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Abstract 13 We perform an extensive evaluation of the performance and characteristics of 36 14 approaches for differential gene expression analysis in single-cell RNA-seq, using 15 both experimental and synthetic data. Considerable differences are found 16 between the methods in terms of the number and characteristics of the genes 17 that are called differentially expressed. Prefiltering of lowly expressed genes is 18 shown to have important effects on the results, particularly for some of the 19 methods originally developed for analysis of bulk RNA-seq data. Generally, 20 however, methods developed for bulk RNA-seq analysis do not perform notably 21 worse than those developed specifically for scRNA-seq. We also present conquer, 22 a repository of consistently processed, analysis-ready public single-cell RNA-seq 23 datasets, aimed at simplifying method evaluation and reanalysis of published 24 results. Each dataset provides abundance estimates for both genes and 25 transcripts, as well as quality control and exploratory analysis reports. 26  27  28 Keywords: single-cell RNA-seq, comparison, differential expression 29  30   31 



Introduction 32 RNA-seq is used routinely to characterize transcriptomes, but until recently 33 sequencing libraries had to be prepared from pools of thousands or more cells, 34 and any measurement would represent an average across these cells. However, 35 recent advances enable library preparation from minute amounts of RNA and 36 thus profiling of the transcriptomes of individual cells1–5. An increasing number 37 of such single-cell RNA-seq (scRNA-seq) datasets are being generated and 38 deposited in public repositories, which typically contain both raw read files and 39 processed data tables with, e.g., estimated gene abundances. Since the aims of 40 different studies vary widely, public datasets are often processed using very 41 different pipelines. Furthermore, the abundances may be represented in 42 different units and sometimes a fraction of the cells and/or genes are filtered 43 out. This can make reuse of the preprocessed public datasets, and especially 44 comparisons across datasets, challenging. To simplify this aspect, we have 45 developed conquer, a collection of consistently processed, analysis-ready public 46 scRNA-seq datasets. Each dataset has abundance estimates for all annotated 47 genes and transcripts, as well as quality assessment and exploratory analysis 48 reports to help users determine whether a particular dataset is suitable for their 49 purposes. 50  51 One of the most commonly performed computational tasks for RNA-seq data is 52 differential gene expression (DE) analysis. While well-established tools exist for 53 such analysis in bulk RNA-seq data6–8, methods for scRNA-seq data are just 54 emerging. Due to the special characteristics of scRNA-seq data, including 55 generally low library sizes, high noise levels and a large fraction of so-called 56 “dropout” events, it is unclear whether DE methods developed for bulk RNA-seq 57 are suitable also for scRNA-seq. A few recent studies have started to investigate 58 this question, suggesting that the optimal method choice may depend on the 59 number of cells and the strength of the signal9, and illustrating that also methods 60 that were not initially developed for RNA-seq analysis can perform well10. In this 61 study we use processed datasets, from conquer and other sources, to evaluate DE 62 methods in scRNA-seq data. Our study extends the previous comparisons to a 63 larger set of methods and a broader range of experimental datasets, and 64 additionally includes evaluations based on simulated data. We also investigate 65 the effect of filtering out lowly expressed genes and extend the set of employed 66 evaluation criteria. We focus on contrasting two predefined groups of cells since 67 this setup can be accommodated by all considered methods. However, it should 68 be noted that some scRNA-seq datasets contain cells from multiple subjects, or 69 from multiple plates, introducing a hierarchical variance structure that is not 70 accounted for by such a simple model11. Moreover, single-cell measurements 71 allow additional questions that can not be addressed with bulk RNA-seq data, 72 such as  testing whether different groups of cells show different levels of 73 variability or multimodality12,13.  74  75 
Results 76 Currently, conquer contains 36 datasets: 31 generated with full-length protocols 77 and 5 with 3'-end sequencing (UMI) protocols. With consistent processing and 78 



representation of the datasets, we envision that conquer can be useful for a range 79 of applications. It can lower the barriers for evaluations and comparisons of 80 computational methods, for developers as well as end-users, and having easy 81 access to processed data is useful for teaching and tutorial construction. In 82 addition, conquer can be used for exploring the generality of biological 83 hypotheses across datasets from different species and cell types. 84  85 Seven datasets from conquer (six full-length and one UMI dataset) and two 86 additional UMI count datasets were used for the evaluation (Supplementary 87 Table 1, Supplementary Figures 1-2). We keep two predefined groups of cells 88 from each dataset, and generate multiple dataset instances with varying number 89 of cells. For eight datasets, we generate null datasets by subsampling from a 90 single group. Three datasets are used to simulate datasets with signal (10% of 91 the genes differentially expressed) as well as null datasets. For each instance, we 92 apply 36 DE approaches (Supplementary Table 2). Some methods failed to run 93 for certain datasets (Supplementary Figure 3), and these combinations are 94 excluded from the evaluations. 95  96 
Number of differentially expressed and non-tested genes 97 Using all instances of the nine “signal” scRNA-seq datasets, we compare the 98 number of differentially expressed genes called by the different methods at an 99 adjusted p-value cutoff of 0.05 (Supplementary Figures 4-7). For full-length 100 datasets, SeuratBimod14 (without the default internal filtering) detects the 101 largest number of significant genes. edgeR/QLF7,15 detects large numbers of 102 genes if the dataset is not prefiltered to remove lowly expressed genes, but 103 shows the largest decrease in the number of significant genes after filtering 104 (Supplementary Figure 8). Conversely, SeuratBimod with non-zero expression 105 threshold, metagenomeSeq16 and scDD13 consistently detect few differentially 106 expressed genes. For UMI datasets, the performance of the methods based on the 107 voom transformation8 is highly variable without gene prefiltering. 108  109 Many DE methods implement internal filtering, which means that not all 110 quantified genes are actually being tested for DE. Such filtering is typically 111 performed to exclude lowly expressed genes and increase the power to detect 112 differences in the retained genes17,18. For some methods, the model fitting 113 procedure can also fail to converge for some genes. While most evaluated 114 methods report valid results for all genes, some indeed exclude many genes if 115 run with default settings (Supplementary Figures 9-10). This is, however, not 116 specific to scRNA-seq data, and similar patterns can be seen if a subset of the 117 methods are applied to a large bulk RNA-seq dataset19 (Supplementary Figure 118 11). If the datasets are filtered before the DE analysis, the fraction of non-119 reported results decreases, indicating that they mostly correspond to lowly 120 expressed genes.  121  122 
Type I error control 123 Using the eight real null datasets, where no truly differential genes are expected, 124 we evaluate the type I error control by recording the fraction of tested genes that 125 



are assigned a nominal p-value below 0.05 (Figure 1A). For unfiltered datasets, 126 many methods struggle to correctly control the type I error, and the best 127 performance is obtained by ROTS20,21 and SeuratTobit. Several of the other 128 methods are too liberal, with SeuratBimod and edgeR/QLF standing out with a 129 large number of false positive findings. Setting a non-zero expression threshold 130 in Seurat (SeuratBimodIsExpr2) improves the error control, but at the price of 131 detecting much fewer significant genes (Supplementary Figures 4-7). Conversely, 132 metagenomeSeq, scDD, SCDE22 and DESeq26 on Census counts23 instead control 133 the false positive rate well below the imposed level. Methods based on voom 134 mostly perform well, but sometimes the number of false positives is very high 135 (Supplementary Figure 12). For UMI datasets, monocle24 performs best when 136 applied to transcript counts (monoclecount), whereas converting these values to 137 TPMs and applying a tobit model (monocle) deteriorates performance. For full-138 length datasets, however, the TPM values lead to a slightly better performance 139 than the read counts. After filtering out lowly expressed genes (Figure 1B) the 140 performance of voom-limma, ROTSvoom and edgeR/QLF stabilizes and 141 improves, along with most other methods, while SeuratBimod still assigns low p-142 values to a large fraction of the tested genes. P-value histograms further 143 illustrate that without filtering, few methods return uniformly distributed p-144 values while after the applied filtering, results are considerably improved 145 (Supplementary Figures 13-14). The results are largely similar for the three 146 simulated datasets (Supplementary Figure 15).  147  148 
Characteristics of false positive genes 149 To investigate the presence of biases in the DE calling, we use the eight 150 unfiltered real null datasets to characterize the set of genes that are (falsely) 151 called significant by the different methods. For each gene in each dataset 152 instance, we estimate the average, variance and coefficient of variation of the 153 CPM values across all cells as well as the fraction of cells in which the gene is 154 undetected. For each instance, and for each method calling at least five genes DE, 155 we calculate a signal-to-noise statistic comparing the values of each of the four 156 gene characteristics between the significant and non-significant (including non-157 tested) genes (Figure 2, Supplementary Figure 16). The results show striking 158 differences between the types of genes detected by the different methods. False 159 positives of NODES25, ROTS, SAMseq26 and SeuratBimod have few zeros, high 160 expression and mostly a relatively low coefficient of variation. Conversely, false 161 positives of edgeR/QLF, SeuratTobit, MAST27 and metagenomeSeq have 162 relatively many zeros. The same evaluation performed on the simulated datasets 163 shows largely similar results (Supplementary Figure 17).  164  165 
Between-method similarity 166 Using the nine real scRNA-seq “signal” datasets we quantify the concordance 167 between gene rankings returned by different methods (within-method 168 consistency is investigated in Supplementary Figure 18). For each dataset we 169 calculate the area under the concordance curve (AUCC) for the top-ranked 100 170 genes for each pair of methods (Online Methods). Averaging the AUCCs across all 171 datasets and clustering based on the resulting similarities (Figure 3) shows, for 172 



example, that while the four MAST modes give overall similar rankings, the 173 inclusion of the detection rate as a covariate has a larger effect on the rankings 174 than changing the type of expression values from CPMs to TPMs. Moreover, the 175 count-based bulk RNA-seq methods cluster together, as do some of the general 176 non-parametric methods (the Wilcoxon test and D3E28), which are also similar to 177 the robust count-based methods and several approaches based on log-like 178 transformations of the data. The methods using Census transcript counts as 179 input give similar rankings. The degree of similarity between any given pair of 180 methods can vary widely across the dataset instances (Supplementary Figure 181 19), but for most method pairs, it is somewhat positively associated with the 182 number of cells per group (Supplementary Figure 20). 183  184 
FDR control and power 185 Using the simulated datasets, we evaluate the false discovery rate control and 186 statistical power of the methods. Several methods, such as voom/limma, 187 ROTStpm, MAST, the methods applied to Census counts, SeuratTobit, 188 SeuratBimod with non-zero expression cutoff and SAMseq, robustly control the 189 FDR close to the imposed level (Figure 4A). SCDE, scDD, the t-test, D3E, limma-190 trend8,29, the Wilcoxon test, and the other variants of ROTS control the FDR at a 191 lower level than imposed. The worst FDR control for the unfiltered data is 192 obtained by monocle, SeuratBimod and edgeR/QLF. After filtering, edgeR/QLF 193 improves dramatically (Figure 4B), whereas MAST and SCDE yield even lower 194 false discovery proportions (FDPs). Most methods perform closer to the optimal 195 level for large sample sizes (Supplementary Figure 21). Adjusting the nominal p-196 values for multiple testing using independent hypothesis weighting18 with the 197 average expression as covariate rather than using the values returned by the 198 respective methods has only minor impact (Supplementary Figure 22). 199  200 Practically all methods show increased power with increased sample size 201 (Figure 4C-D, Supplementary Figure 23). Among the methods with good, robust 202 FDR control after filtering, edgeR/QLF, SAMseq, DEsingle30 and voom-limma 203 achieve high power, whereas for methods like metagenomeSeq, SeuratTobit, 204 SeuratBimodIsExpr2 and the methods applied to Census counts, the FDR control 205 comes at the price of reduced power. The power to detect true differences is 206 weakly related to the fraction of genes that are excluded by internal filtering 207 procedures (Supplementary Figure 24). However, DESeq2 and NODES achieve 208 high power despite strong filtering. The area under the ROC curve (AUROC), 209 indicating whether the methods are able to rank truly differentially expressed 210 genes ahead of truly non-differential ones, shows favourable performance of 211 edgeR, followed by MAST, limma (voom and trend), SCDE, DEsingle, DESeq2 and 212 SeuratBimod without filtering and the non-parametric methods (Figure 4E). 213 After prefiltering the rankings of most methods are improved (Figure 4F), and 214 the AUROC is typically higher for datasets with more cells (Supplementary 215 Figure 25).  216  217 



Other aspects 218 As the number of cells that are studied in a dataset increases, computational 219 efficiency becomes important for method selection. For comparative purposes, 220 we ran all methods on a single core in this study. However, DESeq2, BPSC31, 221 MAST, SCDE, scDD and monocle all feature explicit arguments to take advantage 222 of parallelization, and methods that perform gene-wise tests without 223 information sharing between genes, such as the Wilcoxon test, the t-test and 224 D3E, can be run in parallel after splitting the data into chunks. Four dedicated 225 single-cell methods, namely BPSC, DEsingle, D3E and SCDE, are the slowest for 226 most datasets, while the bulk methods (edgeR, DESeq2 and especially the limma 227 variants) are generally faster (Supplementary Figure 26A). Most single-cell 228 methods (with the exception of SCDE) scale well with increasing number of cells, 229 while the computational time required for the bulk RNA-seq methods is more 230 sample size dependent (Supplementary Figures 26B, 27-31). 231  232 While the evaluations in this study are centered on the simplest experimental 233 situation, comparing two groups of cells, many real studies require a more 234 complex experimental design, which not all evaluated methods can 235 accommodate. Specifically, the Wilcoxon test, the t-test, scDD, NODES, SCDE, 236 Seurat, ROTS, DEsingle and D3E are limited to two-group comparisons, while 237 SAMseq can perform a limited number of analysis types. The remaining methods 238 implement statistical frameworks that can accommodate more complex (fixed 239 effect) designs, including comparisons across multiple groups and adjustments 240 for batch effects and other covariates.  241  242 Other important aspects are the availability and documentation of the software 243 packages. Most methods are available either via Bioconductor32 or CRAN, or via a 244 public GitHub repository (Supplementary Table 2). NODES was obtained via a 245 Dropbox link provided by the authors. The Bioconductor packages have 246 extensive documentation, including help pages for individual functions and a 247 vignette to guide the user through a typical workflow, all tested to work with the 248 current version of the package. Some packages, such as Seurat, D3E, monocle and 249 SCDE, have dedicated webpages with instructions for users, examples and 250 tutorials. 251  252 
Discussion 253 We have presented an extensive evaluation and comparison of methods for DE 254 analysis of scRNA-seq data, using mainly real datasets from conquer, a repository 255 of consistently processed public single-cell RNA-seq datasets. The fact that 256 
conquer provides gene expression estimates in multiple units allowed us to 257 compare methods requiring different types of input values, and also to 258 investigate the effect of using different input values for the same method. We 259 have shown that prefiltering of genes is essential to obtain good, robust 260 performance for several of the evaluated methods, most notably edgeR/QLF, 261 which tends to call lowly expressed genes with many zeros significant if these 262 are present in the data but otherwise performs well, and voom-limma, which 263 also performs more robustly after filtering out lowly expressed genes.  264 



 265 We noted a large variability among the number of genes called differential with 266 the different methods, as well as in the ability to control the type I error rate and 267 the false discovery rate. After appropriate filtering, a subset of the methods 268 managed to control the FDR and FPR close to the imposed level while achieving a 269 high power while for many other methods, appropriate error control was 270 associated with a lack of power.  271  272 We also showed that the DE methods are biased in different ways in terms of the 273 types of genes they preferentially detect as differential, which can have 274 important implications in practical applications. In agreement with previous 275 evaluations, methods originally developed for bulk RNA-seq analysis did not 276 perform worse than methods specifically developed for scRNA-seq data, but 277 sometimes showed a stronger dependence on the data being appropriately 278 prefiltered.  279  280 Figure 5 summarizes the performance of the different methods across the main 281 evaluation criteria in our study. For each evaluation aspect, each method was 282 classified as “good”, “intermediate” or “poor” (Online Methods). While it is 283 difficult to capture the full complexity of the evaluation in a crude categorization, 284 the table provides a convenient summary of our results and can be used to select 285 an appropriate method based on the criteria that are most important for a 286 specific application.  287  288 The number of cells per group ranged between 6 and 400 in our datasets. While 289 these are relatively small numbers compared to the thousands of cells that can 290 be sequenced in an actual experiment, DE analysis is typically used to compare 291 sets of homogeneous cells (e.g., from given, well-defined cell types), and these 292 collections are likely to be much smaller. Thus, we believe that the range of 293 sample sizes considered in our comparisons are relevant for real applications 294 and that it is important to know how the methods perform under these 295 circumstances. 296  297 
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Figure legends 395  396 
Figure 1 397 Type I error control across several instances from eight single-cell null datasets, 398 with a range of sample sizes. Values are split between full-length and UMI 399 datasets, and the methods are ordered by the median FPR across all datasets 400 (separately for unfiltered and prefiltered datasets). A. Without any prefiltering of 401 genes (only excluding genes with zero counts across all cells). B. After filtering, 402 retaining only genes with an estimated expression above 1 TPM in more than 403 25% of the cells. Only methods returning nominal p-values are included. The 404 black line indicates the target FPR=0.05, and the y-axis is square-root 405 transformed for increased visibility. Center line, median; hinges, first and third 406 quartiles; whiskers, most extreme values within 1.5 IQR from the box; n, number 407 of data set instances. 408  409 



Figure 2 410 Characteristics of genes falsely called significant by the evaluated methods. For 411 each instance of the eight real scRNA-seq null datasets, we record characteristics 412 of each gene (average CPM, variance and coefficient of variation of CPM, fraction 413 zeros across all cells) and use a signal-to-noise statistic to compare each of these 414 characteristics between genes called significant and the rest of the genes. A 415 positive statistic indicates that the corresponding characteristic is more 416 pronounced in the set of genes called significant than in the remaining genes. 417 Note that ROTSvoom, D3E, limma-trend, the t-test and the Wilcoxon test did not 418 return enough false positive findings to be included in the evaluation. Center line, 419 median; hinges, first and third quartiles; whiskers, most extreme values within 420 1.5 IQR from the box; n, number of data set instances. 421  422 
Figure 3 423 Dendrogram illustrating the average similarities between the gene rankings 424 obtained by the evaluated methods. The dendrogram is obtained by complete-425 linkage hierarchical clustering based on the matrix of average AUCC values 426 across all datasets. The labels of the internal nodes represent their stability 427 across datasets, in terms of the fraction of instances where they are observed. 428 Only nodes with stability scores of at least 0.1 are labeled. The colored boxes 429 below the methods represent characteristics of the methods. 430  431 
Figure 4 432 Differential expression detection performance, summarized across all instances 433 of the three simulated datasets. The methods are stratified by their ability to 434 control the FDR at the 0.05 level across the datasets. A method where more than 435 75% of the observed FDPs are above 0.05 or where the median FDP is above 436 0.15 is considered to have “high FDP”, whereas a method where more than 75% 437 of the observed FDPs are below 0.05 or where the median FDP is below 0.0167 is 438 considered to have “low FDP”. A-B. Observed FDP at an adjusted p-value cutoff at 439 0.05. The horizontal line represents the target FDR of 0.05, and the y-axis is 440 square-root transformed for increased visibility. C-D. Observed TPR at an 441 adjusted p-value cutoff at 0.05. E-F. Observed area under the ROC curve. Center 442 line, median; hinges, first and third quartiles; whiskers, most extreme values 443 within 1.5 IQR from the box; n, number of data set instances. 444  445 
Figure 5 446 Summary of the performance of the evaluated methods across all major 447 evaluation criteria in the current study. A description of the criteria and the 448 cutoff values for assigning a method to a performance category is available in the 449 Online Methods. The methods are ranked by their average performance across 450 the criteria, with the numerical encoding good=2, intermediate=1, poor=0. 451 NODES and SAMseq do not return nominal p-values and are therefore not 452 evaluated in terms of the FPR. 453  454 



Online Methods 455 
conquer 456 The conquer pipeline processes (sc)RNA-seq datasets using the steps outlined in 457 Supplementary Table 3, including quality control, abundance estimation, 458 exploratory analysis and summarization. 459  460 Many of the processed datasets contain not only scRNA-seq samples (single 461 cells), but also bulk RNA-seq samples for comparison, or technical control 462 samples. Whenever these could be identified, they are excluded from the 463 processed data. A list of the excluded samples is provided in the online 464 repository. Cells belonging to the same SRA/GEO dataset but sequenced on 465 different platforms are separated into different repository entries. No filtering 466 based on poor quality or low abundance is performed, since that may introduce 467 unwanted biases for certain downstream analyses and since no universally 468 adopted filtering approach or threshold currently exists. However, the provided 469 quality control and exploratory analysis reports can be used to determine 470 whether some cells need to be excluded for specific applications. The Ensembl 471 catalog (v38)33 was used as reference when processing the currently available 472 datasets. Information about the underlying reference is also included as 473 metadata in the processed datasets and displayed in the exploratory report. 474 Since TPMs and read counts are estimated using the same reference annotation, 475 with the same software and using the same data, the conquer datasets can be 476 used to compare computational methods that require different types of input, 477 with minimal bias. The processed datasets and the resulting reports can be 478 browsed and downloaded from http://imlspenticton.uzh.ch:3838/conquer/, and 479 the underlying code used to process all datasets is available from 480 https://github.com/markrobinsonuzh/conquer.  481  482  483 
Evaluation of differential expression methods 484 
Experimental and simulated data 485 Seven of the real datasets from conquer, with a large number of cells, are selected 486 as the basis for the evaluation of DE analysis methods. For each of the datasets, 487 we retain only cells from two of the annotated cell groups (Supplementary Table 488 1), attempting to select large and relatively homogeneous populations among the 489 ones annotated by the data generators. The selected datasets span a wide 490 spectrum of signal strengths and population homogeneities (Supplementary 491 Figures 1 and 2). For each dataset, we then generate one instance of “maximal” 492 size (with the number of cells per group equal to the size of the smallest of the 493 two selected cell populations) and several subsets with fewer cells per group by 494 random subsampling from the maximal size subset (see Supplementary Table 1 495 for exact group sizes). For each non-maximal sample size, we generate five 496 replicate dataset instances, and thus each original dataset contribute 11-21 497 separate instances, depending on the number of different sample sizes 498 (Supplementary Table 1). Moreover, for each dataset with enough cells we 499 generate null datasets with different sample sizes (again, five instances per 500 



sample size except for the maximal size) by sampling randomly from one of the 501 two selected cell populations. Finally, three of the datasets (GSE45719, 502 GSE74596 and GSE60749-GPL13112) are used as the basis for simulation of data 503 using a slightly modified version of the powsim R package34. Individual reports 504 generated by countsimQC35 and verifying the similarity between the simulated 505 and real datasets across a range of aspects are provided as Supplementary Data. 506 As for the original, experimental datasets, we subsample dataset instances with 507 varying number of cells per group, and further generate null datasets by random 508 sampling from one of the simulated groups. In each simulated dataset, 10% of 509 the genes are selected to be differentially expressed between the two groups, 510 with fold changes sampled from a Gamma distribution with shape 4 and rate 2. 511 The direction of the DE is randomly determined for each gene, with equal 512 probability of up- and downregulation. Mean and dispersion parameters used as 513 basis for the simulations are estimated from the respective real datasets using 514 edgeR7. For each of the three datasets, the rounded length-scaled TPMs for all 515 genes with at least two non-zero counts are used as input to the simulator, and a 516 dataset with the same number of genes is generated. The counts for each 517 simulated gene are based on one of the original genes (however, the same 518 original gene can be the basis for more than one simulated gene), and by 519 retaining this information we can link average transcript lengths (calculated by 520 
tximport36 for the original data) to each simulated gene, and thus estimate 521 approximate TPMs also for the simulated data. 522  523 In addition to the seven datasets from conquer, we downloaded and processed 524 two additional UMI datasets. First, the UMI counts corresponding to the GEO 525 entry GSE5973937 were downloaded from http://linnarssonlab.org/drg/ 526 (accessed December 18, 2016). The provided UMI RPMs were used in the place 527 of TPMs, and were combined with the provided information about the total 528 number of reads per cell to generate gene counts. Empty wells were filtered out. 529 Second, we downloaded UMI count matrices for C14+ monocytes and cytotoxic 530 T-cells processed with the 10X Genomics GemCode protocol5 531 (https://support.10xgenomics.com/single-cell-gene-expression/datasets, 532 accessed September 17, 2017). For this dataset, as well as for the UMI dataset 533 obtained from conquer (GSE62270-GPL17021), the UMI counts were used as 534 “raw counts” in the DE analysis, and since these counts are supposed to be 535 proportional to the concentration of transcript molecules, we estimated the TPM 536 by scaling the UMI counts to sum to 1 million. Although this may be suboptimal 537 due to the low capture efficiency of single-cell protocols, it allows us to apply 538 methods consistently across full-length and UMI datasets. 539  540 For comparison, we also downloaded a bulk RNA-seq dataset from the Geuvadis 541 project19 from http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/ and 542 estimated gene expression levels using the same pipeline as for the conquer 543 datasets. For this dataset, we perform DE analysis using a subset of the methods 544 applied to the single-cell RNAseq datasets, comparing samples from the CEU and 545 YRI populations generated at the University of Geneva.  546  547 For each real and simulated dataset, we perform the DE analysis evaluation both 548 on the full, “unfiltered”, dataset (excluding only genes with 0 counts in all 549 



considered cells) and on a filtered dataset, where we retain only genes with an 550 estimated TPM above 1 in more than 25% of the considered cells. Depending on 551 the dataset and the number of considered cells, between 4 and 50% of the genes 552 are retained after this filtering (Supplementary Figure 32).  553  554 
Differential expression analysis methods 555  556 For each of the real and simulated scRNA-seq datasets, we apply 36 statistical 557 approaches for DE analysis to compare the expression levels in the two groups of 558 cells (Supplementary Table 2). As representatives for methods developed for 559 differential analysis of bulk RNA-seq data, we include edgeR7, DESeq26, voom-560 limma8 and limma-trend8. For edgeR, we apply both the likelihood ratio test 561 (LRT)38 and the more recent quasi-likelihood approach (QLF)15. For the LRT, in 562 addition, we use both the default dispersion estimates39 and the robust 563 dispersion estimates developed to address outlier counts40, and we apply edgeR 564 both with the default TMM normalization41 and with the recently developed 565 deconvolution normalization approach for scRNA-seq42. In addition, we run 566 edgeR/QLF including the cellular detection rate (the  fraction of detected genes 567 per cell) as a covariate. DESeq2 is run in three modes, after rounding the length-568 scaled TPM values to integers: with default settings, without the log-fold change 569 shrinkage (beta prior), and after disabling the internal independent filtering and 570 outlier detection and replacement. Additionally, both edgeR/LRT and DESeq2 571 are applied to both the read counts (length-scaled TPMs as described above) and 572 Census transcript counts23, aimed at converting relative abundances such as 573 TPMs into transcript counts, based on the assumption that the most common 574 signal among the genes detectable with current single-cell library preparation 575 protocols corresponds to a single molecule. The Census counts are calculated 576 from the estimated TPMs using monocle24 with default settings. We note that it is 577 possible that modifications of these settings, optimized for the library 578 preparation parameters for each individual dataset, would lead to different 579 absolute count values, and thus potentially altered performance, in some of the 580 datasets.  581  582 Three non-parametric methods are included in the comparison: SAMseq26, the 583 Wilcoxon test43 and NODES25. SAMseq is applied to the length-scaled TPMs, 584 while the Wilcoxon test is applied to TPM estimates after applying TMM 585 normalization to address the compositionality of the TPMs. NODES was initially 586 run in two modes: with default settings, and after disabling the internal filtering 587 steps. However, disabling the internal filtering caused the method to fail in 588 subsequent steps, and thus we retain only the runs with default settings.  589  590 We include a broad range of methods developed specifically for scRNA-seq DE 591 analysis. BPSC31 is applied to CPMs (calculated using edgeR) as suggested by the 592 package authors. D3E28 is run with the method-of-moments approach to 593 parameter estimation, the non-parametric Cramer-von Mises test to compare 594 distributions and without removing zeros before the analysis. MAST27 is applied 595 to both log2(CPM+1) and log2(TPM+1) values, both with and without including 596 the cellular detection rate (the fraction of genes that are detected with non-zero 597 



counts) as a covariate in the model. For monocle24, the input is either TPM 598 estimates (with a tobit model), raw counts (read counts or UMI counts, 599 depending on the dataset, with a Negative Binomial model) or Census counts 600 (with a Negative Binomial model), calculated from the TPMs as for edgeR and 601 DESeq2 above. SCDE22 is applied to rounded length-scaled TPMs, following the 602 instructions provided in the package documentation, and p-values are calculated 603 from the provided z-scores. Seurat14 is applied using either the default “bimod” 604 likelihood ratio test44 (applied to the length-scaled TPMs, which are log-605 normalized internally), both with default settings and disabling the internal 606 filtering steps, as well as after setting the internal expression threshold to 2 607 instead of the default of 0, or the “tobit” test24 (applied to the TPMs). scDD13 was 608 applied to counts normalized with the median normalization, and using the 609 default “fast” procedure based on the Kolmogorov-Smirnov test, without 610 permutations. We applied DEsingle30 to rounded counts. 611  612 Given the similarities between single-cell RNA-seq data and operational 613 taxonomic unit (OTU) count data from 16S marker studies in metagenomics 614 applications, we also apply metagenomeSeq16 to the count values, fitting the 615 zero-inflated log-normal model using the fitFeatureModel function from the 616 metagenomeSeq package and testing for differences in abundance.   617  618 Finally, we include ROTS (reproducibility-optimized test statistic)20,21, which is a 619 general test, originally developed for microarray data, in which a t-like test 620 statistic is optimized for reproducibility across bootstrap resamplings. We apply 621 ROTS to CPM and TPM values, as well as to the log-transformed CPM values 622 calculated by the voom function in the limma package8. For comparison, we also 623 apply a Welch t-test45 to TMM-normalized TPM values, after adding 1 and 624 applying a log-transformation.  625  626 All code used for the DE analysis and evaluation is accessible via 627 https://github.com/csoneson/conquer_comparison.  628  629 
Evaluation strategies 630 Most of the evaluations in this study are performed using real, experimental 631 data, where no independently validated truth is available. The advantage of this 632 approach is that no assumptions or restrictions are made regarding data 633 distributions or specific structures of the data. However, the set of evaluation 634 measures is more limited than in situations where the ground truth is accessible. 635 Our first battery of evaluation approaches aim to catalog the number of genes 636 found to be significantly differentially expressed, as well as the number and 637 characteristics of the false positive detections from each method. For the latter 638 evaluations we use the null datasets, where no truly differential genes are 639 expected and thus all significant genes are false positives. First, we investigate 640 the fraction of genes for which no interpretable test results are returned by the 641 applied methods (e.g., due to internal filtering or convergence failure of fitting 642 procedures). Then, for all methods returning nominal p-values, we calculate the 643 fraction of performed tests that give a nominal p-value below 0.05. For a well-644 calibrated test, this fraction should be around 5%. Next, we calculate 645 



characteristics such as the expression level (CPM), the fraction of zero counts 646 and the expression variability (variance and coefficient of variation for CPM 647 estimates) for all genes, and compare these characteristics between genes called 648 differentially expressed (with an adjusted p-value/FDR threshold of 0.05) and 649 genes not considered DE, for each of the methods. More precisely, for each 650 characteristic and for each method detecting at least five differentially expressed 651 genes at this threshold, we calculate a signal-to-noise statistic: 652  653 −+   654 where  ( ) and  ( ) represent the mean and standard deviation of the 655 gene characteristic among the significant (nonsignificant) genes. Genes with non-656 interpretable test results (e.g., NA adjusted p-values) are considered non-657 significant in this evaluation. This approach gives insights into the inherent 658 biases of the different methods, in the sense of the type of genes that are 659 preferentially called significantly differential. Note that since the evaluation is 660 done on the null datasets, the results are not confounded by the characteristics 661 of truly differentially expressed genes.  662  663 The second type of evaluations focus on robustness of methods when applied to 664 different subsets of the same dataset. In a dataset where there is a true 665 underlying signal (i.e., truly differential genes between cell populations), ideally, 666 this signal will be detected regardless of the set of cells that are sampled for the 667 analysis. Thus, a high concordance between results obtained from different 668 subsets of the cells is positive, and indicative of robust performance. For a 669 dataset without truly differential genes, however, any detections should be 670 random, and a high similarity between results obtained from different subsets 671 can rather indicate a bias in the DE calling. Thus, we first calculate a measure of 672 concordance between the gene rankings from each pair of instances of a dataset 673 with the same number of cells per group (five such instances were generated for 674 each group size, giving 10 pairwise comparisons). Then, we match “signal” and 675 null instances from the same original dataset and with the same number of cells 676 per group, and compare the robustness values between signal and null instances. 677 A large difference indicates a significant difference between the cross-instance 678 concordance in a dataset with a true underlying signal and a dataset without a 679 true signal, suggesting that the method is able to robustly detect underlying 680 effects, and that this robustness is not due to a strong bias in the significance 681 testing. As a measure of concordance, we use the area under the concordance 682 
curve for the top-K genes ranked by significance, with K=100 (cf. Irizarry et al.46). 683 More precisely, for each dataset instance and each DE method, we rank the genes 684 by statistical significance (nominal p-value or adjusted p-value). Then, for each 685 pair of dataset instances with the same sample size, for k=1,…,K, we count the 686 number of genes that are ranked among the top k in both the corresponding 687 rankings. Plotting the number of shared genes against k gives a curve, and the 688 area under this curve is used as a measure of the concordance. To obtain more 689 interpretable values, we divide the calculated area with the maximal possible 690 value (K2/2). Thus, a normalized value of 1 indicates that the two compared 691 rankings are identical, whereas a value of 0 indicates that the sets of top-K genes 692 



from the two rankings don't share any genes. The rationale for using this type of 693 concordance index to evaluate robustness is that it is independent of the number 694 of genes that are actually called significant (which can vary widely across 695 methods), and it is applicable to situations where not all compared rankings 696 have interpretable results for the same sets of genes (e.g., due to different 697 internal filtering criteria), which would cause a problem for e.g. overall 698 correlation estimation. Furthermore, as opposed to a simple intersection of the 699 top-K genes in the two rankings, the concordance score incorporates the actual 700 ranking of these top-K genes.  701  702 A similar approach is used to evaluate similarities between methods. Briefly, for 703 each dataset instance, we rank the genes by significance using each of the DE 704 methods. Then, for each pair of methods, we construct a concordance curve and 705 calculate the area under this curve as a measure of similarity between the results 706 from the two methods. This evaluation is only performed on the “signal” 707 datasets. 708  709 Finally, we use the simulated data to evaluate false discovery rate (FDR) control 710 and true positive rate (TPR, power), as well as the area under the receiver 711 operating characteristic (ROC) curve, indicating the ability of a method to rank 712 truly differential genes ahead of truly non-differential ones. For the prefiltered 713 datasets, we limit the evaluation to the genes retained after the filtering.  714  715 An interesting aspect, although not strictly related to performance, is the 716 computational time requirement for the different methods. We investigate two 717 aspects of this: first, the actual time required to run each method using a single 718 core. Since this depends on the size of the dataset, we normalize all times for a 719 given dataset instance so that the maximal value across all methods is 1. Thus, a 720 “relative” computational time of 1 for a given method and a given dataset 721 instance means that this method was the slowest one for that particular instance, 722 and a value of, e.g., 0.1 means that the time requirement was 10% of that for the 723 slowest method. Second, we investigate how the computational time 724 requirement scales with the number of cells. This is particularly important for 725 scRNA-seq data, since the number of cells sequenced per study is now increasing 726 rapidly47. For this, we consider all instances of all datasets (“signal” and null, as 727 well as simulated data), and divide them into 10 equally sized bins depending on 728 the total number of tested genes. Within each such bin, we model the required 729 time T as a function of the number of cells per group (N) as  730  731 
T=aNp, 732  733 and record the estimated value of p.  734  735 

Performance summary criteria 736 Figure 5 summarizes the performance of the evaluated methods across the range 737 of evaluation metrics. For each metric, the performance of each method is 738 considered either “good”, “intermediate” or “poor”. Metrics that are mainly 739 



descriptive rather than quantitative are excluded from the summary. Here, we 740 list the criteria used to categorize the methods for each evaluation metric: 741  742 
MedianFDP. Evaluated after filtering, across all simulated signal datasets 743 - Good: no more than 75% of FDPs on one side (above or below) of 0.05 744 and 0.0167 < median FDP < 0.15 745 - Intermediate: 0.15 ≤ median FDP < 0.25 or 0.01 < median FDP ≤ 0.0167, 746 or 0.0167 < median FDP < 0.15 but more than 75% of FDPs on one side of 747 0.05 748 - Poor: median FDP ≥ 0.25 or median FDP ≤ 0.01 749  750 
MaxFDP. Evaluated after filtering, across all simulated signal datasets 751 - Good: maximal FDP < 0.15 752 - Intermediate: 0.15 ≤ maximal FDP < 0.35 753 - Poor: maximal FDP ≥ 0.35 754  755 
TPR. Evaluated after filtering, across all simulated signal dataset instances with 756 more than 20 cells 757 - Good: median TPR > 0.8 758 - Intermediate: 0.6 < median TPR ≤ 0.8 759 - Poor: median TPR ≤ 0.6 760  761 
AUROC. Evaluated after filtering, across all simulated signal datasets 762 - Good: median AUC > 0.8 763 - Intermediate: 0.65 < median AUC ≤ 0.8 764 - Poor: median AUC ≤ 0.65 765  766 
MedianFPR. Evaluated after filtering, across all real null datasets, separately for 767 full-length and UMI datasets 768 - Good: |log2(median FPR/0.05)| < log2(1.5) 769 - Intermediate: log2(1.5) ≤ |log2(median FPR/0.05)| < 2 770 - Poor: |log2(median FPR/0.05)| ≥ 2 771  772 
MaxFPR. Evaluated after filtering, across all real null datasets, separately for full-773 length and UMI datasets 774 - Good: maximal FPR < 0.1 775 - Intermediate: 0.1 ≤ maximal FPR < 0.25 776 - Poor: maximal FPR ≥ 0.25 777  778 
Scalability. Evaluated based on all datasets 779 - Good: median exponent in power model of timing vs number of cells < 0.5 780 - Intermediate: 0.5 ≤ median exponent in power model of timing vs number 781 of cells < 1 782 - Poor: median exponent in power model of timing vs number of cells ≥ 1 783  784 
Speed. Evaluated based on all datasets 785 - Good: median relative computation time requirement (relative to slowest 786 method) < 0.1 787 



- Intermediate: 0.1 ≤ median relative computation time requirement 788 (relative to slowest method) < 0.7 789 - Poor: median relative computation time requirement (relative to slowest 790 method) ≥ 0.7 791  792 
BiasDEG. Evaluated based on all unfiltered real null datasets 793 - Good: No false positive genes detected, or |median SNR| < 0.5 for all four 794 SNR statistics (for fraction of zeros, CV(CPM), log2(average CPM) and 795 log2(variance(CPM))) 796 - Intermediate: |median SNR| ≥ 0.5 for at least one statistic, but |median 797 SNR| < 1 for all four statistics 798 - Poor: |median SNR| ≥ 1 for at least one statistic 799  800 
Consistency. Evaluated after filtering 801 - Good: The t-statistic of robustness values between signal and null 802 datasets is > 2 for GSE60749-GPL13112 and 10XMonoCytoT, and all t-803 statistics are ≥ 0 804 - Intermediate: Any of the t-statistics for GSE60749-GPL13112 or 805 10XMonoCytoT is ≤ 2, but all t-statistics (across all real datasets for which 806 both signal and datasets are available) are ≥ 0 807 - Poor: The t-statistic for any dataset is < 0 808  809 
ComplexDesign 810 - Good: The method allows arbitrary complex (fixed) designs 811 - Intermediate: The method can accommodate a limited set of designs 812 - Poor: The method only performs two-group comparisons 813  814 
FailureRate. Evaluated across all datasets 815 - Good: Average failure rate < 0.01 816 - Intermediate: 0.01 ≤ Average failure rate < 0.25 817 - Poor: Average failure rate ≥ 0.25 818  819 
Software specifications and code availability 820 The datasets currently available in the conquer repository were processed with 821 Salmon v0.6.0-v0.8.248, FastQC v0.11.6.devel and MultiQC v0.849. All analyses for 822 the method evaluation were run in R v3.350, with Bioconductor v3.432, except for 823 scDD and DEsingle, which required R 3.4 and Bioconductor v3.5. Performance 824 indices were calculated with iCOBRA v1.2.051 when applicable, and results were 825 visualized using ggplot2 v2.2.152. All code used to process the datasets for 826 
conquer can be accessed via GitHub: 827 https://github.com/markrobinsonuzh/conquer. The code used to perform the 828 evaluation of the DE analysis methods is also available from GitHub: 829 https://github.com/csoneson/conquer_comparison. The results of the 830 evaluation can be browsed in a shiny application available at 831 http://imlspenticton.uzh.ch:3838/scrnaseq_de_evaluation/.  832  833 



Data availability 834 All public datasets included in conquer can be downloaded from 835 http://imlspenticton.uzh.ch:3838/conquer/. The processed abundances for the 836 UsoskinGSE59739 dataset were downloaded from http://linnarssonlab.org/drg/ 837 on December 18, 2016. The UMI count matrices for the 10XMonoCytoT dataset 838 were downloaded from https://support.10xgenomics.com/single-cell-gene-839 expression/datasets on September 17, 2017. All processed datasets used for the 840 evaluation (listed in Supplementary Table 1) can be downloaded as a 841 compressed archive from the accompanying website: 842 http://imlspenticton.uzh.ch/robinson_lab/conquer_de_comparison/. Figures 1, 843 2, 4 and 5 have associated source data. 844  845 
References 846 
33. Aken, B. L. et al. The Ensembl Gene Annotation System. Database baw093 847 (2016). 848 34. Vieth, B., Ziegenhain, C., Parekh, S., Enard, W. & Hellmann, I. powsim: 849 Power analysis for bulk and single cell RNA-seq experiments. bioRxiv (2017). 850 doi:10.1101/117150 851 35. Soneson, C. & Robinson, M. D. Towards unified quality verification of 852 synthetic count data with countsimQC. Bioinformatics btx631-btx631 (2017). 853 doi:10.1093/bioinformatics/btx631 854 36. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-855 seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 856 1521 (doi: 10.12688/f1000research.7563.1) (2015). 857 37. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-858 scale single-cell RNA sequencing. Nat Neurosci 18, 145–153 (2015). 859 38. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of 860 multifactor RNA-Seq experiments with respect to biological variation. Nucleic 861 

Acids Res 40, 4288–4297 (2012). 862 



39. Chen, Y., Lun, A. T. L. & Smyth, G. K. Differential Expression Analysis of 863 Complex RNA-seq Experiments Using edgeR. in Statistical Analysis of Next 864 
Generation Sequencing Data (eds. Datta, S. & Nettleton, D.) 51–74 (Springer 865 International Publishing, 2014). 866 40. Zhou, X., Lindsay, H. & Robinson, M. D. Robustly detecting differential 867 expression in RNA sequencing data using observation weights. Nucleic Acids 868 
Res 42, e91 (2014). 869 41. Robinson, M. D. & Oshlack, A. A scaling normalization method for 870 differential expression analysis of RNA-seq data. Genome Biol 11, R25 (2010). 871 42. Lun, A. T. L., Bach, K. & Marioni, J. C. Pooling across cells to normalize 872 single-cell RNA sequencing data with many zero counts. Genome Biol 17, 75 873 (2016). 874 43. Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1, 875 80–83 (1945). 876 44. McDavid, A. et al. Data exploration, quality control and testing in single-877 cell qPCR-based gene expression experiments. Bioinformatics 29, 461–467 878 (2013). 879 45. Welch, B. A. The generalization of Student’s problem when several 880 different population variances are involved. Biometrika 34, 28–35 (1947). 881 46. Irizarry, R. A. et al. Multiple-laboratory comparison of microarray 882 platforms. Nat Methods 2, 345–350 (2005). 883 47. Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Moore’s Law in Single 884 Cell Transcriptomics. arXiv:1704.01379v1 (2017). 885 



48. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon 886 provides fast and bias-aware quantification of transcript expression. Nat 887 
Methods 14, 417–419 (2017). 888 49. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: Summarize 889 analysis results for multiple tools and samples in a single report. 890 
Bioinformatics btw354 (2016). 891 50. R Core Team. R: A Language and Environment for Statistical Computing. (R 892 Foundation for Statistical Computing, 2016). 893 51. Soneson, C. & Robinson, M. D. iCOBRA: open, reproducible, standardized 894 and live method benchmarking. Nat Methods 13, 283 (2016). 895 52. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag 896 New York, 2009). 897  898 



●

●

●●

●

●
●

●
●

● ●

●

●
●●●●●

●●

●
●

●

●

●●
●
●

●

●●

●●

●

●
●●●●
●
●●

●
●

●
●●●
●

●

●●●

●
●

●

●

●●

●

●
●

●●

●
●

●

●

●●
●
●

●

●●

●●

●
●●● ●●

●●●
●

●
●●
●●
●●
●
●

●

●
●●

●●● ●●

●●●
●

●
●●
●●●●

●
●

●

●
●

●
●●●

●
●●

●
● ●

●

●●●●● ●
●

●●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●●●

●

●

●●
●

●● ●
●
●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●
●

● ●●●●●
●●●

●
●

●
●

● ●

●

●

●
●

●

●
●

●
●●
●
●●●●●

●

●

●
●
●
●●
●
●●●

●

●
●

●●●
●
●

●
● ●
●●

●●●
●●●
●●●

●●

●

●●●●
●

●●●
●●

●

●●●●● ●
●●
●

●

●●
●
●

●●

●
● ●●●

●
●

●
●

●

●
●●●

●
●

●●●

●
●

●
● ●●

●
●●●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●
● ●● ●●

●
●●●

●

●

●●● ●●●●
●●●

● ●●●●●●
●●●
●

●●●
●

●●●
●● ●

●
●

●
●●●●

● ●●●●

●

●● ●● ●

●
● ●●●●

●●●●●

●

●●
●

●

●
●●●● ●

●
●

●● ●●● ●●
●●

●

●

●
●●

●
●
●●●●

●
●

●
●

●● ●●●
●●

●

●

●
●●

●

● ●●● ●

● ●●●●

●
● ●●●

●

●
●●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●●●

●
●●●
●

●
●●●●●

● ●● ●
●●

●

●

●
●

●

●

●

●

●
●

●

●●
●

● ●●●●
●●

●●●●
●

●

●●●●●

●

●●
●
●

●

●
●
● ●●

●
●●●● ●

●
●●●●

●●●
●●●●●●

●
●

●●
●●

●
●

●

●

●
●

●

●

●●
●

●●●●
●●●

●
●●

●

● ●

●
●

●
●
●●●●●● ●

●●
● ●●●

●●● ●
●
●●●●●

● ●● ●●
●
●●

●●●●

●●
●

● ●
●●

●●●

●

●●
●

●●

●

●

●
●

●

●

●●
●
●●

● ●●● ●

●
●
●

●

●●
●

●

●● ●

●
●
●●

●
●
●●●●●

●●●
●

●●
●●● ●●
● ●

●●
●

●
●●
●●●
●

●●
●●

● ●● ●

●

●
●

●●
●●

●●●●●

●●
●●●

●●● ●●
●

●●●●● ●●

●●
●

●
●●●

●●
●●●● ●

●●
●●

●

●
●●●
●
●●●●● ●

●●

●●
●

●● ●
●
●●

●● ●●●
●●

●●●

●
●●
●●●●●●

●●
●●●●

●●
●●●●●

●
●● ●●●●

●
●
●●

●●
●●● ●● ●

●
● ●●● ●
●●

●
●
●●●
●

●●
●●● ●
●

●
●

● ●●●●● ●●●●●
●

●●●●

●
● ●●● ●●●
●● ●

●●
●●

●

●●
●

●

●

●●

●

● ●●●
●

●

●
●

●

●
●

● ●●

●
●
●●
●

●●
●
●
●

●
● ●●●●

●● ●●●
●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●●●●
●
●

●● ●●●
●

●

● ●●● ●
●

●
●
●

●●
●●●
●
●

●●●
●

●●

●●●
● ●●●

●●●●●●●●
●

●
●●

●●● ●
● ●●

●

●
●●● ●●

●●●
●●●
●
●
●

●
●
●

●●●●
●●
●●

●●●

●

●

●
●●
●●● ●
●● ●●
●●●●

●
●

●●●●●●
●●●● ●●●
●

●
●●●● ●● ●●●
●●● ●●●
●

●●●
●●●●

●
●

●●●● ●●
●

●●●●●●
●●●●
●

●
●● ●
●

●
●●
●●●

●
●●● ●

●● ●●

●

●

●●● ●●●
●●● ●

● ●

●
●●●

●●

●●●
●●

●●

●

●
●

●
●●●

●●●● ●●●

● ●
●●
●

●●●●●●● ●●●●
●●●

●

●

●
●● ●

●
●

● ●●● ●
●

●●●

●

● ●● ●
●

●
●●● ●●

●● ●●●

●
●●

●
●
●

●
●●●●

●
●
●●

●

●● ●●
●

●
●

●●● ●● ●
● ●●

● ●●
●
●
●

●●●● ●
●
●

●●● ●●●
●

●
●

●●●● ●●
●
●●●

●●●
●

●
●

● ●●● ●●
●

●●●

●● ●
●
●

●
●●●●●

● ●
● ●●

●
● ●●● ●

●
●●●

●●●●● ●

●
●●●●●
●●●●● ●●●
●
●

●
●●●●●

●
●●●●
●●●●●

●●●
●●●
●

●●●●●●●
●
●

●
●●● ●●●●●●●●●●● ●

●●●
●

●
●

●●●●●●●●●●

●
●●
●
●
●

●●
● ●

●●
●

●
●
●

● ●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

● ●●●●

●●● ●●
●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●●●●

●
●

●
● ●

●●●
●

●
●

●●●●● ●
●

● ●
●● ●●

●
●

●
●●●●● ●

●
●●●

●
● ●
● ●●

● ●● ●●●
●

●●●

● ●
●●
●

●

●
●●●●●
●
●●●

●●●
●
●

●
●

●●●●

●
●● ●●

●●●
●

●
●

●
●● ●●●● ●●●

●
●

● ●
●●● ●●●●●
●
●●●●●●

●

●
●

●
●● ●●

●
●
●●●● ●●

●
●

●

●●●●●
●

●
●
●●

●
●●

● ●●

●● ●●●

●
●
●●●

●
●●

●
●

●

●
●●● ●
●

●
●● ●

●●●
●●●●●
●●●

● ●
●●●●●●●

●
●

●
● ●●●
●
●

●
●●

●●●
●

●
●

●●●●● ●
●
●●● ●

●●●
●
●
●● ●●●● ●
●●●

●

●●

●●
●●

●

● ●
●●

●
●●
●

●
●

●●
●

●
●●

●●
●●
●●●

●

●
●

●
●

●●
●●
●

●

●

●

●
●

●●

●
●●●● ●

●●●●
●

●
●

●●●

●

●
● ●

●●
●●
●●

●

●
●●●●

●

●

●
●

●

●
●
●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●
●

●
●

●
●●

●

●

●

●

● ●
●

●●
●
●

●
●●

●

●

●
●

● ●● ●●●

●●

●●

●

●

●
●

●
●●●
●

●

●
●●

●●●
●

●
●

●

●●●●●●●●

●
●

●
●

●

●

●
●

●●●●●

●

●●●
●
●

●
●●

● ●
●
●●

●
●

●●
●

●

●●
●● ●

●

●
●

●●●●●●
●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●●

●

●

●

●
●●

●●
●● ●

●

●●●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●
●●

● ●

●
●

●

●

●

●●
●
●

●●●
●
●●

●
●●
●
●●

● ●●●

●●
●●

●●

●●
●●●

●
● ●●●

●●●●● ●●
●●●
●
●

●●
●●

●
●

●●
●

●●

●
●

●

●

●

● ●●●

●

●

●

●

●●
●●

●

●

●

●

●
●

●
●

●

●

●

●
●●●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●
● ●●

●●
●

●●
●

●
●

●
●●●●

●●●

●

●

●●
●

●
●●●●

●
●●
●●●●
●●●●●●

●

●
●
●● ●
●●●

●

●

●●
●

●

●
●
●● ●●

●●●●

●
● ●

●

●●●●●

●●
●
●
●

●
●

●

●●

●

●

●
●

●
●●

●

●
●
●

●
●

●

● ●

●

●

●●● ●
●●

●●
●

●●● ●
●

●●●

●
●●

●
●●●

●●
●

●
●●

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

6
5

n
=

7
0

n
=

7
0

n
=

4
7

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

●●

●
●●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●
●●

●

●
● ●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●
●●●

●●

●
●
●

●

●●

●
●

●
●●

●
●
●

●

●●

●
●

●

●
●

●
●
●

●●

●
●

●

●

●
●

●

●
●
●

●

●

●
●
●

●●
●●●

●

●

●●
●
●

●
●

●

●
●

●

●

●

●
●

●

●●
●●●●

●

●●
●

●
●

●

●
●

●

●

●●

●
●●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●
●
●●
●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●● ●

●

●●
●●

●
●

●●
●

●●

●

●

●

●●
●

●

●

●

●●

●
●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●
●

●
●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●●

●
●

●
●

●

●
●

●

●

●

●●●

●●

●●●●●
●

●
●●

●●●
●●●

●

●●

●●

●●

●
●

●
●

●
●

●
●

●
●●

●●● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

● ●●
●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●
●

●

●●
●

●
●

●
●

●●●

●
●
●

●

●●
●●

●●

●
●●
●
●

●

●

●
●

●
●

●
●●

●

●●

●
●

●●

●

● ●

●

●
●

●
●

●●
●

●
●●

●●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●●

●●
●

●

●

●●
●

●● ●
●

● ●● ●●●●
●●● ●●
● ●

●

●
●

●

●
●

●

●

●
●

●
●
●
●●●

●●
●

●

●

●
●●
●● ●

●

●●●●
● ●

●●●●
● ●
● ●

● ●●● ●● ●●

●
●

●
●●
●

● ●

●●
●
●●

●

● ●

●

●
●

● ●

●
●●

●
●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●● ●●●●
●●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●
●●

●
●●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●
●

●
●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●●●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●
●
●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
● ●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●●

●
●
● ●

●

●

●●●●
●

● ●
●

●●
●

●
● ●●
●
●●●●
●
●

●

●
●

●

●●

●

●

●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
● ●

●●
●

●●

●

●

●

●
●

●●●
●

●●●

●

●●●● ●
●
●

●●●●

●●

●

●

●●

●
●

●

●
●

●
●

●
●

●
●
●

●
●●

●
●

●

●

●●

●
●

●●

●
●●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●
●

●●

●
●
●
●● ●

●

● ●

●
●

●

●
●●

●
●

●
●
●

●●●●
●●

●
●

●
●

●

●
●●
●

●
●

●

●

●●

●●

●

●●

●

●●●
●●
●●●●●
●●●

●
●

●

●
●●●●
●

●

●
●●

●
●

●

●
●

●

●●●
●●

●
●

● ●
●
●●●●

●

● ●
●
●●

●
●

●
●●●● ●

●
●

●

● ●
●

●●
●
●

●
● ●●●●

●
●

●

●●
●●

●
●

●●●●
●

●
●●
●

●●
●●●●
●

●●● ●●

●
●●

●●
●
●

●●
●

●
●●●

●●●
●● ●
●
●

●●●●●
●●●● ●

●
●
●●● ●●

●
●

●

●
●●●●● ●

●● ●
● ●●●●●

●

●● ●
●

●

● ●●● ●●
●● ●●●● ●●●

●

●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●
●●●●●

●●
●●

●

●

●

●

●

●

●
●●

●●

●
●●
●

●

●

●●
●

●

●●
●

●
●●● ●
●●●
●

●

●

● ●

●

●●●
●
●

●
●
●● ●

●●
●

●
●

●●●
●

●

● ●●

●
●

●
●

●

●

●
●

●
●●●
●●●

●
●●●●●● ●●

●
●●●
●● ●●●● ●●●●

●
●

●

● ●●
● ●

●

●
●

●
●

●
●
●

●●
●
● ●●● ●

●●●●●
●●

●
●
●

●
●●●

●
●

●
●
●● ●

●
●
●●●

● ●
●

● ●
●●
●

●●
●

●
●

●
●●

● ●
●

●●
●
●

●
●

●● ●●
●
●

●

●
●●●

●

●●●
●●

●●
●

●

●

●

●●
● ●●●●●

●●
●

●
●●●

●

n
=

3
2

n
=

3
2

n
=

4
8

n
=

4
8

n
=

4
8

n
=

2
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

3
2

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

UMI

full−length

S
e
u
ra

tB
im

o
d

S
e

u
ra

tB
im

o
d
Is

E
x
p
r2

S
e

u
ra

tB
im

o
d
n
o
fi
lt

e
d
g
e
R

Q
L
F

e
d

g
e

R
Q

L
F

D
e
tR

a
te

e
d

g
e
R

L
R

T
d
e
c
o
n
v

e
d

g
e
R

L
R

T
ro

b
u
s
t

e
d
g
e
R

L
R

T
m

o
n
o
c
le

c
o
u
n
t

vo
o
m

lim
m

a
m

o
n
o
c
le

B
P

S
C

D
E

s
in

g
le

R
O

T
S

tp
m

R
O

T
S

c
p
m

m
o
n
o
c
le

c
e
n
s
u
s

S
e
u
ra

tT
o
b

it
R

O
T

S
vo

o
m

e
d

g
e

R
L
R

T
c
e
n
s
u

s
D

E
S

e
q
2
n
o
fi
lt

D
E

S
e

q
2
b
e
ta

p
F
A

L
S

E
D

E
S

e
q
2

M
A

S
T

tp
m

D
e
tR

a
te

M
A

S
T

tp
m

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

c
p
m

W
ilc

o
x
o
n

D
3
E

lim
m

a
tr

e
n
d

tt
e
s
t

m
e

ta
g
e
n
o
m

e
S

e
q

s
c
D

D
S

C
D

E
D

E
S

e
q
2
c
e
n
s
u
s

0.05

0.50

1.00

0.05

0.50

1.00

F
P

R
 (

fr
a
c
ti
o
n
 o

f 
g
e
n
e
s
 w

it
h
 p

 <
 0

.0
5
)

Without filteringA

●

●

●●

●

●

●

●

●

●
●

●

● ●●●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●●● ●
●

●

●
●

●

●
●● ●●

●
●●

●
●

●

●

●●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

● ●
●
● ●●●
●●

●
●

●
●

●
●
●

●
●

●

●

●
●

● ●
●

●●●●
●●●

●
●

●

●
●

●
●
●

●
●

●
●● ●

●
●●●

●

●
● ●

●
●

●

●●
●

●
●
●

●

●
●

●

●
●

●●

●
●●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●●
●
●

●

●
●●

●
●

●

●
●●
●
●● ●●

●
●

●

●

●●

●
●
●

●●

●
●

●

●

●●
●

●
●

●●

●

●

●●
●●●●

●●●

●
●

●
●●

●●●

●
●

●

●
●

●
●●
●

●●
●

●●

●

●
●
●

●

●●

●
●● ●

●

●
●

●●●
● ●

●
●

●

●
●

●
●●

●
● ●

●●
●
●●

●
● ●●●●● ●●
● ●

●
●●

●● ●
●

●●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●
●●●

●
●

●●●

●●

●
●● ●●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●●●

●

●
● ●

●
●
●

●

●●●●

●

●
●

●

●
●

●
●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●● ●

●

●●●
●
●●

● ●
●●●

● ●
●●

●●

●

●●
●●

●
●●

●●●
● ●
●●●

●●● ●

●●

●

●
●●●

●

●
●
●●●●
●●●

●

●
●●

●

●● ●
●●●

●

●
●
●

●

●
●

●

●●●●

●
●

●

●
●●

●
●

●●

●

●
●
●

●

●●

●
●

●●

●

●

●
●
●

●

●

●

●

●

●
●

●●●

● ●●
●

●
●

●●

●●● ●
●

●

●
●●●●

●
●

●

●
●●

●
●●●

●
●

●●
●●●

●

●
●
●
●

●●●

●

●●

●●●
●

●

●●
●

●

●
●

●

●
●

● ●
●

●●

●

●●

●

●●●●
●

●●

●

●●

●

● ●●● ●
●●

●
●

●

●
●●

●●
● ●●
●●

●

●
●●
● ●

●● ●●
●●
●●●●●

●

●●

●

●●
●

●●●
●

●

●●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●●
●

●

● ●●
●

● ●
●

●
●
●
●
●●

●●
●
●

●

●
●●

●
●

●

●● ●
●● ●●
●●

●

●

●●
●●
●

●
●●●●

●●●●

●

●
● ●

●
●
●

●●●
●●
●●

●●
●

●

●●
●

●●
●●
●

●●
●●

●
●

●

●●●
●
●

●

● ●●●●
●●

●●

●
● ●●

●

●
●

●●●● ●
●●

● ●
●

●●●
●

●
●
●●●
●●●
●

● ●
●

●
●●
●●●● ●●

●●

●●●●
●

●
●●

● ●●●●
●
●●

● ●
●●
● ●

●● ●
●●●●●

●
●

●
● ●●●

●
●
●

● ●●●
● ●

●●

●●
●

● ●

●
● ●●

●
●
●

● ●● ●

●
●

● ●●

●
●●

●
●●

●
●● ●●● ●

●●
●

●

●● ● ●●●
●● ●●●

● ●●
●

●

●●

●● ●

●
●●
●●

●●
●

●
●

●●●
●
●
●

●●●
● ●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●●●●

●

●
●●●●●

●

●

●●●
●
●●

●
● ●

●●
●
●●

● ●

● ●●
●

●
●

● ●●
● ●●

●
●
● ●●

●●●
●●

●
●●
●●●●

●
●●

●

●
●●●●●

●
●●

●
●●●●

●

●

●●
●●
●

●
●
●
●

●
● ●●
●

●

●
●●
●●

●
●

●●●●
● ●●

●

●

●

●● ●● ●
●●●●●
● ●●
●

●

●
●●●
●●●

●
●

●●● ●●●

●

●
● ●

●
●●●

●
●
●●●

●●●
●

●
●● ●●●● ●● ●●
● ●●●

●

●

●
●
●●
●

●
●● ●

●

● ●●
●

●

●
●●●● ●●

● ●● ●
●●

●●
●

●
●

●

●
●●●●●●

●
●

●
●●●

●
●
●
●●●●●●●

●●

●

● ●● ●
●●●

● ●●●
●●●
●
●

●

●●
●

●

●

●
●●

●●

●
●●●

●

● ●●
●

●
●

●●●●●
●
●

● ●●

●●●
●

●

●

●
● ●●●●

●

●
●●

●● ●
●
●
●

●●
●●●●
●
●●●●●●

●
●

●

● ●●●●●
●

●●
● ●●●

●
●

●

●● ●●●●
●
●● ●●●●

●
●
●

●●●●●●
●
●●●

●●●
●

●
●

●●●●●
●

●
●●●

●
●●
●

●
●

●
●●●
●

●●●●●

●
●●●
●
●

●
●●●

●

●●●
●

●

●
●●

●
●
●

●
●●●●

●●●● ●

●
●●●●

●

●
●●●●
●●●●
●

●
●●●●●
●●
●●●
●●

●● ●

●●●
●

●
●

●
● ●● ●●●
●●
●

● ●●●●
●

●●●●●●
●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●
●

●

●●
●

● ●●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●
●

●

●
●●●●

●
●
●

●●

● ●●
●

●

●

● ●●●●
●

●

●●
●● ●●

●
●
●

●●●●
● ●

●
●●

●

●●● ●●
●

●●● ●●●
●

●●
●

●●
●
●
●

●
●
●●●●

●
●

●
●●

●●●
●

●
●

●
●●●●

●
●

●●●

●● ●
●

●
●

●●●●●
●

●
●●
●●●●● ●

●

●●●●●●
●
●

●● ●●●
●

●
●

●
●●●●
●

●

●
●●

●●
●

●

●

●

●
●●●●●

●

●
●●

● ●●●●●
●●●●

●
●

●
● ●●

●●●
●
●
●

●
●● ●●●

●
●●

●

●●
●●●●●●●● ●

●●●
● ●

●●●
●

●
●

● ●●●●●
●

●●
● ●●●

●
●

●

●
●●●●●

●
● ●●

● ●●
●

●

●

●● ●●●●●
●●

●

●

●●

● ●

●●
●

●
●

● ●●
●●

●

●

●

●
●
●
●

●

●

●●

●
●

●
●●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●●

●

●

●●●

●●

●

●
●

●
●

●
● ●●

●●

●●●●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●●
●

●

●

●

●

●

●
●
●
●● ●

● ●

●
●
●●

●

●

●

●
●●

●●
●

●

●

●

●●

●

●

●●
●

●●●

●

●

●

●●

●●●

●

●

●

●

●
●

●●
●●
●

●

●

●

●
●

●

●

●
●●

● ●●

●

●

●

●
●

●● ●

●

●
● ●●

●
●

●●

●●

●
●●
●

●●
●

●

●

●

●
●● ●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

● ●

●

●●

●

●
●

●●

●

●

●

●

●●

●

●

●●
●

●
●

● ●●

●
●

●●● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●

●
●
●

●

●● ●
●

●●

●

●●
●

●
●

●● ●●

●

●

●●
●

●

●●
● ●●

●

●●● ●
●

●
● ●
●●

●

●
●
●
●●

●●●
●

●

●
●
●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●●

●

●

●
●
●●●

●

●●

●
●

●

●
● ●

●

●

●

●●●
●●●

●
●

●
●●

● ●

●

●
●

● ●
●

●

●●

●

●

●●
●

●
●●●●●

● ●
●

●● ●

●●●
●●

●

●

●

●
●●
●
●●
●

●

●

●
●

●
●

●
●

●
●● ●●

●

●

●

●

●
●

●●
●●

●

●
●

●

●
●

● ●
●

●

●

●

●

●

●

●●●
●

●

●●

●
●

●
●

●

●

●●●●
●●●●

●

●●●●
●

●
● ●

●●
●

●●

●
●

●
●

●

●

●●

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

4
1

n
=

6
8

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

n
=

7
0

●
●

●

●
●

●
●
●

●

●●

●
●

●

●

●
● ●

●

●

●●

●●

●

●
●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●
●

●●

●

●

●
●

●
●

●
●

●
●●

●

●

●

●

●●

●
●

●

●●

●
●
●

●●
●

●
●
●

●●

●

●

● ●

●

●

● ●●
●

●●● ●
●

●
●

●

●
●

● ●

●

●

●
●

●

●

●●●
●

●● ●●
●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●●

●

●
●●

● ●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●

● ●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●●

● ●

●
●

●●

●

●
●

●
●

●

●

●
●
●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●

●●
●●●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●●●

●●
●

● ●●

●

●

●

●
●

●●●●●

●

●
●

●●●

● ●

●
●

●

●

●●

●
●

●

●●● ●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●●●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●

●

●

●
●
●
●

● ●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●●

●

●

●
●

●● ●●
●

●
●●

●● ●●

●
●●

●● ●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

● ●

●

●

●

● ●
●

●●
●●

●
●

●
●●

●

●● ●●●

●●

●

●

●

●

●

●

●

●

●●
●

●●●●
●

●
●

●

●

●

●

●●●●●
●●

●●

●●
●●

●●●●●

●●

●
●
●●●

● ●●

●
●●●

●
●●
●

●

●

●
●
●

●

●●

●

●●

●

●

●

● ●

●
●

●

●
● ●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●● ●
●

●●
●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●
●

●
●● ●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●

●
●

●
●● ●

●●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

● ●
●●●

●

●

●

●●

●

●

● ● ●●● ●●
●
●

●
●

●●●
●

●
●●●●

●

●
●

●
●●

●
●

●

●

●●

●

●
●

●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●
●●●
●

●
●

●

●
●

●

●

●

●●●●●●

●

●●
●

● ●

●●
●

●●
●
●

●
●

●
●

●
●

●

●●
●

●
● ●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●

●
●●●

●

●●

●

●
●●

●

●

●
●

●
●

●

●
●● ●

●
●

● ●

●

●

●

●

●

●

●●●

●
●
●●
●

●●●

●

●

●
●

●
●●

●●●

●
●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●●
●
●

●

●

●

●

●●

●

●

●

●

●
●●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●●

●
●

●●
●

●
●

●

●

●

● ●
●●●

●

●

●

●
●● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●●

●●

●

●

●

●
●
●●

●

●

●

●

●

●●●
●

●

●

●
●

●
●
●

●
●

●

●●
●

●

●

●

● ●

●

●
●
●

●

● ●

●

●
●
●●

●
●

●

●
●

●
●

●

●

●
●

●●
●
●
●

●
●

●

●
●

●●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●●●

●
●

●

●

●

●

●
●●

●

●
●

●
●●●

●

●

●● ●
●

●

●

●

●
●

●●
●

●

●

●

●
● ●●● ●

●
●●

●
●

●

●
●
●
●

●
●

●

●
●

●
● ●●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●
●●

● ●

●

●

●●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●●●

●

●
●
●●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●●

●●●

●
●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●
●●

●
●

●

● ●

●

●

●
●

●

●
●
●

●

● ●
●●●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●●
● ●●●

●

●
●
●

●

●

●

●
●

●

●
●●●

●

●

●

●
●
●

●
●

●

n
=

3
2

n
=

3
2

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
6

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

3
2

n
=

1
5

n
=

1
5

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

1
5

n
=

4
8

UMI

full−length

S
e
u
ra

tB
im

o
d

S
e

u
ra

tB
im

o
d
Is

E
x
p
r2

S
e

u
ra

tB
im

o
d
n
o
fi
lt

e
d

g
e
R

L
R

T
ro

b
u
s
t

m
o
n
o
c
le

D
E

s
in

g
le

m
o
n
o
c
le

c
o
u
n
t

e
d

g
e

R
L
R

T
d
e
c
o
n
v

e
d
g
e
R

L
R

T
B

P
S

C
e
d
g
e
R

Q
L
F

e
d

g
e

R
Q

L
F

D
e
tR

a
te

S
e
u
ra

tT
o
b

it
m

o
n
o
c
le

c
e
n
s
u
s

e
d

g
e
R

L
R

T
c
e
n
s
u

s
vo

o
m

lim
m

a
D

E
S

e
q
2
n
o
fi
lt

D
E

S
e

q
2
b
e
ta

p
F
A

L
S

E
D

E
S

e
q
2

R
O

T
S

vo
o
m

D
3
E

R
O

T
S

c
p
m

R
O

T
S

tp
m

lim
m

a
tr

e
n
d

tt
e
s
t

W
ilc

o
x
o
n

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

c
p
m

M
A

S
T

tp
m

D
e
tR

a
te

M
A

S
T

tp
m

s
c
D

D
m

e
ta

g
e
n
o
m

e
S

e
q

D
E

S
e
q
2
c
e
n
s
u

s
S

C
D

E

0.05

0.50

1.00

0.05

0.50

1.00

F
P

R
 (

fr
a
c
ti
o
n
 o

f 
g
e
n
e
s
 w

it
h
 p

 <
 0

.0
5
)

After filteringB



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●
● ● ●●

●

●

●

●●

●●

● ●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

● ●

●
●

●
●

●

●

● ●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

● ●
● ●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●
●

● ●
●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●
●

●

●●

●●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●
●

●

●
● ●

●

●
●

●

●●

● ●

●

●
●

●

●

●●

●

●
●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

● ●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●
●

●

●●

● ●
●

● ● ●
●

●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

● ●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●● ●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●

●

●

n
=

4
8

n
=

5
9

n
=

6
1

n
=

2

n
=

6
1

n
=

6
4

n
=

7
4

n
=

1
4

n
=

6
3

n
=

7
9

n
=

6
3

n
=

6
2

n
=

1
8

n
=

2
2

n
=

1
6

n
=

1
9

n
=

3
8

n
=

1
1
8

n
=

6
5

n
=

7
9

n
=

5
0

n
=

1

n
=

2

n
=

1

n
=

1
2

n
=

1
0

n
=

1
0
2

n
=

2
7

n
=

1
1
1

n
=

5
2

n
=

1
0

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●

●
●

●

● ● ●
●

●

●

● ● ●
●

●

●

●
●●

●

●

● ●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

● ● ● ●

●● ●
●

●

●

●
●

●

●

● ●●

●
● ●

●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

● ●

● ●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
● ●

●

●

●

● ● ●

●

●

●

●

●●

●

●
●● ●

●

●
●

●
●

●

●

●
●

●

● ●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●●

●

●

●●
● ● ● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●●

● ● ● ●

●

●

●

●●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

● ●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●
●

● ●

●

●

●

●

●

●
●

●

●

●
● ● ●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

● ● ● ●

●
●

●

●

●

●

●●

●
●

●

● ● ● ●

● ●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
● ●

●

●

●

●
●

●

● ●

●

●

●

●

● ● ●
●

●

●

●

●
●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

● ● ● ●

●

●

●

●

●

●

●

●

● ●● ●

●

● ● ●
●

●

●

●

● ●

● ●

●

●

●

●
●

●
●

●

● ●

●

● ●

●
●

● ●
●

●
●

●
●

●

●

●● ●

● ●

●

●

●

●

●●

●

●

● ●

●
●

●●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●● ●

●

● ●

●

●

●

● ●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ● ●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

● ●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

n
=

4
8

n
=

5
9

n
=

6
1

n
=

2

n
=

6
1

n
=

6
4

n
=

7
4

n
=

1
4

n
=

6
3

n
=

7
9

n
=

6
3

n
=

6
2

n
=

1
8

n
=

2
2

n
=

1
6

n
=

1
9

n
=

3
8

n
=

1
1
8

n
=

6
5

n
=

7
9

n
=

5
0

n
=

1

n
=

2

n
=

1

n
=

1
2

n
=

1
0

n
=

1
0
2

n
=

2
7

n
=

1
1
1

n
=

5
2

n
=

1
0

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

● ● ● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

● ●
●

●

●

●

●
●

●

●
●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

● ●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●
●

●

● ●
● ●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●
●

●

●

●

● ● ●

●

●

●

●

●
●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●
● ●

●

●

●

●
●

●
●

●
●

●

●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

● ●
●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●
●●

●

● ●●

●●●

●

●

●

●
●

n
=

4
8

n
=

5
9

n
=

6
1

n
=

2

n
=

6
1

n
=

6
4

n
=

7
4

n
=

1
4

n
=

6
3

n
=

7
9

n
=

6
3

n
=

6
2

n
=

1
8

n
=

2
2

n
=

1
6

n
=

1
9

n
=

3
8

n
=

1
1
8

n
=

6
5

n
=

7
9

n
=

5
0

n
=

1

n
=

2

n
=

1

n
=

1
2

n
=

1
0

n
=

1
0
2

n
=

2
7

n
=

1
1
1

n
=

5
2

n
=

1
0

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●
●

●

●
● ●

●

●

●

● ● ●

●

●

●

● ●
●

●

●

● ●
●

●

● ●

●
●

●

●

●

● ●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

●
● ● ●

●

●

●
●

●
●

● ●●

● ● ●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●● ●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●
●

●

●
●●

●

●
●● ●

●

●
●●●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●
●

●

●●
●

●

●●
● ● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ● ●

● ●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

● ● ● ●

●

●
●

●

●
●

●
●

●
●

●

● ●
● ●

●
●

●

●

●

●

●

●

●

●
● ●

●

●
●

● ●

●

●

●

● ●
● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

● ●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●
● ●

●

●

●

●

●

●
●

●
●

● ●

●

● ● ●
●

●

●

●

●

●

●

●

●

● ●●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

● ●

●

●

●

● ●● ●
●

●
●

●

●

●

●

●●
●

● ●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ● ●

●

●

●

●●

●

●● ●

●

● ●
●

●

●
●

●
● ●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●
●

● ● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●

●

●

●

●

n
=

4
8

n
=

5
9

n
=

6
1

n
=

2

n
=

6
1

n
=

6
4

n
=

7
4

n
=

1
4

n
=

6
3

n
=

7
9

n
=

6
3

n
=

6
2

n
=

1
8

n
=

2
2

n
=

1
6

n
=

1
9

n
=

3
8

n
=

1
1
8

n
=

6
5

n
=

7
9

n
=

5
0

n
=

1

n
=

2

n
=

1

n
=

1
2

n
=

1
0

n
=

1
0
2

n
=

2
7

n
=

1
1
1

n
=

5
2

n
=

1
0

log2(average CPM) log2(variance(CPM))

CV(CPM) Fraction zeros

B
P

S
C

D
E

S
e
q
2

D
E

S
e

q
2

b
e
ta

p
F
A

L
S

E
D

E
S

e
q
2
c
e
n
s
u
s

D
E

S
e
q
2
n
o
fi
lt

D
E

s
in

g
le

e
d
g
e
R

L
R

T
e

d
g

e
R

L
R

T
c
e
n
s
u
s

e
d

g
e

R
L
R

T
d
e
c
o
n
v

e
d

g
e
R

L
R

T
ro

b
u
s
t

e
d
g
e
R

Q
L
F

e
d

g
e

R
Q

L
F

D
e
tR

a
te

M
A

S
T

c
p
m

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

tp
m

M
A

S
T

tp
m

D
e
tR

a
te

m
e

ta
g
e
n
o
m

e
S

e
q

m
o
n
o
c
le

m
o

n
o
c
le

c
e
n
s
u
s

m
o
n
o
c
le

c
o
u
n
t

N
O

D
E

S
R

O
T

S
c
p
m

R
O

T
S

tp
m

R
O

T
S

vo
o
m

S
A

M
s
e
q

S
C

D
E

S
e
u
ra

tB
im

o
d

S
e
u

ra
tB

im
o
d
Is

E
x
p
r2

S
e

u
ra

tB
im

o
d
n
o
fi
lt

S
e
u
ra

tT
o
b
it

vo
o
m

lim
m

a

B
P

S
C

D
E

S
e
q
2

D
E

S
e

q
2

b
e
ta

p
F
A

L
S

E
D

E
S

e
q
2
c
e
n
s
u
s

D
E

S
e
q
2
n
o
fi
lt

D
E

s
in

g
le

e
d
g
e
R

L
R

T
e

d
g

e
R

L
R

T
c
e
n
s
u
s

e
d

g
e

R
L
R

T
d
e
c
o
n
v

e
d

g
e
R

L
R

T
ro

b
u
s
t

e
d
g
e
R

Q
L
F

e
d

g
e

R
Q

L
F

D
e
tR

a
te

M
A

S
T

c
p
m

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

tp
m

M
A

S
T

tp
m

D
e
tR

a
te

m
e

ta
g
e
n
o
m

e
S

e
q

m
o
n
o
c
le

m
o

n
o
c
le

c
e
n
s
u
s

m
o
n
o
c
le

c
o
u
n
t

N
O

D
E

S
R

O
T

S
c
p
m

R
O

T
S

tp
m

R
O

T
S

vo
o
m

S
A

M
s
e
q

S
C

D
E

S
e
u
ra

tB
im

o
d

S
e
u

ra
tB

im
o
d
Is

E
x
p
r2

S
e

u
ra

tB
im

o
d
n
o
fi
lt

S
e
u
ra

tT
o
b
it

vo
o
m

lim
m

a

−2

0

2

−2

0

2

s
ig

n
a
l−

to
−

n
o
is

e
 s

ta
ti
s
ti
c
 c

o
m

p
a
ri

n
g

s
ig

n
if
ic

a
n
t 
a
n
d
 n

o
n
−

s
ig

n
if
ic

a
n
t 

g
e
n
e
s



0.1

0.14

0.15

0.76

0.22 0.26 0.32

0.71
0.50.36

0.5

0.26 0.11
0.15

0.88
0.66

0.77 0.58

0.31

0.44

B
P

S
C

D
3
E

D
E

S
e
q
2

D
E

S
e
q
2
b
e
ta

p
F
A

L
S

E

D
E

S
e
q
2
c
e
n
s
u
s

D
E

S
e
q

2
n
o
fi
lt

D
E

s
in

g
le

e
d
g
e

R
L
R

T

e
d
g
e
R

L
R

T
c
e
n
s
u
s

e
d
g
e
R

L
R

T
d
e
c
o
n
v

e
d
g
e
R

L
R

T
ro

b
u
s
t

e
d
g
e
R

Q
L
F

e
d
g
e
R

Q
L
F

D
e
tR

a
te

lim
m

a
tr

e
n
d

M
A

S
T

c
p
m

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

tp
m

M
A

S
T

tp
m

D
e
tR

a
te

m
e
ta

g
e
n
o
m

e
S

e
q

m
o
n
o
c
le

m
o
n
o
c
le

c
e
n
s
u
s

m
o
n
o
c
le

c
o
u
n
t

N
O

D
E

S

R
O

T
S

c
p
m

R
O

T
S

tp
m

R
O

T
S

vo
o
m

S
A

M
s
e
q

s
c
D

D

S
C

D
E

S
e
u
ra

tB
im

o
d

S
e
u
ra

tB
im

o
d
Is

E
x
p
r2

S
e
u
ra

tB
im

o
d
n
o
fi
lt

S
e
u
ra

tT
o
b
it

tt
e
s
t

vo
o
m

lim
m

a

W
ilc

o
x
o
n

Input

Census

counts

CPM

TPM

Modeling

nonparametric

parametric

Transformation

log

no

NA values

no

yes



●

●● ●●

●

● ●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●●

●●

●● ●

●

●

●

●

●

●
●●

●●

●● ●

●

●

●

●

●

●
●●

●●

●
● ●

●

●

●

●

●

●

●●

●●

●
● ●

●

●
●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●

●●

●●

●● ●

●

●

●

●

●

● ●●

●●

●
● ●

●

●

●

●

●

● ●●

●●

●
● ●

●

●

●

●

●

● ●●
●●

●● ●

●

●

●

●

●

● ●●

●●

●
● ●

●

●
●

●

●

● ●●
●●

●
● ●

●

●

●

●

●

●

●●
●●

●● ●

●

●
●

●

●

●
●●

●●

●
● ●

●

●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●
●●

●● ●

●

●●

●

●

●

●●

●●

●● ●

●

●●

●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

2
7

●●
●

●●
●●

●

●

●

●
●

●

●

●

●

●

●
●●

●●
●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●
●●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●
●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●
●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●
●

●

●
●

n
=

4
8

n
=

4
3

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

●●

●

●

●

●

●

●
●●

● ●

●

●

●
● ●

●
● ●

●

●●●
●

●

●

●

●

●

●

● ●●

●
●

●
●

●
●

●●

●

●

●
●

●●
●

●
● ●

●

●
●●

●
●

●
●

●

●

●●

●●

●
●

●

●

●

● ●●

●

●

●

●●
● ●

●
●

●

●

●

●●

●

●

●
●

● ●

●

● ●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

● ●

●●

●

●

●

●

● ●

●
●

●

● ●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●●
●●

●

●

●

●

●●

●●

●
●

●

●

●

● ●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●● ●●●

●

● ●

●

● ●●● ● ● ●●● ●●●

●

● ●●● ●●●

●

● ●●● ●●● ● ● ●●●

●

●
● ● ●

●

●●

●

●
● ●

●

●

●●

●

●
● ● ●

●

●●

●

●●

●
●

●

●●
●

●
●

● ●

●

●●

●

●●

● ●

●

●●

●

●
●

●
●

●

●● ●●
●

●
●

●

●●
●

●●

●
●

●

●●
●●●

●
●

●

●● ●
●●

●
●

●

●●

●
●● ●

●

●

●● ●
●●

●

●
●

●● ●
●● ●

● ●

●●
●

●
● ●

● ●

●● ●●●
●

●

●

●●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

high FDP in range low FDP

S
e

u
ra

tB
im

o
d

n
o

fi
lt

m
o

n
o

c
le

S
e

u
ra

tB
im

o
d

e
d

g
e

R
Q

L
F

e
d

g
e

R
Q

L
F

D
e

tR
a

te
e

d
g

e
R

L
R

T
ro

b
u

s
t

D
E

S
e

q
2

b
e

ta
p

F
A

L
S

E
B

P
S

C
D

E
S

e
q

2
N

O
D

E
S

e
d

g
e

R
L

R
T

d
e

c
o

n
v

e
d

g
e

R
L

R
T

m
o

n
o

c
le

c
o

u
n

t

D
E

S
e

q
2

n
o

fi
lt

m
o

n
o

c
le

c
e

n
s
u

s
D

E
s
in

g
le

M
A

S
T

tp
m

D
e

tR
a

te
m

e
ta

g
e

n
o

m
e

S
e

q
S

e
u

ra
tT

o
b

it
vo

o
m

lim
m

a
M

A
S

T
tp

m
M

A
S

T
c
p

m
D

e
tR

a
te

M
A

S
T

c
p

m
S

A
M

s
e

q
R

O
T

S
tp

m
D

E
S

e
q

2
c
e

n
s
u

s
e

d
g

e
R

L
R

T
c
e

n
s
u

s
S

e
u

ra
tB

im
o

d
Is

E
x
p

r2

R
O

T
S

c
p

m
R

O
T

S
vo

o
m

lim
m

a
tr

e
n

d
W

ilc
o
x
o

n
tt
e

s
t

D
3

E
s
c
D

D
S

C
D

E

0.05

0.50

1.00

F
D

P
 a

t
a

d
j.
p

 =
 0

.0
5

 c
u

to
ff

Without filteringA

●
●●

●
● ●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●
● ●

●
●

●

●

●

●
●

●
●● ●

● ●

●

●

●

●●

●
●

● ●

● ●●

●

●

●
●

●
●● ●

● ●●

●

●

●
●

● ●● ●

● ●

●

●

●

●
●

● ●● ● ● ●

●

●

●

●

●

●

● ●● ● ● ●

● ●

●

●

●

●

● ●● ● ● ●

●
●

●

●

●

●

●
●● ● ● ●

●
●

●

●

●

●

●
●● ● ● ●

●
●

●

●

●

●

●
●● ● ● ●

●
●

●

●

●

●

●
●● ● ● ●

●

●
●

●

●

●

●
●● ● ● ●

●
●

●

●

●

●

● ●● ● ● ●

●

●
●

●

●

●

● ●● ● ● ●

●
●

●

●

●

●

● ●● ● ● ●

●

● ●

●

●

●

●
●● ● ● ●

●

● ●

●

●

●

●
●● ● ● ●

●

●
●

●

●

●

● ●● ● ● ●

●

● ●

●

●

●

● ●● ● ● ●

●

● ●

●

●

●

● ●● ● ● ●

●

● ●

●

●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

1
6

n
=

4
8

n
=

4
8

●

●

●

● ● ●

●

●●

●

●
●

●
●

●

● ● ●

●

●
●

●

●
●

●
●

●

● ● ●

●

●
●

●

●
●

●●

●

● ●

●

●

●●

●

● ● ●
●

●

● ● ●

●

●

●

●

●

● ●
●

●

● ● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●● ●
●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●
●

● ●

●

●

● ●

●

●

●

●

●● ●
●

●

●

●
●

●●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

n
=

4
3

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

●●

●●●●

●
●

●

●

● ●
●

●

●●
●●●

●

●

●

● ●
●

●

●
●

●
●

●
●

●

●

●
●

●
●

●●●●
●

●

●

●

● ●
●●

●
●

●●
●

●

●

●

●
●●

● ●●●●

●

●

●

●

●
●

●●

●
●

●●
● ●

● ●

● ●●
●

●
●

●
●●

●

●

●

● ●●

●

●

●

●●

●
●

●
●

● ●●
●

●
●

●
●

●

●

●

●

●
●

●● ●
●

●
●

●

●

●
●

● ●

●

●

●

●
●

●

●
●

● ●

●

●●

●

●

●

●

●●

●

● ●

●

●●

●

●
●

●●

●

●

● ●

●

●●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●

● ●

●

●

●

●

●●
●●

●

●

●

●

●
●●

●

●

●

●

●●
●

●

●

●
●

●

● ●●●●
●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●
●

●● ●

●

●●●
●

●

●

● ●●

●
●

●

●

●●

●
●

●

●
●●

●

●
●

●
●● ●

● ●

●

●

●
●

●
●

●●

●

●

● ●

● ●

●

●

●
●

●
●● ●

●

●

● ●

●

● ●●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●● ●●●●●

●

● ●

●

●●●

●●●●

● ● ● ●● ●●

●

●

●

●

●● ● ● ●● ●●

●
●

●

●

●●

●

● ●● ●●●

●●●●

● ● ● ●● ●

●●

●
●

●
●

● ● ●

●

● ●●●

●
●

●
●

● ●
●

●

●
●

●●

●●

●
●

● ●
●

●

● ●●●

●
●

●
●

●

●

●

●

● ●●●
●●●●

●

● ●

●

● ●●●

●●
●●●

●
●

●

● ●●●

●
●●●●

● ●

●

●
●

●●

●●
●●

●

● ●

●

● ●●●

●●●●
●

● ●

●

● ●●●

●
●

●●●
● ●

●

● ●●●

●
●●●

●

●
●

●

●
●●●

●
●

●
●● ●

●

●

● ●
●●

●
●●

●
●

● ●

●

● ●●●

●
●●●

●
●

●

●

● ●●
●

●
●

●
●

●
●

●

●

●
●

●●

●●
●

●
●

●
●

●

● ●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

high FDP in range low FDP

S
e

u
ra

tB
im

o
d

n
o

fi
lt

S
e

u
ra

tB
im

o
d

e
d

g
e

R
L

R
T
ro

b
u

s
t

D
E

S
e

q
2

b
e

ta
p

F
A

L
S

E
B

P
S

C
N

O
D

E
S

D
E

S
e

q
2

D
E

S
e

q
2

n
o

fi
lt

m
o

n
o

c
le

m
o

n
o

c
le

c
o

u
n

t
e

d
g

e
R

L
R

T
e

d
g

e
R

L
R

T
d

e
c
o

n
v

m
o

n
o

c
le

c
e

n
s
u

s
e

d
g

e
R

L
R

T
c
e

n
s
u

s
S

e
u

ra
tT

o
b

it
S

A
M

s
e

q
D

E
s
in

g
le

vo
o

m
lim

m
a

R
O

T
S

tp
m

D
E

S
e

q
2

c
e

n
s
u

s
e

d
g

e
R

Q
L

F
e

d
g

e
R

Q
L

F
D

e
tR

a
te

m
e

ta
g

e
n

o
m

e
S

e
q

S
e

u
ra

tB
im

o
d

Is
E

x
p

r2

lim
m

a
tr

e
n

d
D

3
E

tt
e

s
t

W
ilc

o
x
o

n
R

O
T

S
c
p

m
M

A
S

T
tp

m
D

e
tR

a
te

M
A

S
T

tp
m

R
O

T
S

vo
o

m
M

A
S

T
c
p

m
D

e
tR

a
te

M
A

S
T

c
p

m
s
c
D

D
S

C
D

E

0.05

0.50

1.00

F
D

P
 a

t
a

d
j.
p

 =
 0

.0
5

 c
u

to
ff

After filteringB

●

●●

●●
●

● ●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●●

●●●

●
●

●

●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●
●

●●●

●
●

● ●

●

●

●

●●

●●●

●
●

●

●

●

●

●

●
●

●●●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●
●

●●●● ●●
●

●
●

●

●●

●●●● ●●
●

●

●

●

●
●

●●●●

●

●
●

●
●

●

●
●

●●●● ●
●

●

●

●

●

●
●

●●●● ●●
●

●
●

●

●●

●●●● ●

●

●
●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

2
7

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

● ●●
●

●
●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●
●

●

●

●

●
●

● ●

●

● ●
●●●●

●

●

●

●

●
●

●
●

●

● ●●
●

●●

●

●

●

●

●
●

● ●

●

●
●●●●●

●

●

●

●

●
●

●
●

●

●

●

●●●●

●

●

●
●

●●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

● ●

●●●●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●●●

●

●
●

●
●

●

●

●

●

● ●

●●●●

●

●

●

● ●

●

●

●

●

● ●

●●●●

●

●

●

● ●

●

●

●

●

●
●

●●●● ● ●●
●

● ● ●

●

●
●

●●
●●

● ●●
●

●
● ●

●

● ●
●●●● ● ●●

●
● ● ●

●

●
●

●●●● ● ●●
●

● ●
●

●

●
●

●●●● ● ●●
●

● ●

●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

● ●

●

●●●●

●

●
●

●

●

●

●

●

● ●

●

●●●●

●

●
●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

n
=

4
8

n
=

4
3

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●●

● ●
●

●

●

●

●●

● ●
●

●

●

●

●●

● ●
●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●●

●

●
●●

● ●

●●

●

●
●●

● ●

●●

●

●
●●

● ●

●●

●

●
●●

●

●●● ● ● ●●● ●●● ● ● ●●● ●●●
●

● ●●● ●●● ● ● ●●● ●●● ● ● ●●●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

high FDP in range low FDP

S
e
u
ra

tB
im

o
d
n
o
fi
lt

m
o
n
o
c
le

S
e
u
ra

tB
im

o
d

e
d
g
e
R

Q
L
F

e
d
g
e
R

Q
L
F

D
e
tR

a
te

e
d
g
e
R

L
R

T
ro

b
u
s
t

D
E

S
e
q
2
b
e
ta

p
F
A

L
S

E
B

P
S

C
D

E
S

e
q
2

N
O

D
E

S
e
d
g
e
R

L
R

T
d
e
c
o
n
v

e
d
g
e
R

L
R

T
m

o
n
o
c
le

c
o
u
n
t

D
E

S
e
q
2
n
o
fi
lt

m
o
n
o
c
le

c
e
n
s
u
s

D
E

s
in

g
le

M
A

S
T

tp
m

D
e
tR

a
te

m
e
ta

g
e
n
o
m

e
S

e
q

S
e
u
ra

tT
o
b
it

vo
o
m

lim
m

a
M

A
S

T
tp

m
M

A
S

T
c
p
m

D
e
tR

a
te

M
A

S
T

c
p
m

S
A

M
s
e
q

R
O

T
S

tp
m

D
E

S
e
q
2
c
e
n
s
u
s

e
d
g
e
R

L
R

T
c
e
n
s
u
s

S
e
u
ra

tB
im

o
d
Is

E
x
p
r2

R
O

T
S

c
p
m

R
O

T
S

vo
o
m

lim
m

a
tr

e
n
d

W
ilc

o
x
o
n

tt
e
s
t

D
3
E

s
c
D

D
S

C
D

E

0.0

0.5

1.0

T
P

R
 a

t
a
d
j.
p
 =

 0
.0

5
 c

u
to

ff

Without filteringC

●
●● ● ● ●●

●

●

●

●

●
●● ● ● ●●

●

●

●

●

●
●● ●

● ●●

●

●

●

●

●
●● ● ● ●●

●

●

●

●

●
●● ●

● ●●

●

●

●

●

●
●● ●

● ●●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

●
●● ●

● ●●

●

●

●

●

●

●● ●
● ●●

●

●

●

●

●

●
● ●

● ●●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●● ●

● ●
●

●

●

●

●

●

●
● ●

● ●
●

●
●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

●

●

●

●● ●
● ●●

●

●

●

●

● ●
● ●

● ●

●

●

●

●

●

●
●

● ●

● ●●

●

●

●

●

● ●
● ●

● ●
●

●

●

●

●

●
●

● ●

● ●●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

● ●

● ●

● ●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●●
●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

●

●● ● ● ●●

●

●

●

●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

1
6

n
=

4
8

n
=

4
8

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

●
●

●

● ● ●

●●●

●

●

● ●

●
●

●
●

●●●

●

●

●

●

●

● ● ●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

n
=

4
3

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

●
● ●●●●

●

●

●

●
●

●

●●
●●●●

●

●

●

●

●

●●
● ●●●●

●

●

●

●

●
●●

●
●●●●

●

●

●

●

●

●●●
●●●●

●

●

●

●

●

●●
● ●●●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●●

●

●●
●●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

● ●●

●

●●
●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●●

●

●

●

●●
●●

●

●

●

●●

●●

●

●●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●
●

●
●

●
●●●●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

● ●●
●

●●●●

●

●

●

●

● ●●

●
●●●●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●●●●●
●

●
●●

●●

● ●●●●

●
●

●
●●

●●
● ●

●

●

●●
●

● ●●
●●

● ●

●

●

●●
●

●
●●

●●

● ●●●●
●

●
● ●●

●

●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●
● ●●● ●●●●

●

●

●

●
● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●
● ●

●● ●●●●

●

●

●

●
● ●●●

●●●●

●

●

●

●

● ●●●
●●●●

●

●

●

●
● ●●● ●●●●

●

●

●

●
● ●●● ●●●●

●

●

●

●
● ●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

high FDP in range low FDP

S
e
u
ra

tB
im

o
d
n
o
fi
lt

S
e
u
ra

tB
im

o
d

e
d
g
e
R

L
R

T
ro

b
u
s
t

D
E

S
e
q
2
b
e
ta

p
F
A

L
S

E
B

P
S

C
N

O
D

E
S

D
E

S
e
q
2

D
E

S
e
q
2
n
o
fi
lt

m
o
n
o
c
le

m
o
n
o
c
le

c
o
u
n
t

e
d
g
e
R

L
R

T
e
d
g
e
R

L
R

T
d
e
c
o
n
v

m
o
n
o
c
le

c
e
n
s
u
s

e
d
g
e
R

L
R

T
c
e
n
s
u
s

S
e
u
ra

tT
o
b
it

S
A

M
s
e
q

D
E

s
in

g
le

vo
o
m

lim
m

a
R

O
T

S
tp

m
D

E
S

e
q
2
c
e
n
s
u
s

e
d
g
e
R

Q
L
F

e
d
g
e
R

Q
L
F

D
e
tR

a
te

m
e
ta

g
e
n
o
m

e
S

e
q

S
e
u
ra

tB
im

o
d
Is

E
x
p
r2

lim
m

a
tr

e
n
d

D
3
E

tt
e
s
t

W
ilc

o
x
o
n

R
O

T
S

c
p
m

M
A

S
T

tp
m

D
e
tR

a
te

M
A

S
T

tp
m

R
O

T
S

vo
o
m

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

c
p
m

s
c
D

D
S

C
D

E

0.0

0.5

1.0

T
P

R
 a

t
a
d
j.
p
 =

 0
.0

5
 c

u
to

ff

After filteringD

●

●●

●●
●

● ●

●

●
●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●
●

●●
●

● ●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●●
●●

●

●

●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●●

●●

●
● ●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
● ●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●● ●●●● ●

●

●●

●

●

●

●●
●●●● ●

●

●●

●

●

●

●● ●●●● ●

●

●●

●

●

●

●● ●●●● ●

●

●●

●

●

●

●●
●●●● ●

●

●●

●

●

●

●● ●●●● ●

●

●●

●

●

●

●●
●●●● ●

●

●
●

●

●

●

●●
●●●● ●

●

●
●

●

●

●

●●
●●●● ●

●

●
●

●

●

●

●●
●●●● ●

●

●
●

●

●

●

●●
●●●● ●

●

●
●

●

●

●

●●

●●●● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

●

●●

●●●● ●

●

●

●

●

●

●

●●

●●
●

● ●

●

●

●

●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

2
7

●

● ●

●

●●●●

●

●

●

●

●
●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●●

●

●

●
●

●

●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

●

●
●

●●●●

●

●

●

●

●●

●

●

● ●

●

●●●●

●

●

●

●

●●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●

●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●

●
●

●
●

●

●

●

● ●

●
●●

●

●

●

●

●
●

●

●

●

● ●

●●●●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●●●●

●

●

●

●
●

●

●

● ● ●●●●●

●

●

●●

●
●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●●

●

●

●

●

● ● ●●●●●

●

●

●
●

●

●

●

●

● ● ●●●●●

●

●

●
●

●

●

●

●

● ● ●●●●●

●

●

●
●

●

●

●

●

● ● ●●●●●

●

●

●
●

●

●

●

●

● ● ●●●●●

●

●

●
●

●

●

●

n
=

4
8

n
=

4
3

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●●
●

●

●●
●

●

●●
●

●

●●
●

●

●● ●

●

●
●

●
●

●● ●

●

●
●

●

●

●●
●

●

●
●

●
●

●●
●

●

●●
●

●

●●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●● ●

●

●

●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●●● ●●

●

●

●

●●● ●●

●

●

●

●●● ●●

●

●

●

●●● ●●

●

●

●

●●● ●●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●

●
●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●
●

●

●

●

●

●●●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

high FDP in range low FDP

S
e

u
ra

tB
im

o
d
n
o
fi
lt

m
o
n
o
c
le

S
e
u
ra

tB
im

o
d

e
d
g
e
R

Q
L
F

e
d

g
e

R
Q

L
F

D
e
tR

a
te

e
d

g
e
R

L
R

T
ro

b
u
s
t

D
E

S
e

q
2
b
e
ta

p
F
A

L
S

E
B

P
S

C
D

E
S

e
q
2

N
O

D
E

S
e

d
g

e
R

L
R

T
d
e
c
o
n
v

e
d
g
e
R

L
R

T
m

o
n
o
c
le

c
o
u
n
t

D
E

S
e
q
2
n
o
fi
lt

m
o
n
o
c
le

c
e
n
s
u
s

D
E

s
in

g
le

M
A

S
T

tp
m

D
e
tR

a
te

m
e

ta
g
e
n
o
m

e
S

e
q

S
e
u
ra

tT
o
b
it

vo
o
m

lim
m

a
M

A
S

T
tp

m
M

A
S

T
c
p
m

D
e
tR

a
te

M
A

S
T

c
p
m

S
A

M
s
e
q

R
O

T
S

tp
m

D
E

S
e
q
2
c
e
n
s
u
s

e
d

g
e

R
L
R

T
c
e
n
s
u
s

S
e

u
ra

tB
im

o
d
Is

E
x
p
r2

R
O

T
S

c
p
m

R
O

T
S

vo
o
m

lim
m

a
tr

e
n
d

W
ilc

o
x
o
n

tt
e
s
t

D
3
E

s
c
D

D
S

C
D

E

0.0

0.5

1.0

A
re

a
 u

n
d
e
r 

R
O

C
 c

u
rv

e

Without filteringE

●
●● ● ● ●●

●

●

●

●

●
●● ● ● ●●

●

●

●

●
●

●● ● ● ●●

●

●

●

●
●

●● ● ● ●●

●

●

●

●
●

●● ● ● ●●

●

●

●

●
●

●● ● ● ●●

●

●

●

●

●
●● ● ● ●

●

●

●

●

●
●

●● ● ● ●●

●

●

●

●
●

●● ● ● ●●

●

●

●

●

●
●● ● ● ●●

●

●

●

●
●

●● ● ● ●
●

●

●

●

●

● ●
●

● ● ●●

●

●

●

●
●

●
●

● ● ●
●

●

●

●

●

●
●●

● ● ●
●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●

●
●

●
● ● ●

●

●

●
●

● ●

●● ● ● ●
●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●●

● ● ●
●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●●
● ● ●

●

●

●

●

●

●

●
●

● ● ●
●

●

●
●

●

●

●●

● ● ●
●

●

●

●

●

●
●

●

● ● ●
●

●

●

●

●

●
●

●

● ● ●
●

●

●●

●

● ●
●

● ● ●
●

●

●
●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●
●

●

●

●

●● ● ● ●●

●

●
●

●

●

●

●● ● ● ●●

●

●●

●

●

●

●● ● ● ●●

●

●●

●

●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

1
6

n
=

4
8

n
=

4
8

●

●● ● ●

●

●

●●

●

●

●

●

●●
● ●

●

● ●
●

●

●

●

●

●● ● ●

●

● ●
●

●

●

●

●

●●
● ●

●

● ●
●

●

●

●

●

●●
● ●

●

● ●
●

●

●

●

●

●●
● ●

●

● ●
●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●●
● ●

●
● ●

●

●

●

●

●

●●
● ●

●
● ●

●

●

●

●

●

●●
● ●

●
● ●

●

●

●

●

●

●●
● ●

●

● ●
●

●

●

●

●

●●
●

●

●

● ●●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●●
● ●

●
●

●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●● ● ●

●

●

●●

●●

●

●

●● ● ●

●

●

●●

●
●

●

●

●● ● ●

●

●

●●

●

●

●

●

●● ● ●

●

●

●●

●

●

●

●

●● ● ●

●

●

●●

●
●

●

●

●● ● ●

●

●

●
●

●

●

●

●

●● ● ●

●

●

●
●

●

●

●

●

●● ● ●

●

●

●●

●

●

●

●

●● ● ●

●

●

●●

●

●

●

●

●● ● ●

●

●

●●

●

●

●

●

●● ● ●

●

●

●
●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●

n
=

4
3

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

●● ●●●●
●

●

●

●● ●
●● ●●●●

●

●

●

●●
●●● ●●●●

●

●

●

●●
●●● ●●●●

●

●

●

●●
●●● ●●●●

●

●

●

●●
●●● ●●●●

●

●

●

●●
●

●
● ●●●●

●

●

●

●●
●●

● ●●●●

●

●

●

●●
●●● ●●●●

●
●

●

●●
●●

● ●●●●

●
●

●

●●
●●

● ●●●●

●

●

●

●
●

●

●
● ●●●●

●
●

●

●● ●●
● ●

●
●

●

●

●

●

●●
●●

● ●●●●

●

●

●

●●
●●

● ●●●●

●

●

●

●● ●●
● ●●●●

●
●

●

●●
●

●
● ●●●●

●
●

●

●
●

●

●

● ●●●●
●

●

●

●

●

●●

●
●●●●

●

●

●

●
●

●●
● ●●●●

●

●

●

●
●

●●

● ●●●●
●

●

●

●
●

●●

● ●●●●
●

●

●

●
●

●

●
●

●●●●
●

●

●

●
●

●●
● ●

●
●

●

●

●

●

●
●

●●

●
●●●●

●
●

●

●
●

●
●

●
●●●●

●

●

●

●
●

●●

●
●●●●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●●
●

●

●
●●●●

●

●

●

●●
●●

●
●

●

●
●

●
●

●

●●
●●

●
●●

●●
●

●

●

●●
●

●

●
●●●●

● ●

●

●●
●

●● ●●●●
●

●

●

●● ●●● ●●●●
●

●

●

●● ●●● ●●●●
●

●

●

●● ●●● ●●●●
●

●

●

●● ●●● ●●●●
●

●

●

●● ●●● ●●●●
●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●●● ●●●●

●

●

●

●● ●

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

n
=

4
8

high FDP in range low FDP

S
e

u
ra

tB
im

o
d
n
o
fi
lt

S
e
u
ra

tB
im

o
d

e
d

g
e
R

L
R

T
ro

b
u
s
t

D
E

S
e

q
2
b
e
ta

p
F
A

L
S

E
B

P
S

C
N

O
D

E
S

D
E

S
e
q
2

D
E

S
e
q
2
n
o
fi
lt

m
o
n
o
c
le

m
o
n
o
c
le

c
o
u
n
t

e
d
g
e
R

L
R

T
e

d
g

e
R

L
R

T
d
e
c
o
n
v

m
o
n
o
c
le

c
e
n
s
u
s

e
d

g
e

R
L
R

T
c
e
n
s
u
s

S
e
u
ra

tT
o
b
it

S
A

M
s
e
q

D
E

s
in

g
le

vo
o
m

lim
m

a
R

O
T

S
tp

m
D

E
S

e
q
2
c
e
n
s
u
s

e
d
g
e
R

Q
L
F

e
d

g
e

R
Q

L
F

D
e
tR

a
te

m
e

ta
g
e
n
o
m

e
S

e
q

S
e

u
ra

tB
im

o
d
Is

E
x
p
r2

lim
m

a
tr

e
n
d

D
3
E

tt
e
s
t

W
ilc

o
x
o
n

R
O

T
S

c
p
m

M
A

S
T

tp
m

D
e
tR

a
te

M
A

S
T

tp
m

R
O

T
S

vo
o
m

M
A

S
T

c
p
m

D
e
tR

a
te

M
A

S
T

c
p
m

s
c
D

D
S

C
D

E

0.0

0.5

1.0

A
re

a
 u

n
d
e
r 

R
O

C
 c

u
rv

e

After filteringF



M
e
d
ia
n
F
D
P

M
a
x
F
D
P

T
P
R

A
U
R
O
C

M
e
d
ia
n
F
P
R
_
U
M
I

M
a
x
F
P
R
_
U
M
I

M
e
d
ia
n
F
P
R
_
F
L

M
a
x
F
P
R
_
F
L

S
c
a
la
b
ility

S
p
e
e
d

B
ia
s
D
E
G

C
o
n
s
is
te
n
c
y

C
o
m
p
le
x
D
e
s
ig
n

F
a
ilu
re
R
a
te

edgeRQLFDetRate

MASTcpmDetRate

limmatrend

MASTtpmDetRate

edgeRQLF

ttest

voomlimma

Wilcoxon

MASTcpm

MASTtpm

SAMseq

D3E

edgeRLRT

metagenomeSeq

edgeRLRTcensus

edgeRLRTdeconv

monoclecensus

ROTStpm

ROTSvoom

DESeq2betapFALSE

edgeRLRTrobust

monoclecount

DESeq2

DESeq2nofilt

ROTScpm

SeuratTobit

NODES

DESeq2census

scDD

BPSC

SCDE

DEsingle

monocle

SeuratBimodnofilt

SeuratBimodIsExpr2

SeuratBimod

poor

intermediate

good


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

