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We explore the evolutionary dynamics of two games—the Prisoner’s Dilemma and the Snowdrift Game—
played within distinct networks (layers) of interdependent networks. In these networks imitation and
interaction between individuals of opposite layers is established through interlinks. We explore an update
rule inwhich revision of strategies is a biased imitation process: individuals imitate neighbors from the same
layer with probability p, and neighbors from the second layer with complementary probability 1 2 p. We
demonstrate that a small decrease of p from p 5 1 (which corresponds to forbidding strategy transfer
between layers) is sufficient to promote cooperation in the Prisoner’s Dilemma subpopulation. This, on the
other hand, is detrimental for cooperation in the Snowdrift Game subpopulation. We provide results of
extensive computer simulations for the case in which layers are modelled as regular random networks, and
support this study with analytical results for coupled well-mixed populations.

N
etwork science has registered tremendous breakthroughs in the last years. Among these findings are the
development of analytical and computational tools to study large real networks, as well as the develop-
ment of more realistic models. These studies interpreted real networks mostly as single, isolated entities.

However, the deeper understanding of complex networks is showing that in fact they are generally organized as
networks of networks, and therefore the main focus of scientific research is shifting tomultiplex and interdepend-
ent networks1.

Interdependent networks are organized in two or more layers (subnetworks), in which the functioning of a
node in one layer depends on neighbor nodes in other layers. Multiplex networks2,3, on the other hand, are
composed of a single type of node and several types (‘‘colors’’) of links. One example of a real multiplex network is
the transportation network of a city: nodes represent locations in the city, and links are of different type depending
on the transportation system(s) that connect two given locations (metro, autobus, etc). Interdependent networks
have already been applied in studies in diverse areas of science4. There is significant progress in the understanding
of their percolation properties and robustness1,5–13. Furthermore, interdependent networks were also applied in
the evaluation of seismic risk14,15, in the emergence of creativity16 and on the impact of such population structure
on voting outcome17.

Network science18–20, together with evolutionary game theory21, helps to understand how cooperative behavior
can emerge and evolve in structured populations of selfish individuals. Cooperators contribute with a cost so that
another individual can receive a certain benefit. Defectors on the other hand do not contribute, yet reap the benefit
(which we assume to be larger than the cost). Interactions between individuals are traditionally modelled by one-
shot symmetric two-person games, including the Prisoner’s Dilemma (PD)22,23, the Snowdrift Game (SG)24 or the
Stag-Hunt game (SH)25. In structured populations individuals only interact with their nearest neighbors, and it
becomes possible for cooperators to escape exploitation by defectors by forming clusters in which they support
each other. This process is known as network reciprocity26–33.

Population structure for games was traditionally modelled as a single, isolated network. Only very recently
research has started to evaluate the impact of more complex, interdependent networks on the evolution of
cooperation. To the best of our knowledge, all previous works have implemented the same game in all layers34–40.
Different layers however can represent distinct environments, characterized by their game rules, which can
interact or be coupled. Consider the example of two companies and the joint network of contacts between their
employees. The code of conduct in each company may be different, depending on its internal organization and
goals. Nevertheless, employees from one companymay interact with employees from the other company, because
they know each other personally or for instance when establishing a business transaction. By interacting with an
acquaintance from the other company, each employee can acquire new working strategies, which can afterwards
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be imitated by their contacts inside each company. Another natural
example is interaction between subpopulations of different cultural
backgrounds.
Here we investigate how imitation and interaction between indi-

viduals playing different games influence the final cooperation levels.
For that, we consider a population organized in two layers of equal
size, in which one distinct game is played in each of the layers, as
schematized in Fig. 1 (see also Methods for details). Nodes establish
intralinkswith neighbors of the same layer, and interlinkswith neigh-
bors of the opposite layer. In the following, we start by studying by
computer simulations the case in which both layers are regular ran-
dom graphs. Afterwards, we also consider the limit case of a well-
mixed population of infinite size, also organized in two layers. We
introduce bias in imitation: individuals imitate a neighbor from the
same layer with probability p, or a neighbor of the opposite layer with
probability (1 2 p). We investigate the impact of varying p on the
final level of cooperation reached in each of the layers (seeMethods).

Results
Regular random layers. For reference, we present in Fig. 2 the final
fraction of cooperators for the PD and the SG played in isolated
populations. Panel A) shows the results of computer simulations in
regular random networks, while panel B) shows the stationary
solutions of the replicator equation _x~x 1{xð Þ fC xð Þ{fD xð Þ½ � for
an infinite well-mixed population, that is a population in which
every individual has the same probability of interacting with
anyone else41. In the replicator equation, x represents the fraction
of cooperators in the population, fC(x) and fD(x) stand for the
mean fitness of cooperators and defectors respectively (with fC(x)
5 xR 1 (1 2 x)S and fD 5 xT 1 (1 2 x)P). The PD is the
harshest social dilemma for cooperation, and therefore only a small
region characterized by S close to 0 and T close to 1 is able to escape
full defection, in regular random networks. The SG, on the other
hand, is a coexistence game, in which the final fraction of
cooperators x in an infinite well-mixed population is given by x 5

(P 2 S)/(R 2 S 2 T 1 P).
To evaluate the impact of an interdependence between the PD and

the SG on the evolution of cooperation, we start by considering a
population in which each of the layers is modeled by a regular ran-
dom graph with nodes of degree k5 4. This graph has no finite loops
in the infinite size limit. We assume that each node establishes one
interlink with a uniformly randomly chosen node from the opposite
layer. That is, individuals engage in four interactions with neighbors
of the same layer and one interaction with a neighbor from the other
layer.
The contour plots in Fig. 3 show the result of our simulations,

namely, the final fraction of cooperators in each of the layers as a

function of the game parameters T and S, for several biased imitation
probabilities p (0# p# 1). When p5 1 individuals can only imitate
neighbors from the same layer, and the results obtained are qualita-
tively similar to those known for isolated populations (see panel A) of
Fig. 2).
When p , 1 strategy transfer between layers becomes possible.

Comparing the results for the PD layer for p5 0.9, p5 0.95 and p5
1, we reach an interesting conclusion: although the fraction of coop-
erators is still low, even a small probability of imitating a neighbor
playing a distinct social dilemma (in this case, the SG) is sufficient to
prevent full defection in the majority of the PD quadrant.
As p further decreases, for a given pair of game parameters T, S the

fraction of cooperators in the stationary state becomes approxi-
mately equal in both layers (note that SSG 5 S, SPD 5 2S with S
g [0, 1]). However, a careful inspection of the contour plots pre-
sented in Fig. 3 for 0.1# p# 0.5 shows that the fraction of coopera-
tors in both layers is not exactly identical (i.e. the contours are not
exactly symmetrical): for a fixed pair of T and S values, the PD layer
tends to have a slightly lower fraction of cooperators.
Finally, the results for p 5 0 are surprisingly different from the

ones for higher p. This contrast indicates the different structures of
absorbing states at different values of p. When p5 1 four absorbing

Figure 1 | Scheme of the population structure.The population is organized in two layers. Individuals establish intralinkswith neighbors of the same layer,

and interlinks with neighbors of the opposite layer. Depending on the layer in which they are located, individuals compute their payoff taking into

account the PD payoff matrix or the SG payoff matrix, indicated on the left of the figure. On the right, we schematize the relation between the parameters

of the two games, which we use in this paper. We assume that TPD 5 TSG 5 T, SSG 5 S and SPD 5 2S, with Sg [0, 1], Tg [1, 2].

Figure 2 | Final fraction of cooperators in single, isolated populations.
The contour plot of panel A) shows the final average fraction of

cooperators for the PD and SGwhen these social dilemmas are played in an

isolated regular random network of size N 5 103 and node degree k 5 4.

Panel B) shows the corresponding results for an infinite well-mixed

population, solution of the replicator equation _x~x 1{xð Þ fC xð Þ{fD xð Þ½ �,
where fC(x) and fD(x) stand for the mean fitness of cooperators and

defectors respectively41. Red corresponds to full defection, blue

corresponds to full cooperation. The parameter b is set to 1.0 for panel A).
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states exist, and both layers reach homogeneous states: both reaching
full defection (full cooperation), or one layer reaching full coopera-
tion and the other full defection (and vice versa). When 0 , p , 1,
individuals can imitate neighbors from both layers, and therefore
only the two absorbing states in which both layers reach the same
homogeneous state are possible. In contrast, when p5 0, each indi-
vidual can only imitate his neighbor connected through the interlink.
As a result, there is an infinite number of absorbing states. When all
interlinks connect pairs of individuals with equal strategies, evolu-
tion stops, as schematized in panel A) of Fig. 4. Since strategies and
interlinks are distributed randomly in the population, on average less
than N/2 interlinks will actually connect individuals of different
strategies, and the population will rapidly evolve to an absorbing
state.
Figure 5 shows the cross section of the contour plots of Fig. 3 at

fixed S5 0.5 for several p values. This illustrates the different beha-
vior of the level of cooperation in each of the layers for decreasing p.
Excluding the results for p 5 0 (which are a direct consequence of
allowing exactly one interlink for each node) we observe that the
fraction of cooperators monotonously decreases for decreasing p in
the SG layer, while in the PD layer it monotonously increases. As we
will see in the following, this behavior will not be maintained when
this population structure is replaced by a well-mixed population.

Well-mixed population.We now proceed to analyze the general case
of a population modelled by a fully connected network organized in

two layers. Each layer has N/2 nodes and
1

2
N=2ð Þ N=2{1ð Þ

intralinks. Contrary to the previous case of regular random layers,
in which each node established one interlink, we now assume that
each node establishes N/2 interlinks to the N/2 nodes of the opposite
layer, in accordance with the structure of a fully connected network.
Therefore, each node has N2 1 neighbors:N/22 1 in the same layer
as itself, and N/2 in the opposite layer. nPD and nSG stand for the
number of cooperators in the PD (SG) layer, respectively. In this case,
mean-field theory is exact and the evolution of population can be
expressed completely by nPD (t) and nSG (t).
We obtain the solutions for the stationary state of this model in the

infinite population limit, NR ‘. For that, we adopted the variables
xPD 5 nPD/(N/2) and xSG 5 nSG/(N/2) (xPD g [0, 1] and xSG g
[0, 1]). The mean fitness of individuals in each of the layers is
expressed in terms of the game parameters and the fraction of coop-
erators and defectors. In the PD layer, the fitnesses of cooperators

Figure 3 | Final fraction of cooperators when layers aremodelled as random regular graphs, for various values of probability p.Contour plots show the

final average fraction of cooperators on both the PD (S, 0) and SG (S. 0) layers as a function of the game parameters T and S, starting from 50% of

cooperators and defectors randomly distributed in each of the layers. The dashed line separates the results for the SG layer (upper quadrants) from

the results for the PD layer (lower quadrants). Red corresponds to full defection, blue corresponds to full cooperation (x stands for the fraction of

cooperators in a given layer).

Figure 4 | Absorbing states for p5 0. Each panel represents a snapshot of
the two layers seen in profile. Panel A) schematizes one possible absorbing

state when layers are modelled as regular random networks. Since each

individual can only imitate his neighbor connected through the interlink,

the population reaches an absorbing state organized as an arbitrary set of

independent pairs (cooperator–cooperator and defector–defector) in

which one member is in one layer and the other is in the other layer. Panel

B) represents one of the two possible absorbing states in a well-mixed

population. Since each node establishes interlinks to every node from the

opposite layer, evolution ceases when both layers reach full cooperation or

full defection.

Figure 5 | Final fraction of cooperators versus T at fixed S5 0.5, for both
layers. Results correspond to those presented in Fig. 3 when S 5 0.5. The

fraction of cooperators for the SG layer is shown in the upper plot, while

the corresponding curves for the PD layer are presented in the bottom plot.

For simplicity, we include only some of the p values studied in Fig. 3.
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(fC,PD) and defectors (fD,PD) are expressed as:

fC,PD~xPD{ 1{xPDð ÞSzxSG{ 1{xSGð ÞS; ð1Þ

fD,PD~xPDTzxSGT: ð2Þ

Similarly, in the SG layer the fitnesses of cooperators (fC,SG) and
defectors (fD,SG) are

fC,SG~xSGz 1{xSGð ÞSzxPDz 1{xPDð ÞS; ð3Þ

fD,SG~xSGTzxPDT: ð4Þ

We obtain the following rate equations for the evolution of the
fraction of cooperators in the PD and SG layers:

_xPD~ 1{xPDð Þ pxPDF fC,PD{fD,PDð Þz 1{pð ÞxSGF fC,SG{fD,PDð Þ½ �

{xPD p 1{xPDð ÞF fD,PD{fC,PDð Þz 1{pð Þ 1{xSGð ÞF fD,SG{fC,PDð Þ½ �,

ð5Þ

_xSG~ 1{xSGð Þ pxSGF fC,SG{fD,SGð Þz 1{pð ÞxPDF fC,PD{fD,SGð Þ½ �

{xSG p 1{xSGð ÞF fD,SG{fC,SGð Þz 1{pð Þ 1{xPDð ÞF fD,PD{fC,SGð Þ½ �:
ð6Þ

For instance, in Eq. (5) the factor (1 2 xPD) stands for the prob-
ability of selecting a defector from the PD layer. The second factor, in
the square brackets, accounts for the two possible scenarios: with
probability p the defector can imitate a cooperator from the PD layer,
while with complementary probability (12 p) the defector can imit-
ate a cooperator that belongs to the SG layer. The interpretation is
analogous for the second line of this equation, as well as for Eq. (6).
The stationary state solution corresponds to that obtained from Eqs.
(5) and (6) when _xPD~0 and _xSG~0.
Figure 6 shows the final stationary states of this mean-field model

for different values of probability p, provided by the numerical solu-
tions of Eqs. (5) and (6) for b5 1.0. These plots actually explain our
simulations in the previous section for coupled regular random net-
works (see Fig. 3). One can clearly see that Figs. 3 and 6 show qual-
itative similarities, with only one dramatic exception, p 5 0, which
will be discussed below. In particular, in the case of p5 1 both Figs. 3
and 6, as well as Figs. 5 and 7, are close to the corresponding results
for isolated populations (random regular and well-mixed, respect-
ively, compare with Fig. 2).
One can see from Fig. 6 that a small probability of imitating a

neighbor from the SG layer is beneficial for the levels of cooperation

reached in the PD layer. The final fraction of cooperators in each of
the layers becomes approximately equal as p decreases, yielding
almost symmetrical contours for 0.1 # p # 0.5. However, the frac-
tion of cooperators is in general slightly lower in the PD layer than in
the SG layer for a fixed pair of game parameters T and S.
Note some difference between Figs. 3 and 6 at sufficiently low, still

non-zero, p. With diminishing p, the region of full defection in
coupled regular random populations (Fig. 3) approaches some limit.
In contrast, for decreasing p, coupled well-mixed populations (Fig. 6)
do not show any area with full defection, but the region with high
level of defection becomes wider and wider as p decreases. Finally, at
p5 0, the full defection state is realized in the entireT2 S plane. This
difference is also observed between Figs. 5 and 7. Especially it man-
ifests itself in two different behaviors of fractions of cooperators in
the PD layer in Figs. 5 and 7, monotonous with p and non-mono-
tonous, respectively.
At p5 0 the difference between the coupled regular random net-

works and well-mixed population is dramatic. While for the coupled
well-mixed populations, the final state is full defection for the whole
T 2 S plane (Fig. 6), for regular random networks we observed

Figure 6 | Final fraction of cooperators on each layer of the well-mixed population, for various values of probability p. Contour plots show the

final fraction of cooperators on both the PD (S, 0) and SG (S. 0) layers (solution of Eqs. (5) and (6)) as a function of the game parameters T and S. The

dashed line separates the results for the SG layer (upper quadrants) from the results for the PD layer (lower quadrants). Red corresponds to full

defection, blue corresponds to full cooperation (x stands for the fraction of cooperators in a given layer). Parameters: b 5 1.0.

Figure 7 | Final fraction of cooperators versus T at fixed S5 0.5 for both
layers of a fully connected network. Results correspond to those presented
in Fig. 6 when S5 0.5. The fraction of cooperators for the SG layer is shown

in the upper plot, while the corresponding curves for the PD layer are

shown in the bottom plot.

ð5Þ

ð6Þ
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coexistence of defection and cooperation for the whole T2 S plane.
The reason for this controversy is the fundamental difference
between the structures of the absorbing states in these two systems.
Clearly, in the mean-field system (well-mixed) there are two absorb-
ing states: full cooperation and full defection. For p 5 0, the full
defection scenario is realized. In contrast, in the coupled regular
random populations, at p 5 0 the system has an infinite number of
absorbing states. We already explained that this state is organized as
an arbitrary set of independent pairs (cooperator-cooperator and
defector-defector) in which onemember is in one layer and the other
is in the other layer. The final fraction of cooperators and defectors in
the population for a given point on theT2 S plane is determined by a
specific initial condition.
It is interesting to relate our findings with observations in other

works39,40which studied the role of biased fitness (utility) on the level
of cooperation in interdependent structured populations. Although
these works explored a bias and network architectures very different
from our study, they reported the existence of an optimal control
parameter value for cooperation, similarly to what we notice for a
well-mixed population.
We can also relate our model to the multi-network model42,43,

where links between nodes are of two sorts: the interaction links
through which individuals play and the imitation links through
which individuals revise their strategies. All links in our model are
used both for interaction and imitation. The principal difference is
that interaction occurs with probability 1 for every link, while imita-
tion takes place with probability p along intralinks and the comple-
mentary probability 1 2 p along interlinks.

Discussion
We explored the evolution of cooperation in two games—the
Prisoner’s Dilemma and the Snowdrift Game—played within an
interdependent network. We demonstrated that as the probability
to imitate neighbors from the opposite layer increases, the final level
of cooperation in each of the layers behaves differently. A small
probability 1 2 p is always detrimental for the level of cooperation
in the SG layer, regardless of the population structure (well-mixed or
when layers are modelled as regular randomnetworks). In the case of
a well-mixed population we observed an intermediate optimal value
of p for which the fraction of cooperators in the steady state is max-
imal in the PD quadrant. On the other hand, when layers are regular
random graphs, the level of cooperation in the PD layer registers a
significant increase from full defection as p decreases from 1, as is
shown in Fig. 3. We have also shown that different arrangements of
interconnections between layers result in fundamentally different
structures of absorbing states for p5 0, that is the limit case in which
individuals can only imitate neighbors through the interlinks.
The constraint between the game parameters of the PD and the SG

implemented in this work is one of possible options. Based on our
mean-field approach we have verified that our conclusions remain
qualitatively valid for other relationships between game para-
meters44. In this work we studied a representative case of b 5 1. In
the Supplementary Information we consider other values of b.
The Prisoner’s Dilemma and the Snowdrift Game are two of the

possible two-person games. Future research directions include estab-
lishing an interdependence between other two- andN-person games,
as well as extending the biased imitation process here reported to the
case in which layers are strongly heterogeneous, such as scale-free
networks45.

Methods
Evolutionary games. We implement standard two-person games. Each individual
can act as an unconditional cooperator (C) or as an unconditional defector (D). The
possible payoffs resulting from the interaction between two players are resumed in the
payoff matrix

C D

C

D

R S

T P

 !

ð7Þ

in which the entries represent the payoff earned by the row player. When both
individuals opt for cooperation (defection), they both receive a Reward, R
(Punishment, P).When a cooperatormeets a defector, the cooperative player received
the Sucker’s payoff (S), while the defective player receives the Temptation (T) for
defecting.

The relative ordering of the game parameters R, S, T and P defines four different
two-person games46. In this study, we consider the Prisoner’s Dilemma (PD) (char-
acterized by T. R. P. S)23 and the Snowdrift Game (SG) (characterized by T. R
. S . P)24. We fix R 5 1, P 5 0 as is conventional26.

Population structure. We consider a population organized in two layers
(schematized in Fig. 1), in which each node represents a different individual. In each
layer all individuals play the same game, the PD in one layer and the SG in the other.
We refer to links between nodes of opposite layers as interlinks, and links between
nodes of the same layer as intralinks. In the absence of interlinks, each layer stands as
an isolated population in which one single game is played. When layers are modelled
as regular random graphs, we assume that each node establishes one interlink to a
randomly chosen node from the opposite layer. On the other hand, when studying a
two-layer fully connected network, we assume that each node establishes interlinks to
each of the nodes in the opposite layer.

Relation between game parameters. We assume that individuals in the PD layer
adopt the game parameters RPD, SPD, TPD and PPD (with TPD . RPD . PPD . SPD).
Similarly, individuals in the SG layer consider RSG, SSG, TSG and PSG (with TSG. RSG
. SSG . PSG). The game parameters for the PD and the SG can be related in several
ways.We opt for RPD5 RSG5 1, PPD5 PSG5 0 and TPD5 TSG5 Twith Tg [1, 2].
Furthermore, we constrained SSG 5 S and SPD 52S, with Sg [0, 1]. The resulting
payoff matrix for the SG is

C D

C

D

1 S

T 0

 !

ð8Þ

while the payoff matrix for the PD layer is given by

C D

C

D

1 {S

T 0

 !

:
ð9Þ

The difference betweenmatrix (8) for the SG layer andmatrix (9) for the PD layer is in
the payoff obtained by a cooperator when interacting with a defector, the sucker’s
payoff. When interacting with a defector, a cooperator located in the SG layer earns S,
while a cooperator located in the PD layer earns2S. We stress that this is only one of
possible relations between the parameters of the two games.

Individuals play the same game with all neighbors, including the neighbor(s) from
the other layer. An individual’s fitness represents a measure of his success, and
corresponds to the payoff accumulated over all interactions in which he engages in
one time-step. Through the interlinks, individuals obtain their payoff by taking into
account the strategy of their co-player and the payoff matrix used in their own layer.

Update dynamics. Individuals revise their strategies through a biased imitation
process: with probability p they imitate a neighbor from the same layer, while with
probability (12 p) individuals imitate a neighbor from the opposite layer. Update is
asynchronous: at each time-step we randomly choose one of the layers, and from it
one randomly chosen individual, A, to revise his strategy. Then we choose with
probability p a neighbor from the same layer, and with complimentary probability
(1 2 p), a neighbor from the opposite layer. If A and his chosen neighbor, B, have
different strategies, A imitates the strategy of B with a probability F (fB 2 fA)
proportional to their fitness difference and given by the Fermi distribution47,48,

F fB{fAð Þ~
1

1ze{b fB{fAð Þ
: ð10Þ

fA (fB) stands for the fitness of A (B), and b represents the intensity of selection, which
regulates the accuracy of the imitation process. In the limit bR 0 evolution proceeds
by random drift, while bR ‘ corresponds to the deterministic limit of pure copying
dynamics: A imitates B iff fB. fA, with probability 1.We consider the respresentative
case of b 5 1.0.

Simulations.The results of Figs. 3 and 5were obtained for a population of total sizeN
5 2000, in which both layers had an equal size,N/25 1000. Each point in the contour
plots corresponds to an average over 103 trials. In each trial, we start by randomly
selecting one over 102 realizations of a regular random network to model each layer,
and establish N/2 interlinks between the layers. Each interlink is established by
uniformly randomly choosing two end nodes, one from each layer, allowing each

www.nature.com/scientificreports
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node to establish exactly one interlink. Each trial starts by randomly distributing 50%
of cooperators and defectors in each of the layers. We allow the population to evolve
for 104 generations (where 1 generation corresponds to N/2 strategy revisions), after
which we average the fraction of cooperators over the next 103 generations.
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