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Abstract

To address the challenges posed by unknown occlu-
sions, we propose a Biased Feature Learning (BFL)
framework for occlusion-invariant face recogni-
tion. We first construct an extended dataset using a
multi-scale data augmentation method. For model
training, we modify the label loss to adjust the im-
pact of normal and occluded samples. Further, we
propose a biased guidance strategy to manipulate
the optimization of a network so that the feature
embedding space is dominated by non-occluded
faces. BFL not only enhances the robustness of a
network to unknown occlusions but also maintains
or even improves its performance for normal faces.
Experimental results demonstrate its superiority as
well as the generalization capability with different
network architectures and loss functions.

1 Introduction

As an important authentication technique, Face Recognition
(FR) has been widely used in many practical applications. A
high-performance FR system relies on discriminative feature
extraction that is robust to appearance variations, e.g., in pose,
expression, illumination, and occlusion. Occlusion, as an in-
tractable covariate of face variations, is very challenging for
the FR community. Occlusion-invariant FR aims to learn a
model with good generalization capability such that it can be
readily adapted to occluded faces, not only normal faces

Recently, Convolution Neural Networks (CNNs) have been
proven to be able to extract robust features for unconstrained
FR thus the performance of modern FR systems has been
significantly improved [Taigman et al., 2014; Schroff et
al., 2015]. However, the performance of a FR model of-
ten degrades in the presence of unknown occlusions or dis-
guises [Singh et al., 2019]. There are only few studies that
focus on generalized feature learning for occlusion-invariant
FR. To close this gap, we aim to improve the generalization
capability of a model for unknown occlusions.

For closed set protocols, several linear methods have been
proposed to mitigate the difficulties posed by occlusions.
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These methods can be divided into representation-based and
image completion methods. Driven by the hypothesis that the
data from the same source lies in the same subspace, Sparse-
Representation-based Classification (SRC) [Wright et al.,
2009b] performs regression-based identification with sparse
constrains. Image completion methods attempt to recover
clean data using low-rank and sparse constrains [Wright et
al., 2009a]. However, due to the limitation of linear opera-
tions, most traditional methods only perform well under con-
strained scenarios. Recently, with the development of Gener-
ative Adversarial Networks (GAN) [Goodfellow et al., 2014],
deep face completion methods have demonstrated promis-
ing results for realistic content generation of occluded facial
parts. But this roundabout way is also limited to closed set
protocols due to the difficulties in identity preservation.

Recently, several studies focusing open set occlusion-
invariant FR have been proposed. [Saeztrigueros et al., 2018]

attempts to boost occlusion-invariant FR using auxiliary oc-
clusion samples. [Song et al., 2019] focuses on mask designs
for final measure, which applies masks to deep CNN fea-
ture maps so that only non-occluded features are highlighted.
However, it may only work well for frontal faces.

Overall, there are two main challenges for occlusion-
invariant FR under open set scenarios. The first one is the
lack of data. For a data-driven model, a big training data
is crucial. However, to the best of our knowledge, existing
datasets only contain few occluded faces. Moreover, there is
no standard benchmark or evaluation protocol for model test.
Almost all the existing studies perform model evaluation on
their own synthetic datasets. The second challenge is model
training. For network training, the occlusion data could im-
prove the feature representation ability of a model to occluded
faces, but may bring negative effects to the conventional fea-
ture distribution of normal faces. Therefore, it is important
to design a good learning scheme that can avoid the negative
effects of occlusion sources for feature embedding.

As we all know, due to the powerful fitting ability of deep
model and its non-convex characteristic, there may be many
convergence points of CNN parameters to produce discrimi-
native features. Regardless of network architectures, we as-
sume that there are some specific parameters sets adapted to
normal and occlusion samples. To enhance the generaliza-
tion capability of a model against occlusions, it is necessary
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Figure 1: The proposed BFL framework. (a) A well trained CNN model may poorly adapt to occluded faces. (b) We synthesize occluded
faces by adding random spatially continuous noises to clean faces. (c) The proposed BFL method focuses on both clean and occluded faces.
Moreover, BFL pays attention to the feature learning process so that the learned CNN features are only associated with clean faces.

to seek a better model learning strategy.

In this paper, we propose a novel Biased Feature Learn-
ing (BFL) framework for occlusion-invariant FR, as shown
in Fig. 1. To boost the generalization ability of a FR model
for unknown occlusions, we first use an enhanced data aug-
mentation scheme to randomly generate multi-scale spatially
continuous noises for training samples. Second, we modify
the label loss to balance the impact of normal and occluded
samples for network training. Further, we manipulate the op-
timization process of the network so that it can produce suit-
able features only associated with clean face features. Last,
to highlight unknown face occlusions, we use realistic occlu-
sion samples to perform model evaluation rather than simply
adding random patches to faces.

The main contributions of this paper include: 1) A biased
guidance strategy for feature learning. It can skillfully prompt
embedding learning to focus on clean facial features without
using detection technologies. Besides, It can be easily ex-
tended to other tasks that need to deal with polluted or adver-
sarial samples. 2) An enhanced data augmentation method for
model training. It can effectively simulate disordered distri-
butions of real occlusions, and can be simply embedded into a
deep framework to generate interferences to normal faces. 3)
An objective benchmark for model evaluation. We refine the
traditional protocol into three indicators, as shown in Fig. 5.
Meanwhile, we collect realistic occlusions and apply them to
LFW to create a reasonable benchmarking dataset.

2 Related Work

In this section, we introduce the related work by dividing
them into three categories.

Linear regression. Assume that occlusion error is sparse
relative to the standard (pixel) basis, SRC uses the L1 reg-
ularization to code a query sample as a linear combination
of atoms and assigns the label to the class with the mini-
mum reconstruction error. To enhance the discrimination of
coding, structured sparse coding [Li et al., 2013] and non-
negative dictionary learning [Ou et al., 2018] were proposed.
To address the small-sample-size problem, extended dictio-
naries [Deng et al., 2012; Shao et al., 2017] with intra-class
face variations posed by occlusions were developed. Due
to the low-rank characteristic of occlusion in comparison to

face size, [Iliadis et al., 2017; Wu and Ding, 2018] appended
low-rank constrains to occlusion error. To characterize the
2D structural information of occlusions, [Yang et al., 2017]

used the nuclear norm to deal with occlusion and illumina-
tion variations. However, all these linear methods are limited
to frontal faces under closed set scenarios.

Face completion. Given the sparsity of noise and low rank
of clean data, robust PCA [Candès et al., 2011] can be
used to recover corrupted low-rank matrix by minimizing
its weighted L1 and nuclear norms. Low rank representa-
tion [Liu et al., 2013] extended the recovery of clean data
from single subspace to a union of multiple subspaces. These
methods provide effective face completion techniques. For
example, [Zhang et al., 2015] presented the double nuclear
norm based matrix decomposition for occluded face recov-
ery. In recent years, deep generation has been widely used
for face completion. [Li et al., 2017] generated semantic con-
tents for missing values by a combination of reconstruction,
adversarial and semantic parsing losses. [Zhao et al., 2017]

used multi-scale spatial LSTM to perform face completion.
Recently, [Yuan and Park, 2019] used a 3D morphable model
and GAN to perform face de-occlusion. In contrast to lin-
ear completion methods, deep generation methods can over-
come unconstrained face variations. But, the generated con-
tents can not able to preserve the original identity thus they
are rarely used for open set FR.

Deep feature learning. To perform occlusion-invariant FR,
[Saeztrigueros et al., 2018] detected the sensitivity of a model
to different occlusion regions and forced a model to focus on
the whole face region equally via center-focused occlusion
samples. For a pre-trained teacher model, [Song et al., 2019]

used the differences of feature maps between frontal faces
and their occluded versions to learn generators that produced
masks for face. Then a mask dictionary was established to
produce mask scores for query samples. Although the use of
occlusion samples is simple and the process of mask method
is complicated, they are suitable for FR in open set scenarios.
However, these methods are usually limited to frontal faces
and simple occlusions, and the synthetic datasets of these ex-
iting methods are not public for future studies. In this paper,
to achieve occlusion-invariant FR under unconstrained sce-
narios, we focus on generalized feature learning regardless of
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Figure 2: Some examples of synthetic faces with occlusions. We set
δ=20 and use three different occlusion units, 40 × 40, 20 × 20 and
10×10. The numbers of different types are 4, 8 and 32. The overlap
of occlusions leads to the occlusion area less than 60% of an image.

network architectures and loss functions, and present a bench-
mark dataset for open set scenarios.

3 The Biased Feature Learning Framework

This section first discusses the sensitivity of a FR model to
occlusions. Then we introduce an enhanced data augmenta-
tion method for model training. Last, we present the biased
feature learning strategy and give a brief discussion.

3.1 Sensitivity of FR Models to Occlusions

CNNs have been widely used in multiple computer vision
tasks. In FR, most models rely on global features via a dis-
criminative loss design [Wen et al., 2016; Wang et al., 2018;
Deng et al., 2019]. In this case, a pre-trained model is of-
ten sensitive to face occlusions. A pre-trained model on
clean data often ineluctably captures large area of occluded
pixels, which brings uncertainty to decision making. In
fact, occlusions may lead to larger intra-class variations and
higher inter-class similarities. For example, sunglasses may
be viewed as face features for different persons.

For the generalization capability of a model, we argue
that occluded faces are essentially viewed as polluted data or
outliers. The disordered data distributions produced by un-
known pollution sources lead to poor adaptation of a high-
performance FR model. Fig. 3 shows the disordered feature
deviations between occluded faces and their original ones.

3.2 Training Data Augmentation

As spatially continuous or extreme noises, occlusions can be
presented in arbitrary ways. In practical scenarios, besides
some simple occlusions posed by sunglasses and scarfs, an
unknown occlusion can be presented in any shape, texture
and size, even appears as a hand, leaf, stocking and stains
of a camera. However, for model training, existing datasets
usually only contain some simple occlusions. Further, as op-
posed to a large number of normal samples, the scarce occlu-
sion samples are insufficient for model training.

In practice, it is difficult to collect occluded faces jointly
with their clean versions. In addition, it is almost impossible
to collect all possible occlusion types. Instead of constructing
a comprehensive dataset, we propose a synthetic method to
conveniently simulate occlusions for exiting labeled datasets.
The principle is to consider randomness in size, shape and
texture on the basis of spatial continuity.

Given a gray face image x ∈ RH×H , in view of spatial
continuity, we use a small image patch u ∈ Rh×h(h ≪ H) as
a basic occlusion unit. For the texture of u, we first generate
a random mean value µ (0 + δ ≤ µ ≤ 255 − δ) for all the
pixels, under a variance parameter δ. And each pixel ui is set

Figure 3: 2D visualization (t-SNE) of the features extracted by
ResNet-Inception-V1. We visualize 10 subjects: blue for normal
faces, red for synthetic occlusions and green for realistic occlusions.

as ui = µ+ δ × v (v ∼ N (0, 1)), where v is a random value
following the normal distribution. For color images, the gray
unit u is extended to all the color channels.

Overall, for the occlusion unit u, we can generate s dif-
ferent versions with different mean value µ, and randomly
select s locations in the face x to form a unit occlusion set
us = {ur,c|0 ≤ r, c ≤ H − h}, where r and c are the starting
row and column coordinates in x. As an integrated occlusion,
the us can be embedded into x to obtain an occluded face x.
Intuitively, the randomness or complexity of an occlusion can
be approximated by multivariate cooperation of s, µ, δ and
(r, c), hence the final synthetic occlusion is a combination of
multiple occlusion units with random textures.

For a more convenient implementation, multiple occlusion
units with different sizes h can be used to form a multi-scale
occlusion set U = us1

h1
∪ ... ∪ usn

hn
. Fig. 2 shows some exam-

ples synthesized by the proposed method.

Data augmentation is an important approach to boost the
performance of a model. Existing augmentation methods
usually appeal to various presentations of features, such as
flipping, rotation, local warping and cropping. In contrast to
these methods, the main motivation of the proposed method is
to simulate the disturbance of occlusions to face features. As
shown in Fig. 3, compared to realistic occluded faces (green),
the distributions of synthetic occluded faces (red) reflect sim-
ilar disordered deviations from their original ones (blue).

In fact, this approach can be considered as an enhanced ver-
sion of additional continuous noises (such as simple square
noises). One advantage of the proposed method is that it is
designed for occlusions in open set. There is no overlap be-
tween synthetic and realistic occlusions. So it is suitable to
check the generalization ability of a model. Second, the syn-
thetic occlusions can simulate similar or more extreme pollu-
tion for face features. And there are identity labels and type
labels (clean v.s. occluded) for both synthetic and existing
samples. This is convenient to manipulate model training.
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Figure 4: A brief schematic diagram of biased guidance strategy
and its motivation. Motivation (right): As a goal of feature learn-
ing, class center is only dominated by face features, and used as a
guidance of occluded samples. Method (left): The parameters of a
model are selectively updated according to dash lines.

3.3 Biased Guidance Strategy for Model Training

For a data-driven model relying on a single feature extraction
channel, when multiple types of samples are used to train it
to produce discriminative feature embedding space, it is dif-
ficult to optimize the model to adapt to all the sample types.
Due to the strong fitting ability of a deep model, the spatial re-
gion from occlusion may lead a raw model to learn non-facial
features in some dimensions for classification, or push the
model to ignore the same region of normal samples. These
hypotheses imply that features of face and occlusion sources
jointly dominate the distribution of class centers. Here, oc-
cluded data inevitably interferes with the feature extraction
of normal data. Therefore, it is necessary to design an effec-
tive learning strategy for model optimization. To this end, we
present a biased guidance strategy for model training.

Given an extended training dataset I = IN ∪ IO, where
IN and IO are separately the normal face set and its occluded
version. For one sample xi ∈ I with label yi ∈ Y , after the
forward pass of a CNN model, the feature is denoted as fi =
C(xi, θ), where C is the feature extraction function defined by
a CNN and θ is the model parameters.

For the conventional model training with xi ∈ I , to en-
hance discrimination of fi, an efficient classifier usually uses
a label mapping layer M(fi,w,b) to obtain posterior proba-
bility p(yi|fi), and estimates the mapping matrix w and bias
vector b via its maximum likelihood as:

(w,b)∗ = argmax
w,b

∏

i

p(yi|fi;w,b) (1)

To implement it conveniently, we often design a label loss to
minimize its negative log-likelihood:

L =
∑

i

− log(M(fi, w̄); yi) (2)

where w̄ = (w,b). Here, the key is that w̄ controls the data
distribution of feature fi. Take the commonly used softmax
loss for an example, the predicted label ŷi from M can be
denoted as:

ŷi = M(fi, w̄) = softmax(w̄T
fi) (3)

For one-hot coding, matrix w̄ maps feature fi into one soft-
max space, in which the label vector li is represented by

l
k(k=yi)
i = 1 and l

k(k 6=yi)
i = 0. To ignore constant oper-

ation of softmax, we can observe that the hyper-plane w̄
T
yi

dominates the feature center of the yith class.

Now, for the two types of samples xn ∈ IN and xo ∈
IO, instead of the rough training with Eq. (2), there are two
main aspects should be considered: (i) how to balance the
driving power between IN and IO for the learning of model
parameters θ; and (ii) how to manipulate the feature subspace
or class centers with face features rather than hybrid features
containing occlusions. To balance these two drivers, we re-
modify the label loss L as:

L = Lxn∈IN + λ
n

o
Lxo∈IO (4)

where λ is empirically associated with the non-occlusion per-
centage in xo. n and o are the numbers of normal and occlu-
sion samples, which aim at the cost sensitivities of categories.

For the data distribution of each class center, given non-
face pixels in xo, its feature fo may contain non-face infor-
mation extracted by the raw C, so the posterior probability
p(yo|fo) should no longer participate in the learning of w̄. To
dominate the class center only with non-occluded face fea-
tures, we can make one modification for parameter update.
The gradients of all parameters {θ, w̄} are reformulated as:

∂L

∂θ
=

∂Lxi∈I

∂θ
,
∂L

∂w̄
= (1 + λ

n

o
)
∂Lxn∈IN

∂w̄
(5)

Clearly, the parameters w̄ with respect to class centers will
be only updated by the branch loss of normal samples. This
biased class center drags or guides the parameter learning of
θ in C via overall driving of Eq. (4). By this biased guidance
strategy, the model can produce discriminative features with
a minimum deviation from conventional face features.

Fig. 4 briefly demonstrates the proposed BFL method. Par-
ticularly, this approach is simple to implement, in which we
decompose a loss for two types of samples with Eq. (4). For
feature learning, we only use the loss branch of normal sam-
ples to update parameters of classifier and use the whole loss
to optimize CNN. Overall, this approach is suitable for a va-
riety of loss functions attached to a label mapping layer.

3.4 A Brief Discussion on BFL

Essentially, occlusion is a data pollution problem caused by
unknown spatially continuous or extreme noises. As Fig.3
implied, random occlusions drag samples away from their
original data distribution, and produce disordered outliers. It
is different from the cross-domain problem, where we can
seek or construct one or multiple mappings to obtain one
common subspace for different domains. Here, disordered
outliers are not lied in one or several domains. Therefore, for
classification, the best way is to build a many-to-one map-
ping from outliers to clean samples so that outliers converge
to their true class centers at the feature level. This is also
the main motivation of the proposed BFL method. The right
sub-figure in Fig. 4 briefly demonstrates this concept.

4 Evaluation Dataset and Protocol

To evaluate the performance of a model, a public dataset with
reasonable evaluation protocol is necessary. For example, the
well-known LFW dataset has been a widely used benchmark
for normal face verification. However, there is no a public
face dataset specially designed for occlusion-invariant FR. In
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Figure 5: Left: Some typical synthetic examples for frontal, lateral
and random occluded face in O-LFW. Right: Specification of face
verification in occlusion scene. We refine the evaluation as three
types: normal face pairs (N -N ), pairs between normal and occluded
faces (N -O) and occluded face pairs (O-O).

this section, we modify LFW and extend its evaluation proto-
col for occlusion-invariant FR.

4.1 Extended Evaluation Protocol

For face verification with occlusions, there are two types of
faces on a dataset, normal and occluded faces. A general veri-
fication protocol is not sufficient for model evaluation. There-
fore, it is necessary to redefine the evaluation as three differ-
ent types: normal face pairs verification (N -N), verification
between normal and occluded faces (N -O) and occluded face
pairs (O-O), as shown in Fig. 5.

4.2 The Occluded LFW Dataset (O-LFW)

There are many existing references for LFW in normal face
verification and the standard protocol is suitable for open set
evaluation. To facilitate the research in occlusion-invariant
FR, we collect many realistic occlusion sources and apply
them to LFW for a new benchmark (O-LFW). For occlusion
sources set, there are 200 types of occlusions in total, includ-
ing 90 upper half occlusions, 70 lower half occlusions, 30
random occlusions and 10 large area occlusions.

For O-LFW, the original 6K face pairs arranged in left and
right of LFW are directly used for N -N verification. For the
verification of N -O pairs, all faces on the right are replaced
with their own synthetic versions. For O-O verification, we
first synthesize 6K occluded versions for the faces on the left
side. To avoid abundant overlaps of the same occlusions, all
the right occluded faces are synthesized with random occlu-
sion sources. Some examples are shown in Fig. 5.

Therefore, there are three settings in O-LFW, each with 6K
pairs, for evaluation. For each setting, all the faces are in the
order of the standard pairs list of LFW. It will be released for
further studies in occlusion-invariant FR.

5 Experiments

Dataset. We use CASIA-WebFace (10575 classes with
0.49M samples) as the training set of IN , and synthesize the
same number of virtual samples as its occluded version IO
(we simply set n = o). The parameters for synthetic occlu-
sions are the same as that in Fig. 2. For testing, we use the
O-LFW dataset with the cosine similarity measure.

Figure 6: Performance exhibitions of different schemes on L09 (left)
and R18 (right). Subscripts IN and IN+IO separately denote con-
ventional training with only normal samples and hybrid samples;
Latter 5 decimals denote the λ values with the proposed biased guid-
ance strategy. The blue, green and red bars respectively reflect the
accuracy of N -N , N -O and O-O.

Model. We select two typical networks with advanced
residual structure for comparisons: LightCNN-9 (L09) and
Resnet-18 (R18). L09 is with the Maxout activation func-
tion and without Batch Normalization (BN) layers [Wu et
al., 2018]. R18 contains conventional Relu activation and
BN [He et al., 2016]. For R18, we replace the first layer with
3× 3 convolution. Before training, all the images are resized
to 128 × 128 for L09 and 112 × 112 for R18. The output
feature vector is uniformly set to 256 for both models.

Network training. To verify the superiority of the pro-
posed method fairly, all the models are trained with the Adam
optimizer in PyTorch. The batch size is separately set as 128
for original IN and 256 for hybrid IN+IO. For all the ex-
periments, random horizontal flip is applied to the training
images. The softmax loss is used and the learning rate (lr) is
set to 5e− 4 in subsection 5.1 and 5.2.

5.1 Sensitiveness Analysis on λ

As stated in Section 3.3, the parameter λ in Eq. (4) domi-
nates the driving power of IO in the overall loss, which was
empirically given one number associated with non-occlusion
percentage in xo (0 ≤ λ ≤ 1). So we conduct two experi-
ments to investigate its sensitiveness. Since we set n = o, the
loss function is simplified as L = Lxn∈IN + λLxo∈IO .

In this part, we only conduct 20 training epochs for net-
work training. Given the performance tends to saturation after
11 epochs, we report the average accuracy between 11th and
20th epochs to avoid the randomness of results. We display
the performance trends in Fig. 6.

As shown in Fig. 6, we can find: (i) The classical training
method achieves substantial improvements for N -O and O-O

under the auxiliary occlusion set IO, but it is accompanied
by an obvious performance drop on N -N . In contrast, the
proposed BFL method obtains remarkable improvements for
all the three settings with different λ. (ii) For L09, as the in-
crease of λ, the N -N performance is dropping along with the
rising of O-O. For R18, N -N maintains stable improvements
but with slight fluctuation of N -O and O-O.

Overall, we argue that the best λ should not be fixed for dif-
ferent IO. It is best to match the percentage of non-occlusion
face and separately set for different models. Besides, since
the two models perform differently in terms of λ, its value is
simply set as 0.5 for subsequent experiments.
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Method N -N N -O O-O Dataset

Baseline (IN ) 94.38 79.90 64.91 IN

Dropout(0.5) 94.44 80.42 65.35 IN

Crop(0.6-1) 95.59 80.32 64.20 IN

Crop(0.8-1) 95.81 81.96 65.28 IN

Baseline (IN+IO) 94.10 84.48 71.55 IN+IO
BFL 95.28 85.72 72.42 IN+IO

BFL+Dropout(0.5) 95.16 86.04 73.08 IN+IO
BFL+Crop(0.6-1) 95.91 87.66 74.77 IN+IO
BFL+Crop(0.8-1) 96.13 88.12 75.10 IN+IO

Table 1: Verification results (%) of L09 on O-LFW datasets.

Method N -N N -O O-O Dataset

Baseline(IN ) 95.43 79.87 65.38 IN

Dropout(0.5) 95.32 79.34 64.29 IN

Crop(0.6-1) 96.96 80.32 64.58 IN

Crop(0.8-1) 96.77 81.39 65.08 IN

Baseline (IN+IO) 95.08 83.11 68.70 IN+IO
BFL 95.55 83.41 70.43 IN+IO

BFL+Dropout(0.5) 96.12 84.01 70.05 IN+IO
BFL+Crop(0.6-1) 97.45 87.22 73.12 IN+IO
BFL+Crop(0.8-1) 97.35 85.98 70.78 IN+IO

Table 2: Verification results (%) of R18 on O-LFW datasets.

5.2 Comparison with Other Methods

In this subsection, we compare totality and sub-components
of BFL framework with some existing methods.This is also
equivalent to the ablation study for Section 5.3. For dropout
schemes, the ratio is set as 0.5 and applied before the classifi-
cation layer. α-β in Crop(α-β) indicates the scale of random
cropping for faces. The results are reported with the aver-
age value between the 16th and 20th epochs in Table 1 and
Table 2, in which Baseline denotes the conventional training
way and BFL is the proposed method with λ=0.5.

According to Table 1 and Table 2, we can conclude that:

1) Overall, other data augmentation schemes are effective
for the traditional N -N setting but do not perform well for
N -O and O-O. For the proposed IO, it can significantly im-
prove N -O and O-O but bring negative effects for N -N . For
the proposed BFL method, it not only significantly improves
the performance of all the cases but also obtains more effec-
tive improvements united with other methods.

2) For the two models, L09 is more effective than R18 to
mitigate the occlusion issue. The main reason is that the oc-
clusion sources in IO are thoroughly different from the real-
istic occlusions in the O-LFW test set, which brings different
covariate shifts for the intermediate CNN feature maps so that
it is unfavorable for the application of BN in R18.

5.3 Study of Generalization Capability

In this section, we examine the generalization capability of
the proposed method to different loss functions. For net-
work training of all the evaluated methods, we apply random
Crop (0.8-1.0) to the training images. Meanwhile, we use
the L2 regularization with the weight decay of 0.01 follow-

Model Method N -N N -O O-O Loss

L09

Baseline 95.85 81.29 65.63
Softmax

BFL 96.79 89.06 76.61
Baseline 98.63 85.14 68.36

CosFace
BFL 98.52 90.81 76.98
Baseline 98.52 85.14 68.36

ArcFace
BFL 98.68 91.36 77.54

R18

Baseline 97.06 79.29 63.29
Softmax

BFL 98.30 86.18 70.07
Baseline 98.69 82.70 65.89

CosFace
BFL 98.80 88.14 72.47
Baseline 98.17 75.12 61.95

ArcFace
BFL 98.67 83.91 70.27

Lv2
Baseline 99.57 89.83 72.77

CosFace
BFL 99.47 93.40 79.03

Rv1
Baseline 99.33 88.27 74.65

CosFace
BFL 99.15 91.83 79.97

Table 3: Verification results (%) of 4 models on different losses.

ing AdamW [Loshchilov and Hutter, 2019]. We set lr=1e-4
for R18 with the ArcFace loss to avoid non-convergence, and
lr=5e-4 for all the others. After 100 epochs, average results
of the last 5 epochs are reported.

Besides, we provide comparisons on LightCNN-V2 (Lv2)
and ResNet-Inception-v1 (Rv1) with the same setting. We
separately report the results after 10 and 20 epochs of fine-
tuning. All the results are reported in Table 3.

Overall, the improvements of BFL method on N -N , N -O

and O-O are in the interval of (-0.18, 1.14), (3.56, 7.77) and
(5.32, 10.98) in terms of accuracy. We can conclude that, for
different models with different loss functions, the proposed
BFL framework not only improves the generalization capa-
bility to occluded faces but also maintains the good perfor-
mance for normal faces.

6 Conclusion

To address the challenges posed by unknown occlusions, we
presented a reasonable model evaluation protocol and bench-
marking dataset for occlusion-invariant face recognition. In
addition, we proposed a novel biased feature learning frame-
work for deep network training. The proposed BFL frame-
work uses a biased guidance strategy to promote the feature
learning of a face recognition model. The experimental re-
sults demonstrated the merits of our BFL method as well as
its generalization capability with different network architec-
tures and loss functions.
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