, we show (A.21). The expectation of lρ1μ,μ is expressed as

νρ1μ,μ = 1

σ 4 E

[
n∑

t=1

n∑
s=1

εt

∂dt−1

∂ρ1
ds−1εs

]
+ 1

σ 4 E

[
n∑

t=1

n∑
s=1

dt−1
∂εt

∂ρ1
ds−1εs

]
. (B.6)

The first term of the right-hand side in (B.6) is given by

1

σ 4 E

[
n∑

t=1

n∑
s=1

εt

∂dt−1

∂ρ1
ds−1εs

]
= 1

σ 2

n∑
t=1

dt−1
∂dt−1

∂ρ1

= − 1

σ 2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k).

Similarly, the second term in (B.6) is given by

1

σ 4 E

[
n∑

t=1

n∑
s=1

dt−1
∂εt

∂ρ1
ds−1εs

]

= − 1

σ 4 E

[
n∑

t=1

n∑
s=1

t−1∑
k=1

dt−1ϕ1(t − k)εkds−1εs

]

= − 1

σ 4 E

[
n∑

t=1

t−1∑
k=1

dt−1dk−1ϕ1(t − k)ε2
k

]
= − 1

σ 2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k).

Hence, we obtain

νρ1μ,μ = − 2

σ 2

n∑
t=1

t−1∑
k=1

dt−1dt−k−1ϕ1(k).

By the same process, we have

νρ2μ,μ = − 2

σ 2

n∑
t=1

t−2∑
k=1

dt−1dt−k−2ϕ1(k).

Eq. (A.22) is trivial. Next, we show (B.7), (B.9), and (B.10) to prove (A.19), (A.20),
(A.23), (A.24), and (A.25). We have

E

[
∂2εt−p+1

∂ρ2
1

∂εt

∂ρ1

]
= −E

⎡⎣t−p−1∑
k=1

t−1∑
m=1

ϕ2(t − p − k + 1)εkϕ1(t − m)εm

⎤⎦
= −σ 2

t−p−1∑
k=1

ϕ1(t − k)ϕ2(t − p − k + 1)
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= −σ 2
t−p−1∑
k=1

ϕ1(k + p)ϕ2(k + 1) = −σ 2Sp,t . (B.7)

Moreover, we have

E

[
n∑

s=1

∂εt−p

∂ρ1

∂εt

∂ρ1
εs

∂εs−q

∂ρ1

]

= − E

⎡⎣ n∑
s=1

t−p−1∑
k=1

t−1∑
m=1

s−q−1∑
l=1

ϕ1(t − p − k)εkϕ1(t − m)εmεsϕ1(s − q − l)εl

⎤⎦
(B.8)

by (A.9) for p, q ≥ 0. We consider the right-hand side of (B.8). First, we fix k and m.
For l (1 ≤ l ≤ s − q − 1), s must not be l. The summation appears only when s = k

and l = m, or l = k and s = m. When s = k and l = m, we have

E

⎡⎣t−p−1∑
k=1

k−q−1∑
m=1

ϕ1(t − p − k)ϕ1(t − m)ϕ1(k − q − m)ε2
kε

2
m

⎤⎦
= σ 4

t−p−1∑
k=1

k−q−1∑
m=1

ϕ1(t − p − k)ϕ1(t − k + q + m)ϕ1(m)

= σ 4
t−p−1∑
k=1

t−k−1−p−q∑
m=1

ϕ1(k)ϕ1(k + m + p + q)ϕ1(m).

On the other hand, when l = k and s = m, we have

E

⎡⎣ t−1∑
m=1

m−q−1∑
k=1

ϕ1(t − p − k)ϕ1(t − m)ϕ1(m − q − k)ε2
mε2

k

⎤⎦
= σ 4

t−1∑
m=1

m−q−1∑
k=1

ϕ1(t − m)ϕ1(t − m + k − p + q)ϕ1(k)

= σ 4
t−1∑
k=1

t−k−q−1∑
m=1

ϕ1(k)ϕ1(k + m − p + q)ϕ1(m).

Therefore,

E

[
n∑

t=1

n∑
s=1

∂εt−p

∂ρ1

∂εt

∂ρ1
εs

∂εs−q

∂ρ1

]
= σ 4

n∑
t=1

Tp,q,t . (B.9)

Moreover, we consider the following expectation:

E

[
n∑

t=1

n∑
s=1

εt

∂2εt−p

∂ρ1
εs

∂εs−q

∂ρ1

]
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= −E

⎡⎣ n∑
t=1

n∑
s=1

t−p−2∑
k=1

s−q−1∑
m=1

εtϕ2(t − p − k)εkεsϕ1(s − q − m)εm

⎤⎦ .

Similarly, we fix t and k. Then, the summation appears only when s = t and m = k.

E

⎡⎣ n∑
t=1

t−p−2∑
k=1

ϕ2(t − p − k)ϕ1(t − q − k)ε2
t ε

2
k

⎤⎦
= σ 4

n∑
t=1

t−p−2∑
k=1

ϕ1(k + p − q + 1)ϕ2(k + 1).

Therefore,

E

[
n∑

t=1

n∑
s=1

εt

∂2εt−p

∂ρ1
εs

∂εs−q

∂ρ1

]
= −σ 4

n∑
t=1

Sp−q+1,t−q . (B.10)

We complete the proof of the lemma by (B.7), (B.9), and (B.10).
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