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University of Neuchâtel

Abstract: In model-based inference, the selection of balanced samples has been

considered to give protection against misspecification of the model. A recent de-

velopment in finite population sampling is that balanced samples can be randomly

selected. There are several possible strategies that use balanced samples. We give

a definition of balanced sample that embodies overbalanced, mean-balanced, and

π-balanced samples, and we derive strategies in order to equalize a d-weighted es-

timator with the best linear unbiased estimator. We show the value of selecting

a balanced sample with inclusion probabilities proportional to the standard devia-

tions of the errors with the Horvitz-Thompson estimator. This is a strategy that is

design-robust and efficient. We show its superiority compared to other strategies

that use balanced samples in the model-based framework. In particular, we show

that this strategy is preferable to the use of overbalanced samples in the polyno-

mial model. The problem of bias-robustness is also discussed, and we show how

overspecifying the model can protect against misspecification.

Key words and phrases: Balanced sampling, finite population sampling, polynomial

model, ratio model, robust estimation.

1. Introduction

The principal difference between the model-based and the classical design-

based approach for estimating finite population totals lies in the source of ran-

domness they use (Särndal (1978)). In design-based sampling, the inference is

based on the stochastic structure induced by the sampling design. In the model-

based, or prediction approach, the inference depends on the validity of the model

used to describe the data. In this case, the randomness is due to the population

model and not to the sampling design.

The model-based approach was developed, among others, by Royall (1976,

1992), Royall and Cumberland (1981), and Chambers (1996). When the data

are assumed to follow a linear model, Royall (1976) proposed the use of the best

linear unbiased predictor. The model-based approach has been criticized due to

the fact that it may lead to severe bias if the model assumptions are violated.

In contrast to model-based inference, design-based inference is design-robust by
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definition. Brewer and Särndal (1983) point out that, since the inference is not

based on a model, there is no need to worry about model misspecification.

Much of the work in model-based research has been devoted to the con-

struction of robust strategies. More specifically, in order to protect the inference

against a misspecified model, Royall and Herson (1973a,b) and Scott, Brewer,

and Ho (1978) point out the importance of balanced samples, where balance is

achieved by equalizing the sample moments of the independent variables with

those in the population. They came to the conclusion that the sample must be

balanced, but not necessarily random.

Another way to accomplish design-robustness in the model-based approach is

to choose an appropriate sampling design. Since Deville and Tillé (2004)’s paper,

it is now possible to randomly select balanced samples using a procedure called

the cube method. Nedyalkova and Tillé (2008) have shown that under a random

balanced sampling design, with inclusion probabilities proportional to the stan-

dard deviations of the errors of the model, and under certain conditions defined

as ‘fully explainable heteroscedasticity’, the best linear unbiased estimator is the

Horvitz-Thompson estimator. This is an optimal strategy that reconciles the two

approaches.

Scott, Brewer, and Ho (1978) and Royall and Herson (1973a) recommend

the use of balanced samples in order to protect against a misspecification of the

model, while Nedyalkova and Tillé (2008) recommend using balanced sampling

for minimizing the anticipated variance under a linear model. An important

particular case is the polynomial model. Scott, Brewer, and Ho (1978) suggest

using overbalanced samples with an ad-hoc weighting system.

We investigate the different strategies leading to design-robust estimations

under the model-based framework, and consider the polynomial model, overbal-

ancing and robustness under misspecification in light of Nedyalkova and Tillé

(2008). The notation and definitions are given in Section 2. The model-based

framework is briefly introduced in Section 3. In Section 4, we consider a large

class of balanced designs, called d-balanced designs, that embody balanced, π-

balanced, mean-balanced, and overbalanced samples. We also consider a class of

weighted estimators, called d-weighted estimators, and discuss several strategies

for which the Best Linear Unbiased (BLU) estimator is the d-estimator. These

results generalize some results of Nedyalkova and Tillé (2008) for the Horvitz-

Thompson estimator. In Section 5, we give a definition of design-robustness

and show that an appropriate strategy to protect against misspecification of the

model consists of overspecifying the model and then balancing on the indepen-

dent variables of the model. In Section 6, we revisit the polynomial model to

show that the overbalancing strategy of Scott, Brewer, and Ho (1978) is subopti-

mal, and to give an alternative strategy that minimizes the anticipated variance.
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In Section 7, we draw some general conclusions on selecting a sample when one
reasonably believes in a linear model but seeks protection against misspecifica-
tion.

2. Notation and Definitions

Consider a population U of size N . Each unit of the population is identified
by a label k = 1, . . . , N . Suppose that a register is available, and that the values
of p auxiliary variables are known for each unit of the population. Let yk be
the value taken by the variable of interest y on the kth unit of the population.
The values yk are unknown. We are interested in estimating the population total
Y =

∑
k∈U yk. The total Y is estimated by a sample s of size n, where s is a

subset of U . A sample is only a subset of the population and is not necessarily
randomly selected.

A sampling design is a tool to randomly select a sample. It is defined by
assigning to each sample s a probability p(s) of being selected. Let S denote
the random sample such that Pr(S = s) = p(s). The inclusion probability πk is
then the probability that unit k is selected in the sample. We denote by Ep(·)
and varp(·), respectively, the expectation and variance under the sampling design
p(·), and by S̄ the set of units of the population which are not in S.

Definition 1. An estimator Ŷ is design-unbiased if Ep(Ŷ ) = Y.

Definition 2. A sample s is d-balanced on a set of variables x′
k = (xk1 · · ·xkp)

if and only if ∑
k∈s

dkxk =
∑
k∈U

xk,

where d1, . . . , dk, . . . , dN is a set of weights that do not depend on the sample s.

The weights d1, . . . , dk, . . . , dN are positive values. An important example is
given by the dk = 1/πk used in the Horvitz-Thompson estimator.

When the sample is randomly selected, an inclusion probability can be as-
signed to each statistical unit. If πk > 0, for all k ∈ U, the Horvitz-Thompson
estimator of Y ,

Ŷπ =
∑
k∈S

yk
πk

,

is design-unbiased, i.e. Ep(Ŷπ) = Y .
For a balanced sample, the inclusion probabilities are πk = 1/dk, and the

procedure that randomly selects a balanced sample is called a balanced sampling
design. According to Deville and Tillé (2004), a sampling design p(·) is balanced
on the auxiliary variables x1, . . . , xp if and only if∑

k∈S

xk

πk
=
∑
k∈U

xk. (2.1)
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Authors such as Cumberland and Royall (1981) and Kott (1986) would call this

a ‘π-balanced sampling’, as opposed to a mean-balanced sampling defined by the

equation
1

n

∑
k∈S

xk =
1

N

∑
k∈U

xk.

We use the expression ‘balanced sampling’ to denote a sampling design that

satisfies (2.1) for one or more auxiliary variables, a mean-balanced sampling

being a particular case of this balanced sampling when the sample is selected with

inclusion probabilities n/N. If the population size is small, a balanced sampling

design can be implemented by a linear program. For larger population sizes,

the cube method may be used (see Deville and Tillé (2004) or Tillé (2006)).

Whatever the algorithm used for selecting a balanced sample, an exact balanced

sample cannot generally be found because it does not exist. It is however, always

possible to select a sample that is almost balanced. We assume that the balancing

error can be neglected. The selection of a balanced sample requires the use of

a register that contains the values of the auxiliary variables for each unit of the

population.

3. Model-based Strategy and BLU Estimator

We assume that the population follows a linear model M ,

yk = x′
kβ + εk, (3.1)

where β is the vector of regression coefficients and ε is a vector of random vari-

ables εk such that

EM(εk) = 0, varM(εk) = σ2ν2k , covM(εk, εℓ) = 0 if k ̸= ℓ,

Suppose νk, k ∈ U , are known. For simplicity, we scale them so that
∑

k∈U νk =

N .

Model (3.1) includes the possibility of heteroscedasticity. The heteroscedas-

ticity of νk or ν2k may or may not be proportional to some auxiliary variables

included in xk. Nedyalkova and Tillé (2008) have shown the importance of using

auxiliary variables whose linear combination is equal to νk or ν2k . Indeed, in this

case, the optimal strategies for the model-based and design-based frameworks

are the same.

An important and common hypothesis is that the random sample S and the

errors εk of the model are independent. The symbols EM(·), varM(·), covM(·)
denote, respectively, the expected value, the variance, and the covariance under

M .

Definition 3. An estimator Ŷ is model-unbiased if EM(Ŷ − Y ) = 0.
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Definition 4. The model mean squared error of an estimator Ŷ is MSEM (Ŷ ) =

EM

(
Ŷ − Y

)2
.

When Ŷ is model-unbiased, the model mean squared error is also called the error

variance, for instance in Royall and Cumberland (1981).

Definition 5 (Isaki and Fuller (1982)). The anticipated mean squared error of

an estimator Ŷ is MSEpM (Ŷ ) = EpEM(Ŷ − Y )2.

When Ŷ is design-unbiased, the anticipated mean squared error is also called

the anticipated variance.

Royall (1976) showed that, in the framework of model-based inference, the

Best Linear Unbiased (BLU) estimator is

ŶBLU =
∑
k∈S

yk +
∑
k∈S̄

x′
kβ̂BLU =

∑
k∈U

x′
kβ̂BLU +

∑
k∈S

(yk − x′
kβ̂BLU)

=
∑
k∈U

x′
kβ̂BLU +

∑
k∈S

ek, (3.2)

ek = yk − x′
kβ̂BLU, (3.3)

where

β̂BLU = A−1
∑
k∈S

xkyk
ν2k

,

A =
∑
k∈S

xkx
′
k

ν2k
.

The error variance of the best linear unbiased estimator is

EM(ŶBLU − Y )2 = σ2

∑
k∈S̄

x′
kA

−1
∑
ℓ∈S̄

xℓ +
∑
k∈S̄

ν2k

 .

We refer to the usual definition given, for instance, in Hájek (1959, 1981), Ra-

makrishnan (1975), and Joshi (1979).

Definition 6. A strategy is a pair (p(·), Ŷ ) consisting of a sampling design and

an estimator.

Strategy 1. Use the best linear unbiased estimator and choose a sample of size

n that minimizes EM (ŶBLU − Y )2.

This is an optimal, purely unbiased strategy that is not design-robust be-

cause, in some cases, it can lead to the choice of a very extreme sample, as in the
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following example. Suppose the model has no intercept and only one regressor

(see for instance, Royall and Herson (1973a)):

yk = xkβ + εk, (3.4)

with varM(εk) = σ2ν2k and ν2k ∝ xk. Then the BLU estimator is

ŶBLU =

∑
k∈U xk∑
k∈S xk

∑
k∈S

yk,

which, in this case, is the ordinary ratio estimator ŶR. As ν2k ∝ xk and
∑

k∈U νk =

N , we have that

ν2k =
N2xk(∑
k∈U

√
xk
)2 .

The error variance of ŶR is given by the expression

EM(ŶR − Y )2 = σ2 N2(∑
k∈U

√
xk
)2
(∑

k∈S̄ xk∑
k∈S xk

∑
k∈U

xk

)
.

Thus, in this case, the optimal purely model-based strategy consists of choos-

ing the units with the n largest values of variable x (Royall (1970)), a very extreme

sample. The strategy can be dangerous if the model is wrong. It is thus rea-

sonable to opt for a strategy that guarantees correct estimation when the model

is misspecified, and that leads to design-unbiased inference. For these reasons,

Strategy 1 is rarely used (see Hansen, Madow, and Tepping (1983)).

4. Balanced Sample under a Linear Model

In this section we generalize the concept of balanced samples. Our results

are thus more general than those in Nedyalkova and Tillé (2008). Consider the

d-weighted estimator

Ŷd =
∑
k∈S

dkyk =
∑
k∈S

dkx
′
kβ̂BLU +

∑
k∈S

dkek, (4.1)

where ek is defined in (3.3). Under d-balanced sampling, Ŷd is model-unbiased

and its error variance is

EM(Ŷd − Y )2 = σ2

∑
k∈S

(dk − 1)2ν2k +
∑
k∈S̄

ν2k

 . (4.2)

By comparing (4.1) with (3.2), we generalize Result 7 of Nedyalkova and Tillé

(2008).
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Result 1. A sufficient condition that ŶBLU = Ŷd is that

• the sampling design is d-balanced on xk,

•
∑
k∈S

ek(dk − 1) = 0.

A particular case of Result 1 is given below.

Corollary 1. A sufficient condition that ŶBLU = Ŷd is that

• the sampling design is d-balanced on xk,

• there exists a vector λ such that λ′xk = ν2k(dk − 1), for all k ∈ U .

Proof. If
λ′xk

ν2k(dk − 1)
= 1,

then ∑
k∈S

ek(dk − 1) =
∑
k∈S

λ′xk

ν2k(dk − 1)
ek(dk − 1) =

∑
k∈S

λ′xk

ν2k
ek = 0.

Consider a strategy that meets the conditions of Result 1.

Strategy 2.

• Use a d-balanced sampling design on xk, with dk chosen so that dk = (ν2k +

λ′xk)/ν
2
k , for all k ∈ U ,

• use the d-weighted estimator.

A particular case of Strategy 2 was recommended by Scott, Brewer, and

Ho (1978) in the case of a polynomial model. Since the conditions of Result 1

are met, we have that ŶBLU = Ŷd. The strategy judiciously chooses the dk’s to

equalize the d-weighted estimator and the BLU estimator.

For a sample size n, this strategy can be implemented by using the inclusion

probabilities

πk =
ν2k

ν2k + λ′xk
.

The value of λ can be chosen freely subject to∑
k∈U

πk =
∑
k∈U

ν2k
ν2k + λ′xk

= n.

After some algebra, it is possible to show that

EM(Ŷd − Y )2 = σ2
∑
k∈S̄

dkν
2
k = σ2

(∑
k∈S̄

ν2k +
∑
k∈S̄

λ′xk

)
.
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Moreover,

EpEM(Ŷd − Y )2 = σ2
∑
k∈U

λ′xk.

Nevertheless, we see below that this is not necessarily the best strategy.

Eventually, consider a strategy proposed by Nedyalkova and Tillé (2008) that

also meets the conditions of Result 1.

Strategy 3.

• Use a d-balanced sampling design on xk, with dk ∝ ν−1
k where xk is com-

plemented so that there exist two vectors α and γ such that α′xk = ν2k and

γ ′xk = νk, for all k ∈ U , a ‘fully explainable heteroscedasticity’,

• use the d-weighted estimator.

Strategy 3 was recommended by Nedyalkova and Tillé (2008) because it

minimizes the anticipated variance among the strategies that are design-unbiased

(see also Fuller (2009, p.187)). It is thus better than Strategy in the class of

design-unbiased strategies.

With Strategy 3, we have ŶBLU = Ŷd. The condition of ‘fully explainable

heteroscedasticity’ can be obtained by adding ν2k and dkν
2
k to the list of balancing

variables. Thus, ∑
k∈S

dkν
2
k =

∑
k∈U

ν2k ,
∑
k∈S

d2kν
2
k =

∑
k∈U

dkν
2
k ,

and the error variance of the d-weighted estimator given in (4.2) simplifies to

EM(Ŷd − Y )2 = σ2
∑
k∈U

(dk − 1)ν2k .

For a sample size n, we must take dk = N/(νkn), and πk = 1/dk. The error

variance of the d-weighted estimator, given in (4.2), simplifies to

EM(Ŷd − Y )2 = σ2
∑
k∈U

(
Nνk
n

− ν2k

)
= σ2

(
N2

n
−
∑
k∈U

ν2k

)
.

5. Bias-robustness in Submodels

A large part of the model-based inference is dedicated to the bias-robustness

of the BLU estimator in the case of misspecification of the model. In this section,

we propose a formalization of the question of bias-robustness and an analysis of

the consequences of model misspecification. We assume that a model M is used

to conceive the strategy, but that the true underlying model is M∗.
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Definition 7. A strategy is bias-robust for a model M∗ if EM∗(Ŷ − Y ) = 0.

Consider a model

M : yk = x′
kβ + εk

and an alternative model

M∗ : yk = z′kγ + ηk,

where EM∗(ηk) = 0. There is no assumption on the covariance matrix of the

vector of ηk.

Definition 8. Model M∗ is a submodel of M if there exists a matrix A such

that Axk = zk, not necessarily of full rank.

The basic fact needed to show that a strategy is robust is the following.

Result 2. The strategy that consists of using a d-balanced sampling design on

xk (with any vector of dk) and the d-weighted estimator is bias-robust for any

submodel of M .

Proof. Under model M∗, and using a d-balanced sample,

Ŷd =
∑
k∈S

dkyk =
∑
k∈S

dk(z
′
kγ+ ηk) =

∑
k∈S

dk(A
′x′

kγ+ ηk) = A′
∑
k∈U

x′
kγ+

∑
k∈S

dkηk.

Thus,

EM∗(Ŷd − Y ) = EM∗

(∑
k∈S

dkηk −
∑
k∈U

ηk

)
= 0.

Result 2 encourages the statistician to overspecify the model, i.e., to intro-

duce additional variables into model M in order to ensure that M∗ is really a

submodel of M . Indeed, if model M* is true, the variance under the model of the

d-weighted estimator is the same irrespective of whether the sample is balanced

on xk or on zk. An over-specification of the model does not increase the variance

under the model of the estimator because the independent variables of the model

are only used for balancing the sample. Moreover, the d-weighted estimator does

not depend on an estimated coefficient that relies on the number of auxiliary

variables.

Suppose now that the model is misspecified, i.e., that model M∗ is not a

submodel ofM . If the sampling design is d-balanced on the independent variables

of model M , then

EM∗(Ŷd − Y ) =

(∑
k∈S

dkz
′
k −

∑
k∈U

z′k

)
γ.
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Let fk = z′kγ − x′
kϕ be the residuals of a linear regression of (z′kγ) on xk and ϕ

the regression coefficient vector. Then, if the sampling design is d-balanced on

xk,

EM∗(Ŷd −Y ) =

[∑
k∈S

dk(x
′
kϕ+ fk)−

∑
k∈U

(x′
kϕ+ fk)

]
=
∑
k∈S

dkfk −
∑
k∈U

fk, (5.1)

for any value ϕ, in particular when

ϕ =

(∑
k∈U

xkx
′
k

var(ηk)

)−1∑
k∈U

xkz
′
kγ

var(ηk)
.

The model variance thus only depends on the residuals of the regression, i.e., on

the part of the model that remains misspecified.

If we do not possess information about the zk, we select a random sample

with inclusion probabilities πk = 1/dk, because in selecting the sample randomly,

the expected value under the sampling design of (5.1) is zero. Moreover, we can

expect that, under reasonable asymptotic assumptions, the quantity

EM∗(Ŷd − Y )

N
=

1

N

(∑
k∈S

fk
πk

−
∑
k∈U

fk

)
,

remains bounded in probability with respect to the sampling design when multi-

plied by
√
n. The random selection of a sample and the use of a design-unbiased

estimator give an ultimate bias protection in the case where it is not possible

to overspecify the model. This guarantees a negligible bias under M∗ when n is

large.

6. Application to the Polynomial Model

6.1. Presentation of the model

The polynomial model was studied, among others, by Royall and Herson

(1973a), Scott, Brewer, and Ho (1978), and Valliant, Dorfman, and Royall (2000).

The model is

yk =
J∑

j=0

δjβjx
j
k + εk, (6.1)

where xk is the only independent variable, βj is the jth regression coefficient, δj
is equal to 1 or 0 as the term βjx

k
k appears or not in the regression, EM(εk) = 0,

varM(εk) = σ2ν2k , and covM(εk, εℓ) = 0, when k ̸= ℓ. We assume
∑

k∈U νk = N .
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Now, from Result 2, for any set of vectors of dk, the d-weighted estimator is

bias-robust under any submodel of (6.1) provided∑
k∈S

dkx
j
k =

∑
k∈U

xjk, for j = 0, . . . , J. (6.2)

This implies several results on the polynomial model.

6.2. A first suboptimal strategy

Let S∗(J) be a particular sample for which∑
k∈S̄

xjk∑
k∈S̄

xk
=

∑
k∈S

xj+1
k /ν2k∑

k∈S
x2k/ν

2
k

, for j = 0, . . . , J. (6.3)

With a sample satisfying (6.3), Scott, Brewer, and Ho (1978) showed that the

estimator

Ŷ0 =
∑
k∈S

yk +
∑
k∈S̄

xk

∑
k∈S ykxk/ν

2
k∑

k∈S x2k/ν
2
k

,

is BLU for any polynomial Model (6.1), and any value of νk. This simple condi-

tion on the sample implies that the estimator is bias-robust for a large class of

polynomial models.

It can easily be shown that a sufficient condition for a sample to satisfy (6.3)

is ∑
k∈S

xjk

(
1 +

λxk
ν2k

)
=
∑
k∈U

xjk, for j = 0, . . . , J, (6.4)

where λ is a scalar that does not depend on j.

Equality (6.4) can be satisfied by using Strategy 2. In this particular case,

we have πk = 1/dk and dk = 1 + λxk/ν
2
k .

Strategy 2. (for polynomial model) Select a balanced sample such that

∑
k∈S

xjk
πk

=
∑
k∈U

xjk, j = 0, . . . , J,

with the unequal inclusion probabilities

πk =
1

1 + λxk/ν
2
k

, k ∈ U.
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The constant λ is chosen as a function of the desired sample size, where∑
k∈U

πk =
∑
k∈U

1

1 + λxk/ν
2
k

= n. (6.5)

The solution of (6.5) in λ is unique. Strategy 2 is recommended by Scott,

Brewer, and Ho (1978). The inclusion probabilities are, however, chosen so that

the BLU estimator is equal to the Horvitz-Thompson estimator and is thus not

optimized.

Two particular cases of (6.3) are as follows.

(a) When ν2k ∝ xk, under the condition
∑

k∈U νk = N ,

ν2k =
N2xk(∑
k∈U

√
xk
)2 .

In this case, (6.3) reduces to∑
k∈S̄ xjk∑
k∈S̄ xk

=

∑
k∈S xjk∑
k∈S xk

, for j = 0, . . . , J.

Thus, the sample should satisfy the condition

1

n

∑
k∈S

xjk =
1

N − n

∑
k∈S̄

xjk =
1

N

∑
k∈U

xjk, for j = 0, . . . , J.

Royall and Herson (1973a) call such samples balanced. In this case, Ŷ0 reduces

to the ordinary ratio estimator

ŶR =
∑
k∈U

xk

∑
k∈S yk∑
k∈S xk

.

(b) When ν2k ∝ x2k, it is easily shown that ν2k = N2x2k/
(∑

k∈U xk
)2
. In this case,

(6.3) reduces to

∑
k∈S

xj−1
k

n
=

∑
k∈S̄ xjk∑
k∈S̄ xk

, for j = 0, . . . , J.

The sample S∗(J) is called overbalanced (Scott, Brewer, and Ho (1978)), and

Ŷ0 reduces to

ŶOB =
∑
k∈S

yk +

(
1

n

∑
k∈S

yk
xk

)∑
k∈S̄

xk.
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6.3. An alternative strategy for the polynomial model

Strategy 3. (for polynomial model)

• Use inclusion probabilities that are proportional to νk, subject to∑
k∈U

πk = n, 0 ≤ πk ≤ 1.

• Select a balanced sample according to the balancing equations∑
k∈S

xjk
πk

=
∑
k∈U

xjk, j = 0, . . . , J, (6.6)

∑
k∈S

ν2k
πk

=
∑
k∈U

ν2k ,∑
k∈S

νk
πk

=
∑
k∈U

νk. (6.7)

• Use the Horvitz-Thompson estimator.

Note that, since πk ∝ nνk/N , (6.7) becomes N
n

∑
k∈S 1 = N and only means

that the sample size must be fixed. Nedyalkova and Tillé (2008) proved that

this strategy minimizes the anticipated variances in the class of design-unbiased

strategies. Strategy 3 is thus better than Strategy 2 in the sense that its antici-

pated variance is always smaller. With Strategy 3, the inclusion probabilities are

chosen to minimize the variance, while with Strategy 2 the inclusion probabilities

are chosen to meet the technical condition given in Result 1.

Two particular cases are as follows.

(a) When ν2k ∝ xk with
∑

k∈U νk = N , then

ν2k =
N2xk(∑
k∈U

√
xk
)2 .

As πk ∝ νk with
∑

k∈U πk = n, it follows that πk = (n/N)νk. In this case, if

the sample has a fixed sample size and is balanced on xk, it is automatically

balanced on νk and ν2k .

(b) When ν2k ∝ x2k, with
∑

k∈U νk = N , then

ν2k =
N2x2k(∑
k∈U xk

)2 .
Here too, we have πk = (n/N)νk. In this case, if the sample has a fixed

sample size and is balanced on x2k, it is automatically balanced on νk and ν2k .
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6.4. A particular case: the ratio model

Consider again the model without intercept and only one regressor with

ν2k ∝ xk, as at (3.4), a particular case of the polynomial model. We have seen

that the BLU estimator under this model is the ordinary ratio estimator

ŶR =
∑
k∈U

xk

∑
k∈S yk∑
k∈S xk

,

with error variance

EM(ŶR − Y )2 = σ2 N2(∑
k∈U

√
xk
)2
(∑

k∈S̄ xk∑
k∈S xk

∑
k∈U

xk

)
.

Here Strategy 2 is endorsed by Royall and Herson (1973a).

Strategy 2. (for the ratio model) Select a mean-balanced sample of size n and

use the ratio estimator.

With a mean-balanced sample on xk, satisfying the condition

1

n

∑
k∈S

xk =
1

N − n

∑
k∈S̄

xk,

the ratio estimator reduces to the sample mean

ŶR =
∑
k∈U

xk

∑
k∈S yk∑
k∈S xk

=
1

n

∑
k∈S

yk.

Moreover,

EM(ŶR − Y )2 = σ2N
2(N − n)

n

∑
k∈U xk(∑

k∈U
√
xk
)2 = EpEM(ŶR − Y )2.

Strategy 3. (for the ratio model) Select a balanced sample on xk with inclusion

probabilities πk ∝ νk ∝ √
xk and use the Horvitz-Thompson estimator.

In order to show that Strategy 3 is better than Strategy 2, we compare the

anticipated and model-variances, EpEM(Ŷ − Y )2 and EM(Ŷ − Y )2, of the ratio

and Horvitz-Thompson estimators under (3.4).

Nedyalkova and Tillé (2008) have shown that, under Strategy 3,

EM(Ŷπ − Y )2 = EpEM(Ŷπ − Y )2 = σ2

(
N2

n
−
∑
k∈U

ν2k

)
.
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After replacing νk with N
√
xk/

∑
k∈U

√
xk, we obtain

EpEM(Ŷπ − Y )2 = σ2

[
N2

n
−

N2
∑

k∈U xk(∑
k∈U

√
xk
)2
]
.

With

D = EpEM(ŶR − Y )2 − EpEM(Ŷπ − Y )2 = EM(ŶR − Y )2 − EM(Ŷπ − Y )2,

simplification yields

D =
N2

n

[
N
∑

k∈U xk(∑
k∈U

√
xk
)2 − 1

]
≥ 0.

Thus, Strategy 3 is better than Strategy 2 under (3.4).

7. Discussion

Under a linear model, the use of a purely model-based strategy (Strategy 1)

can be dangerous. Balanced samples offer good protection against model mis-

specification. A d-balanced sampling design with the d-weighted estimator is a

bias-robust strategy that assures protection against misspecification of the model.

There however exist several ways of selecting balanced samples. The d-weighted

estimator can be equivalent to the BLU estimator if some technical conditions

are met. These conditions can be met by either choosing the ad hoc inclusion

probabilities (Strategy 2) or by adding νk and ν2k to the list of balancing variables

and choosing the optimal inclusion probability (Strategy 3).

For the polynomial model, Royall and Herson (1973a) and Scott, Brewer, and

Ho (1978) used ad hoc inclusion probabilities. They showed that, in this case,

an unweighted ratio estimator is BLU for a large class of polynomial models.

Nevertheless, this strategy consists of choosing the inclusion probabilities in such

a way that a technical property is satisfied. Strategy 3 is more appropriate,

because the technical condition is met by adding two balancing variables and the

inclusion probabilities can be chosen to minimize the anticipated variance.

Strategy 2 is thus not admissible in the sense that it is always possible to

obtain a smaller anticipated variance by selecting the units with inclusion prob-

abilities proportional to the standard deviations of the errors of the model and

using the Horvitz-Thompson estimator. Strategy 3 has the advantage of provid-

ing a bias-robust estimator, even if the model is misspecified. Indeed, in both

cases, the estimator does not depend on the auxiliary variables and is always

design-unbiased. In case of misspecification of the model or of measurement er-

rors the estimators of totals thus remain unbiased but a part of the efficiency can
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be lost. The importance of this loss depends on the way in which the correlation
between the independent variables of the model and the variables of interest is
hindered by the measurement errors.

Eventually, the best protection against a misspecification of the model con-
sists of extending the list of balancing variables. Indeed, the addition of balancing
variables that could be correlated to the variables of interest does not increase the
model variance, but protects against bias under the model. If the model cannot
really be specified, the ultimate protection against misspecification is always the
random selection of the sample.

We hope that these results give a general guideline on the way of planning
a sample survey under a realistic linear model. In practice, designing a survey is
often a more complex exercise for the following reasons:

• It is difficult to specify a model without knowing the variable(s) of interest.
The sampling design is necessarily conceived before knowing the dependent
variable. Thus the validation of the model is difficult.

• A survey is generally done for multiple purposes. Arbitration must thus be
done between the variables of interest, the areas of interest, and the parame-
ters to estimate, and thus between the models.

• Nonrepsonse implies that the set of respondents is never exactly balanced.

Our results however give a general and ideal framework on how to plan and
estimate a total under a linear model.

The result of Neyman (1934) concerning optimal stratification suffers the
same problems. Optimality depends on the variable of interest, on the param-
eters to estimate, on the areas of interest. The variances within the strata are
never really known, thus they must be estimated using another survey, or must
be derived from a hypothesis of the existence of a size effect. Indeed, optimal
stratification is a particular case of our result. The generalization of our results
to cluster sampling, two-stage, and two-phase sampling remains a challenging
topic of research.
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