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Abstract

When testing a statistical mediation model, it is assumed that factorial measurement
invariance holds for the mediating construct across levels of the independent variable
X. The consequences of failing to address the violations of measurement invariance
in mediation models are largely unknown. The purpose of the present study was to
systematically examine the impact of mediator noninvariance on the Type I error
rates, statistical power, and relative bias in parameter estimates of the mediated
effect in the single mediator model. The results of a large simulation study indicated
that, in general, the mediated effect was robust to violations of invariance in loadings.
In contrast, most conditions with violations of intercept invariance exhibited severely
positively biased mediated effects, Type I error rates above acceptable levels, and sta-
tistical power larger than in the invariant conditions. The implications of these results
are discussed and recommendations are offered.
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Statistical mediation analysis studies the hypothesized effect of an independent vari-

able (X) on a mediator variable (M), which in turn causes the observed values in a

dependent variable (Y; Baron & Kenny, 1986; Judd & Kenny, 1981; MacKinnon,

2008). Statistical mediation is particularly relevant in treatment and prevention

science where it is used to evaluate if interventions changed a hypothesized med-

iator that is thought to be related to an outcome of interest (MacKinnon, 2008;

MacKinnon & Dwyer, 1993). In randomized control trials, the independent vari-

able X in the mediation model represents the groups being compared (i.e., treat-

ment vs. control). For example, Gregg, Callaghan, Hayes, and Glenn-Lawson

(2007) compared a group of Type 2 diabetes patients randomly assigned to receive

a one-day education workshop with a group of patients receiving a combination of

the education workshop and acceptance and commitment therapy. The researchers

found that the changes in diabetes-related acceptance and self-management beha-

vior mediated the impact of the treatment on changes in blood glucose. In a differ-

ent randomized control trial comparing the effectiveness of an acceptance and

commitment therapy intervention and a control group for increasing clinicians’

willingness to use pharmacotherapy, Varra, Hayes, Roget, and Fisher (2008) found

that the changes in psychological flexibility and the believability of barriers to

using empirically supported treatments mediated the effect of the treatment on the

targeted outcome. In another example, Stice, Presnell, Gau, and Shaw (2007)

investigated two eating disorder prevention programs and found that a dissonance-

based intervention partially affected several outcome measures such as body dissa-

tisfaction, dieting, negative affect, and bulimic symptoms through reducing levels

of a mediator (thin-ideal internalization).

Among the many assumptions needed to accurately test for statistical mediation

(MacKinnon, 2008), the single mediator model assumes that the variables in the

model are reliable and valid representations of the measured constructs. Therefore, as

in the above examples, the statistical mediation model assumes that the same mediat-

ing construct is being measured across the treatment groups. That is, it is assumed

that measurement invariance in the mediator holds across the treatment and control

groups. Even though the importance of assessing measurement invariance has long

been recognized in psychological testing (Chen, 2008; Cheung & Rensvold, 1999;

Millsap, 2011; Vandenberg & Lance, 2000), few studies have examined the conse-

quences of violations of measurement invariance in the estimation of the mediated

effect. Therefore, the overarching goal of the current study is to provide information

to researchers of the extent to which a lack of measurement invariance influences the

detection and accurate estimation of the mediated effect. To achieve our goal, we

first define statistical mediation and measurement invariance. Next, we describe pre-

vious research investigating the influence of measurement invariance on the mediated

effect. Finally, we present results from a Monte Carlo simulation study in which the

magnitude and the number of items exhibiting violations of measurement invariance

are manipulated to examine their influence on the relative bias, statistical power, and

Type I error rates of the mediated effect.
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Statistical Mediation Analysis

Statistical mediation analysis investigates how two variables are related by introdu-

cing intermediate variables (known as mediators) to explain the relationship between

an independent variable and an outcome (MacKinnon, 2008). The single mediator

model can be described by the following three regression equations:

Y = i1 + nX + e1 ð1Þ

M = i2 + aX + e2 ð2Þ

Y = i3 + n0X + bM + e3 ð3Þ

In the mediation model, the n path represents the relationship between the inde-

pendent variable X and the dependent variable Y. The a path represents the relation-

ship from X to the mediator M; the b path represents the relationship from M to Y,

controlling for X; and the n# path represents the relationship from X to Y after con-

trolling for M. The i1, i2, i3, and the e1, e2, e3 are the intercepts and residual variances

of the regression equations, respectively. Typically, the mediated effect is then com-

puted as the product of the a and b paths (i.e., ab), although there are alternative

approaches to quantify the mediated effect (i.e., n 2 n#; MacKinnon, Lockwood,

Hoffman, West, & Sheets, 2002). Furthermore, the significance of the mediated

effect is computed by dividing the point estimate of the mediated effect, ab, by its

standard error calculated with the multivariate delta method and then comparing this

ratio to the normal distribution (Sobel, 1982; 1986). Most structural equation model-

ing packages estimate the standard error based on the multivariate delta method by

default. However, several other methods such as the distribution of the product

(MacKinnon, Fritz, Williams, & Lockwood, 2007; Tofighi & MacKinnon, 2011;

Valente, Gonzalez, Miočević, & MacKinnon, 2016), or resampling techniques

(MacKinnon, Lockwood, & Williams, 2004) have been recommended for conducting

significance testing of the mediated effect since ab may not be normally distributed

(Kisbu-Sakarya, MacKinnon, & Miočević, 2014; MacKinnon et al., 2002).

As previously mentioned, the statistical mediation model assumes that there is a reli-

able and valid representation of the X, M, and Y variables in the model. However, the psy-

chometric properties of the variables in the mediation model are often ignored (Gonzalez

& MacKinnon, 2016; MacKinnon, 2008), and those can be studied with latent variable

models. Our model of interest is presented in Figure 1, where the X variable represents a

binary independent variable in which two groups are studied (e.g., treatment and control

groups), M is a continuous, latent mediator variable measured with six indicators, and Y

is a continuous, latent outcome variable measured with six indicators.

Measurement Invariance

An important psychometric prerequisite for using instruments to compare groups on

a latent variable of interest is that the measurement properties of observed variables
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in relation to the latent variable must be the same across groups. That is, such com-

parisons assume the same construct M is being measured across the groups repre-

sented in X. When the measurement properties of the observed variables in relation

to the target latent variable are the same across populations, measurement invariance

is said to hold. In other words, knowledge about examinee group membership should

not alter the relationships between observed and latent variables (Millsap, 2011).

Measurement invariance is formally defined as (Mellenbergh, 1989),

P Vjj, kð Þ = P(Vjj) ð4Þ

where V is a p 3 1 vector of the observed variables, j is a r 3 1 vector of latent vari-

ables that we intend to measure, and k corresponds to the groups assessed. Equation

4 indicates that the probability of observing scores on variables V, conditional on the

latent variables j, does not depend on the examinee belonging to group k. If measure-

ment invariance holds, group membership should not affect the probability of obtain-

ing a score in the observed variables once the latent variables are taken into account.

If Equation 4 does not hold, measurement bias is said to exist. Under measurement

bias, the scores in the observed variables V of two people with the same values in j

will depend on their group membership (k).

Factorial invariance denotes measurement invariance when relationships between

the observed measures and latent variables are modeled through the common factor

Figure 1. A single mediation model with independent variable (X) corresponding to a
categorical observed variable measuring two or more groups, and two latent factors
corresponding to the dependent (Y) and mediator (M) variables.
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model. The common factor model is extended to the multiple group case, with k = 1,

2, . . . , K groups (Millsap, 2011),

Vk = tk + Lkjk + dk ð5Þ

where V and j are defined as in Equation 4, t is a p 3 1 vector of latent factor inter-

cepts, L is a p 3 r matrix of factor loadings, and d is a p 3 1 vector of unique factor

scores. Factorial invariance is examined by comparing a series of nested models in

which constraints on the item parameters within the common factor model are added

sequentially (Jöreskog, 1971; Sörbom, 1974). Models are compared using a chi-

square difference test in which a nonsignificant result indicates that the more con-

strained model fits the data as well as the less constrained model. The most basic

form of factorial invariance is configural invariance, requiring that the same number

of factors and same patterns of zero and nonzero loadings hold across the measured

groups (Horn & McArdle, 1992). If the configural invariance model fits the data ade-

quately well, the next more constrained model reflects metric invariance (Horn &

McArdle, 1992), in which the values of the loadings are required to be the same

across groups such that Lk = L. If the metric invariance model fits the data, it can be

concluded that observed group differences in indicator covariances are due to the

common factors and not differential functioning of the assessment across groups. If

the hypothesis of metric invariance is not rejected, invariance constraints in the latent

intercepts are tested tk = t. This level of invariance is called strong measurement

invariance (Meredith, 1993) or scalar invariance (Steenkamp & Baumgartner, 1998).

If the hypothesis of strong measurement invariance is not rejected, observed differ-

ences in group means are fully explained by differences in the common factor means.

Finally, equality across groups in the unique factor variances is tested in the strict

factorial invariance model (Meredith, 1993). Invariance in the unique factor var-

iances ensures that differences in the means and covariance structure of the observed

variables are fully explained by differences in the common factors distributions. If

invariance cannot be established in the evaluation of metric, strong and strict factorial

invariance, an alternative is to test a model in which some of the item parameters are

constrained to invariance while the others are allowed to vary between groups.

Partial invariance is the term used to denote invariance in only a subset of parameters

(Byrne, Shavelson, & Muthén, 1989).

Violations of Factorial Invariance in Mediation Models

The single mediation model described above assumes that measurement invariance

holds, that is, it is assumed that the relationships between the observed items and the

latent variable assessed in M are invariant across the groups represented in X. There

have been only a few studies examining the impact of violations of invariance in

mediation analysis. Two notable examples are the studies by Williams et al. (2010)

and by Guenole and Brown (2014).

464 Educational and Psychological Measurement 78(3)



Williams et al. (2010) studied the relationship between anxiety (X) and heavy

drinking as an outcome (Y) in a sample of Air Force and Navy trainees. The authors

found that drinking motives was a significant mediator (M) in the relationship

between anxiety and heavy drinking. The authors examined the drinking motives

instrument for invariance across the Anxiety and Nonanxiety groups and found viola-

tions to both metric and strong measurement invariance. For example, the Anxiety

group endorsed the item ‘‘drinking increases my self-confidence’’ at a higher level

than the Nonanxiety group, after taking into account group differences in the underly-

ing factor. To control for the lack of invariance, a Multiple Indicators Multiple

Causes (MIMIC) model with direct paths from the X variable (Anxiety or Nonanxiety

group) to the indicators measuring M were included. Once the significant paths relat-

ing X to each individual item were found, Williams et al. (2010) tested for statistical

mediation. The a path coefficient, which describes the relationship between the anxi-

ety groups and drinking motives, had a value of .11 (SE = 0.05). The authors also fit a

mediation model with a latent mediator in which measurement invariance was

assumed across groups. In this model, the a path coefficient was .20 (SE = 0.04).

Williams et al. (2010) concluded that when violations of measurement invariance

were not explicitly modeled in mediation analysis, estimates of the mediated effect

might be inflated. The findings of Williams et al. (2010) indicated that measurement

noninvariance may bias the conclusions of statistical mediation; however, this study

was limited to investigating one substantive application.

Guenole and Brown (2014) conducted a simulation study to investigate the influ-

ence of measurement invariance in mediation models. For their study, Guenole and

Brown (2014) simulated the independent (X), mediator (M), and dependent (Y) vari-

ables as continuous latent variables defined by multiple categorical indicators. Data

were generated such that the loadings and/or thresholds were different across two

groups in X, Y, or M. In the analysis phase, violations of invariance were ignored such

that constraints in the loadings and/or thresholds were imposed and group differences

in the estimated a and b path coefficients were examined. The results indicated that

violating threshold invariance had a minimal effect on the confidence interval cover-

age and relative bias of path coefficients. In contrast, conditions with noninvariant

loadings showed path coefficients that were under- or overestimated depending on

the variable that showed violations of invariance. For example, noninvariance in the

independent variable (X) led to the overestimation of path coefficients for the focal

group; noninvariance in the dependent variable (Y) led to the underestimation of path

coefficients for the focal group; and noninvariance in the mediator (M) led to under-

estimation of the a path coefficient and overestimation of the b path coefficient.

Although Guenole and Brown (2014) provided insights into the consequences of

violations of invariance in a and b path coefficients, their study did not target our

model of interest. The authors simulated the X, M, and Y variable as latent continu-

ous variables; that is, the variable representing the groups being compared was not

an explicit part of their model. We were interested in the case where the X variable

represents two or more observed groups and where the M variable shows different
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levels of violations of invariance across the groups measured in X. This model speci-

fication is typical in randomized controlled trials or observational studies where X

represents observed groups (e.g., Williams et al., 2010). Furthermore, the magnitude

of noninvariance in the loadings and thresholds was not systematically manipulated

in Guenole and Brown (2014). That is, it was unclear in their findings what differ-

ences in impact should be expected under conditions of relatively trivial versus sub-

stantial noninvariance. Moreover, only one sample size of N = 1,000 per group was

examined, which is much larger than typical controlled experiments in applied psy-

chological research. Finally, Guenole and Brown examined the impact of noninvar-

iance on the coverage and relative bias of the a and b path coefficients, but the

overall impact of noninvariance on the mediated effect was not examined.

The studies by Williams et al. (2010) and Guenole and Brown (2014) indicate that

inaccurate conclusions about mediated effects can be reached in the presence of non-

invariance. However, given the limitations in Guenole and Brown’s (2014) simula-

tion and the difficulty of generalizing beyond the results of Williams et al. (2010),

several important issues remain undetermined regarding the relationship between

factorial invariance and mediation analysis. The purpose of the present study was to

investigate the extent to which violations of invariance can be ignored in mediation

analysis, and under what circumstances do violations of measurement invariance rep-

resent a threat to making accurate inferences when using the statistical mediation

model. We examined the effects of violations of measurement invariance in media-

tion analysis by systematically manipulating the number of noninvariant items, the

magnitude of the violations of invariance, and the sample size. We expected that as

the number of items with violations of invariance and the magnitude of such viola-

tions increased, so would Type I error rates and relative bias of parameter estimates.

Statistical power was also hypothesized to be affected by violations of invariance.

Method

A simulation study was conducted to examine the impact of violations of measure-

ment invariance in the mediating construct on the estimation of the mediated effect

in the single mediator model. The data-generating model for this Monte Carlo simu-

lation is presented in Figure 1, where the X variable was a binary-indicator variable

(e.g., 1 = Treatment, 0 = Control), and the M and Y were simulated as latent variables

(Figure 1) indicated by six items. The indicators of the latent mediator were gener-

ated to violate measurement invariance, where the relationship between the items

and the latent construct assessed in the mediator (M) differed between the two groups

represented in X. To reflect the common situation wherein researchers fail to test for

mediation invariance before conducting their intended analysis, a mediation model

presuming measurement invariance was fit to the generated data. The impact of vio-

lations of invariance on estimates of the mediated effect was evaluated with the

Monte Carlo outcomes of parameter bias (relative and standardized bias), Type I

error rate, and statistical power.
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Data Generation

The Monte Carlo procedure in Mplus 7.11 (Muthén & Muthén, 1998-2012) was used

to generate data under multivariate normality. In each condition, 1,000 random sam-

ples were simulated. Data were generated using a multiple group approach in which

M and Y were latent variables measured by six items each and mean group differ-

ences in M were used to simulate different effect sizes for the a path coefficient. The

item parameters of the Y variable were simulated as invariant across the groups in X

over all conditions. The item parameters for the mediator (M) were simulated under

measurement invariance or with small, medium, or large violations (defined below)

across groups in X in the intercepts or loadings. Because we were interested in exam-

ining the isolated effect of noninvariant intercepts or loadings, no condition was

simulated with violations of invariance to both intercepts and loadings.

Effect Size for Measurement Noninvariance. In the current measurement invariance lit-

erature, there has not been a consensus on how to quantify small, medium, and large

violations of measurement invariance. We took the following approaches. To define

the magnitude of violations of invariance in the loadings, the approach suggested by

Yoon and Millsap (2007) was followed. Since the same loading difference between

groups of 0.1 could have a different practical implication (and represents a different

amount of proportional change) if the loading shifted from 0.9 to 0.8 versus a shift

from 0.3 to 0.2, it would not be adequate to define magnitudes of violations of invar-

iance as simple fixed quantities. Instead, Yoon and Millsap (2007) followed a two-

step procedure to calculate loading differences between groups. In the first step,

effect sizes for group differences in the loadings were defined with respect to a spe-

cific item. In the present study, noninvariance was defined with respect to an item

that had a loading of 0.6 in group one, and loadings of 0.7, 0.8, or 0.9 to exhibit

small, medium, and large noninvariance, respectively.

The second step consisted of defining loadings for the remaining noninvariant

items as a change proportional to the group differences defined in the first step. That

is, in step one a small violation of invariance was defined as a change in an item

loading from 0.6 in group one to a loading of 0.7 in group two. This represented a

change ratio of 0.7/0.6 or 1.17. To determine the loadings of the remaining noninvar-

iant items in group two, the item loadings in group one were multiplied by 1.17. In

the same way, to create medium and large violations of invariance the loadings in

group two were multiplied by 1.33 (0.8/0.6) and 1.50 (0.9/0.6), respectively.

The magnitude of noninvariance in the intercepts was defined as proposed by

Millsap and Olivera-Aguilar (2012). As shown in Equation 6, the magnitude of non-

invariance in the intercepts was defined as the ratio of the difference in intercepts to

the difference in means.

d =
tj1 � tj2

mj1 � mj2

ð6Þ
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where tj1 � tj2 corresponds to the difference in intercepts of item j between two

groups, and mj1 � mj2 corresponds to the group difference in means for item j.

Following Millsap and Olivera-Aguilar (2012), ratios of 0.2, 0.5, and 0.8 were defined

as small, medium, and large effect sizes, respectively. In the present study, item means

were determined using Equation 7 which shows the expected value for group k,

E Vkð Þ= mk = tk + Lkjk ð7Þ

Substituting Equation 7 into Equation 6 and rearranging terms, intercepts for non-

invariant items in group two were determined using Equation 8,

tj2 =
dtj1 + dL1j1 � dL2j2 � tj2

d� 1
ð8Þ

where the factor mean for the first group j1 was set to zero, and the factor mean of

the second group j2 was set to 0.4. Note that since the factor mean for the second

group was larger than the factor mean of the first group, the intercepts of noninvar-

iant items increased in the second group.

The number of items demonstrating violations of invariance was manipulated to

be zero, two, or four. These numbers were selected to represent conditions in which

all items were invariant, or where 1/3 or 2/3 of the total number of items exhibited

noninvariance (Yoon & Millsap, 2007). Final item parameter values for the latent

mediator variable are shown in Table 1. Item parameter values were selected so that

communalities were between 0.2 and 0.6.

Table 1. Generating Parameter Values.

Proportion
noninvariant

items
Magnitude of
noninvariance Parameter values

Invariance
— — L1 = 2 = 1, :65, :55, :60, :50, :80½ �

t1 = 2 = :90, :40, :50, :50, :70, :40½ �
u1 = 2 = 1:3, 1:3, :80, :70, :90, :80½ �

Noninvariant loadings

1/3

Small L2 = 1, :76, :64, :60, :50, :80½ �
Medium L2 = 1, :87, :73, :60, :50, :80½ �
Large L2 = 1, :98, :83, :60, :50, :80½ �

2/3

Small L2 = 1, :76, :64, :70, :58, :80½ �
Medium L2 = 1, :87, :73, :80, :67, :80½ �
Large L2 = 1, :98, :83, :90, :75, :80½ �

Noninvariant intercepts

1/3

Small t2 = :90, :47, :56, :50, :70, :40½ �
Medium t2 = :90, :66, :72, :50, :70, :40½ �
Large t2 = :90, 1:44, 1:38, :50, :70, :40½ �

2/3

Small t2 = :90, :47, :56, :56, :75, :40½ �
Medium t2 = :90, :66, :72, :74, :90, :40½ �
Large t2 = :90, 1:44, 1:38, 1:46, 1:5, :40½ �
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Other manipulated variables were the sample size per group and values of the path

coefficients. Group sample sizes were set to n = 100, 250, or 500. These values were

selected to represent total N values of 200 and 500 commonly found in social science

research and to explore the case of a larger total sample size of N = 1,000. Population

values of the regression parameters (a,b, and n#) were manipulated to be 0.00, 0.14,

0.39, and 0.59 corresponding approximately to values of Cohen’s criteria for zero,

small (2% of variance accounted for), medium (13% of the variance), and large (26%

of the variance) effect sizes, respectively (Cohen, 1988; MacKinnon et al., 2002). In

summary, we simulated 192 invariant conditions (3 sample sizes and 4 path values

for a, b, and n), 1,152 conditions with noninvariant loadings (3 sample sizes, 4 path

values for a, b, and n, 3 effect sizes for violations of invariance, and 2 proportions of

items violating invariance), and 1,152 conditions with noninvariant intercepts (3 sam-

ple sizes, 4 path values for a, b, and n, 3 effect sizes for violations of invariance, and

2 proportions of items violating invariance).

Data Analysis

A single mediator model with latent variables for the mediator and the dependent

variable was fit to the generated data using Mplus 7.11 (Muthén & Muthén, 1998-

2012). Measurement invariance (i.e., loadings and intercepts constrained to equality)

was assumed in the fitted model for both the mediator and dependent variable. The

impact of ignoring the violations of invariance in the loadings and intercepts was

evaluated looking at several criteria including Type I error rates, statistical power,

and relative or standardized bias of the mediated effect coefficients.

To test statistical significance and obtain asymmetric confidence intervals for the

mediated effect, we used the analytical solution for the distribution of the product of

two random variables computed in the R-statistical platform using the package

RMediation (Tofighi & MacKinnon, 2011). The distribution of the product method

has comparable power to the computationally intensive resampling methods to test

for significance of the mediated effect, and accounts for a possible correlation

between a and b often present in mediation models with latent variables

(MacKinnon, 2008; Valente et al., 2016). Type I error rates were defined as the pro-

portion of replications in which the estimate of the mediated effect was statistically

significant but the population value of the mediated effect was zero (i.e., when the

confidence interval did not contain zero in conditions in which either or both a and

b were simulated to equal zero). Statistical power was defined as the proportion of

replications in which a significant mediated effect was correctly detected (i.e., when

the confidence interval did not contain zero in conditions where both a and b were

simulated to be nonzero).

Relative bias was computed for the estimated a, b, n# and ab coefficients in the

conditions in which population values for a and b were nonzero. Relative bias for

each estimated coefficient (ûc) was defined as the ratio of the difference between the

true and estimated parameter value to the true value:
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RBias ûc

� �
= R�1

XR

r = 1

ûrc � uc

� �

uc

ð9Þ

where R refers to the total number of replications that converged to a solution, uc

refers to the true value of the a, b, n# or ab coefficients, and ûrc refers to the para-

meter estimate for replication r in condition c. Relative bias was judged to be accep-

table when its absolute value was less than 0.05 (Hoogland & Boomsma, 1998).

A problem with relative bias is that it is not defined for conditions where popula-

tion values for the parameter estimates are zero. Therefore, standardized bias was

computed for the estimated a, b, n#, and ab coefficients in the conditions in which a

or b were zero. Standardized bias was defined as the ratio of the difference between

the true and estimated parameter value to the standard deviation of the parameter esti-

mate (SDûc
):

SBias ûc

� �
= R�1

XR

r = 1

ûrc � uc

� �

SDûc

ð10Þ

An analysis of variance (ANOVA) was conducted for each of the estimated path

coefficients to determine the effect of the independent variables (sample size, path

values for a, b, and n, number of items, proportion of noninvariant items, and mag-

nitude of the violations of invariance) on relative and standardized bias. The effect

size of ANOVA results was determined by h2, with Cohen’s (1988) suggested values

used to judge associations between the variables as small (h2 = 0.01), medium (h2 =

0.06), or large (h2 = 0.14).

Results

All replications in every condition converged, with no error messages or negative

variance estimates obtained. For ease of presentation, we present results averaged

over the values of the direct effect, n#, because varying the direct effect did not lead

to substantial differences on simulation outcome measures.

Type I Error Rates

Type I error rates for the cases in which b = 0 were below or close to .05 in all con-

ditions and hence not presented. The Type I error rates for the cases in which a = 0

are shown in Table 2. It is clear that when measurement invariance holds, the propor-

tion of replications in which a significant mediation effect was incorrectly detected

was below or close to 5%. The same pattern was observed in conditions with nonin-

variant loadings where Type I error rates remained below 5.7% regardless of the pro-

portion of noninvariant items or the magnitude of loading noninvariance.

In contrast, in the presence of noninvariant intercepts, Type I error rates were

above 5% in most conditions. Interestingly, as the proportion of noninvariant items,
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magnitude of noninvariance, and sample size increased, Type I error rates increased

as well. In some cases, the Type I error rates reached 100%. For example, where the

value of a was zero, the value of b was 0.39 (‘‘medium’’), 2/3 of the items had large

violations of invariance and a sample size per group of 500, 100% of replications

detected a significant mediated effect where none existed.

Standardized Bias

To explore the Type I error rate results in the conditions with noninvariant intercepts

in more detail, standardized bias was computed for the path parameter estimates. On

average, the a path showed a standardized bias of 2.61, the b path of 0.24, the n# path

of 20.77, and the ab path of 1.31. These results indicate that the bias in the a path

inflated the estimated value of the ab path.

For ease of presentation, Table 3 shows standardized bias for the ab parameter

estimate only. Similar to the Type I error rate results, as the proportion of noninvar-

iant items, magnitude of noninvariance, and sample size increased, the standardized

bias of the ab path increased. The most affected conditions were for those with a

sample size of 500 per group, large violations of invariance and b values larger than

zero; in the case with 2/3 of noninvariant items and a large value of b, standardized

bias showed a value of 9.15. ANOVA results indicated large effect sizes (h2 . 0.14)

for the magnitude of violations of intercept invariance, for the b path effect size, and

for the interaction between the b path effect size and the magnitude of violations of

Table 3. Standardized Bias of the Mediated Effect in the Conditions With Noninvariant
Intercepts by Magnitude of Noninvariance, Proportion of Noninvariant Items, Sample Size,
and Values of b.

n a and b

Violations of invariance

Small Medium Large

p = 1/2 p = 2/3 p = 1/2 p = 2/3 p = 1/2 p = 2/3

100 Zero, zero 0.002 0.001 20.033 0.003 20.038 20.055
Zero, small 0.078 0.171 0.314 0.660 0.952 1.360
Zero, medium 0.112 0.264 0.499 1.056 1.775 3.165
Zero, large 0.124 0.291 0.527 1.129 1.995 4.000

250 Zero, zero 0.015 20.015 0.007 20.021 20.049 20.026
Zero, small 0.217 0.384 0.674 1.275 1.790 2.222
Zero, medium 0.228 0.472 0.862 1.791 3.016 5.131
Zero, large 0.236 0.483 0.886 1.855 3.296 6.442

500 Zero, zero 20.043 0.015 20.002 20.011 20.061 0.009
Zero, small 0.309 0.612 1.042 1.955 2.655 3.202
Zero, medium 0.342 0.674 1.219 2.579 4.322 7.308
Zero, large 0.343 0.682 1.242 2.666 4.670 9.154
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invariance. The interaction indicates that the effect of the magnitude of violations on

invariance increased as the b path coefficient increased.

Statistical Power

Results for statistical power are shown in Table 4. As expected, in the invariant con-

ditions as the sample size and effect size of a and b increased, power to detect a

mediated effect increased. All conditions with noninvariant loadings followed the

same pattern of results as conditions generated under measurement invariance. That

is, statistical power increased as the sample size and effect size of the a and b para-

meters increased.

In conditions with noninvariant intercepts, statistical power was higher than in the

invariant conditions, in particular in the conditions with medium and large violations

of invariance, and small and medium values for a. For example, in conditions with a

sample size of 100, a small effect size for a, and a large effect size for b, statistical

power was .133 for the invariant conditions. However, statistical power increased to

1 in the conditions with 2/3 of the items showing large violations of intercept invar-

iance. Except for the conditions in which b = 0, most conditions with large violations

of invariance had statistical power above .8 regardless of the value of a and sample

size.

Relative Bias

Table 5 shows the relative bias for the mediated effect ab, and for the a and b paths.

Results are averaged over sample size conditions since all ANOVAs showed h2 val-

ues below 0.01 for all sample sizes. For ease of presentation, results are displayed for

conditions in which both coefficients had the same effect size (i.e., both a and b were

simulated to exhibit small, medium, or large effects). As expected, in conditions in

which measurement invariance held the relative bias of parameters was always below

the suggested 0.05 cutoff.

In the presence of noninvariant loadings, while the b estimate did not show rela-

tive bias values above the suggested value of 0.05, the a, n#, and the ab path coeffi-

cients were affected by violations of invariance in most conditions. As the magnitude

of violations of loading invariance and the proportion of noninvariant items

increased, the relative bias of the a, n#, and the ab path coefficients tended to

increase as well. ANOVA results showed h2 values below 0.01 for all independent

variables across all conditions with noninvariant loadings.

In conditions with noninvariant intercepts, path coefficient estimates were severely

affected as demonstrated by relative bias values above 0.05 across most conditions.

Even conditions with small violations of invariance and only 1/2 of items exhibiting

noninvariant intercepts showed relative bias values above 0.05 for most path coeffi-

cients. The most affected conditions were for small (.14) values of a and b, wherein

the ab estimate showed relative bias values up to 8.06 in the case of large violations

Olivera-Aguilar et al. 473
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of invariance and 2/3 of items demonstrating noninvariant intercepts. For the relative

bias of all estimated path coefficients, ANOVA results indicated large effect sizes (h2

. 0.14) for the magnitude of violations of intercept invariance and for the effect size

of the a path coefficient. A large ANOVA effect size was also found for the interac-

tion term between the a path coefficient and magnitude of violations of invariance

when studying the relative bias of a and ab estimates, such that as the effect size of

the a path coefficient increased, the magnitude of violations of invariance had a

smaller effect on the relative bias of the a and ab estimates.

Discussion

Measurement invariance is a crucial assumption when using an instrument to exam-

ine group differences. However, violations of invariance are frequently found in

practice (Schmitt & Kuljanin, 2008), and it is important to understand its implica-

tions for the conclusions derived from statistical analyses. The purpose of this study

was to systematically explore the impact of violations of measurement invariance in

a mediation model in which the independent variable (X) denotes two or more groups

(e.g., control vs. treatment), and both the mediator (M) and dependent variable (Y)

are latent variables measured via several observed indicators. We conducted a simu-

lation study in which we manipulated the proportion of noninvariant items in the

mediator as well as the magnitude of invariance violations in both its item loading

and intercept values, and examined its impact on the mediated effect. Significance

testing for the mediated effect was conducted using the distribution of the product to

compute asymmetrical confidence intervals. The simulations indicated a different

pattern of results when violations of invariance were simulated in item loadings ver-

sus when violations of invariance occurred in item intercepts. Conditions exhibiting

violations of invariance in the loadings showed results similar to our control condi-

tions (i.e., noninvariance) regarding Type I error rates, statistical power, and relative

bias of the path coefficients. Under both scenarios, Type I error rates were below or

close to 5% in most conditions. In line with MacKinnon et al. (2002), when a and b

were generated to show large effect sizes, statistical power was close to 1.00 even

with sample sizes of only 100 per group. Sample sizes of 250 per group were suffi-

cient to detect a mediated effect when a and b were generated with medium effect

sizes. Although some conditions with medium and large violations of invariance in

item loadings produced relative bias estimates for the mediated effect (ab) above the

suggested 0.05 cutoff (Hoogland & Boomsma, 1998), this bias did not affect the

Type I error rates or statistical power.

Contrary to the results found for measurement noninvariance in item loadings, in

the presence of noninvariant intercepts Type I error rates were inflated in most con-

ditions, even reaching values of 1.0 in conditions with large violations of invariance.

Statistical power was larger in these conditions than in the invariant conditions, with

ab estimates severely biased.
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To explain these results, it is important to note that in conditions with violations

of intercept invariance, the group with the larger intercept values also had larger fac-

tor scores. As shown in Equation 4, as a consequence of having larger intercepts, the

expected value of the mediator in the group with violations of intercept invariance

was overestimated. This lead to the overestimation of the a path coefficients and, as

a consequence, of the mediated effect ab as well.

In general, these results suggest that the mediated effect in a single mediator

model is robust to violations of metric invariance, but not to violations of scalar

invariance (i.e., noninvariance in their indicator intercepts). As noted by Vandenberg

and Lance (2000), differences in item intercepts between groups could be indicative

of systematic response bias (e.g., leniency). That is, differences in intercepts related

to measurement invariance could reflect a bias in how participants in one group

respond to items, rather than a treatment induced change in thresholds. However, dif-

ferences in item intercepts could also be a consequence of known group differences.

In situations in which group mean differences at the latent level are expected, such

differences would likely be reflected at the item level. In the specific case examined

in our study, in which the independent variable corresponds to two groups (e.g., treat-

ment vs. control), differences in mediator item intercepts may be a reflection of the

efficacy of the treatment. To distinguish between measurement bias and true popula-

tion differences between groups, a pretest measurement would be required. That is,

measurement invariance would be analyzed before the treatment was implemented to

assess whether there were salient pretreatment differences. Measurement invariance

between the two groups would then be tested again after the treatment was imple-

mented. Posttreatment group differences in the intercepts would not necessarily indi-

cate measurement bias if only the treatment group showed significant differences in

its item intercepts over time. That is, in addition to measurement invariance across

groups, longitudinal invariance within each group would also be compared (see

Millsap & Cham, 2013, for a review on longitudinal invariance). In an experiment in

which longitudinal measurement invariance was found in the control group but not in

the treatment group, posttreatment violations of invariance between groups could be

interpreted as a reflection of true differences caused by the treatment. Mediation

analysis could then be conducted assuming measurement invariance in the mediator,

with noninvariance due to the treatment effect absorbed by the mediation effect (as

shown in the present study). However, if there were violations of invariance across

groups prior to the treatment or the control group fails to demonstrate longitudinal

invariance, then group differences in the intercepts posttreatment may be due to bias

in one of the groups. In such cases, researchers run the risk of obtaining biased esti-

mates of mediated effects when methods of handling noninvariance are not imple-

mented (i.e., noninvariance is ignored in mediation analyses). Two methods available

to mitigate effects of noninvariance are the estimation of MIMIC models to control

for between-group differences and partial invariance models allowing some nonin-

variant item parameters to be freely estimated.
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Limitations and Future Studies

Overall, our results indicate that Type I error rates, statistical power, and relative bias

were not as severely affected in the presence of noninvariant loadings as in data exhi-

biting noninvariant intercepts. However, it is possible that this finding was a result of

the particular way in how the magnitude of noninvariance was conceptualized.

Although values of the intercepts and loadings in the noninvariant conditions were

chosen following examples in the literature (Millsap & Olivera-Aguilar, 2012; Yoon

& Millsap, 2007), the literature also lacks clarity on the issue of what effect size val-

ues should be considered small, medium, or large violations of invariance. It is possi-

ble that a different approach to conceptualize different magnitudes of measurement

invariance would have resulted in larger relative bias values or the inflation of Type

I error rates or statistical power.

It should be noted that in the study of measurement invariance, it is often the case

that if an item has noninvariant loadings it also exhibits a noninvariant intercept. A

simulation condition in which both the intercepts and loadings are generated with vio-

lations of invariance would be helpful. In this case, we would expect that the results

for relative bias, Type I error rates, and statistical power would be larger than those

observed in the current study.

In our study, violations of invariance were only simulated for indicators of the

latent mediating variable. In most mediation studies, the dependent variable (e.g.,

depression, intelligence, drug use) is frequently measured with a series of indicators,

and as such, it becomes relevant to test for measurement invariance. Simulation stud-

ies that examine conditions in which violations of invariance are also considered in

the Y variable are important. Future studies should also explore the performance of dif-

ferent procedures for controlling or correcting for noninvariance, such as latent vari-

able models allowing for partial invariance (Byrne et al., 1989) or MIMIC models.

Conclusions

To the best of our knowledge, this is the first study to systematically examine the

impact of differing magnitudes and types of measurement noninvariance in a model

in which a latent variable mediates the relationship between group membership and

a dependent variable. Similar to Williams et al. (2010), we found that under some

conditions the mediated effect was overestimated when noninvariance was ignored.

Researchers run the risk of making inaccurate conclusions about mediated effects if

noninvariance is ignored. This highlights the importance of integrating psychometric

analyses within mediation studies, particularly the use of latent variable models to

improve measurement quality (MacKinnon, 2008) and the incorporation of tests for

different types of measurement invariance (Millsap, 2011).
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