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BIASED PREDECESSOR SEARCH*

Prosenjit Bose,† Rolf Fagerberg,‡ John Howat,† and Pat Morin†

Abstract. We consider the problem of performing predecessor searches in a bounded
universe while achieving query times that depend on the distribution of queries. We obtain
several data structures with various properties: in particular, we give data structures that
achieve expected query times logarithmic in the entropy of the distribution of queries but
with space bounded in terms of universe size, as well as data structures that use only
linear space but with query times that are higher (but still sublinear) functions of the
entropy. For these structures, the distribution is assumed to be known. We also consider
individual query times on universe elementswith general weights, as well as the case when
the distribution is not known in advance.

Keywords: data structures, predecessor search, biased search trees, entropy

1 Introduction

The notion of biased searching has received significant attention in the literature on ordered
dictionaries. In ordered dictionaries, the central operation is predecessor queries—that is,
queries for the largest element stored in the data structure that is smaller than a given
query value. The setting is biased when each element i of the data structure has some
probability pi of being queried, andwewish for queries to take a time related to the inverse
of the probability of that query. For example, a biased search tree [5] can answer a query
for item i in time O(log1/pi).

1 For biased predecessor queries, also the gaps between
consecutive elements of the data structure are assigned probabilities of being searched for
[11, 5, p. 564]. Recall that

∑

i pi log(1/pi) is the entropy of the distribution of queries. In
terms of this quantity, we note that the expected query time in a biased search tree is linear
in the entropy of the query distribution, and that this is optimal for binary search trees [5,
Thm. A].2

Binary search trees work in the comparison-based setting where keys only can be
accessed by comparisons. Predecessor searches have also been researched extensively in
the context of bounded universes where keys are integers of bounded range whose bits may

*Partially supported by the Danish Council for Independent Research, Natural Sciences, grant DFF-1323-
00247.

†Carleton University, {jit,jhowat,morin}@scs.carleton.ca
‡University of Southern Denmark, rolf@imada.sdu.dk
1In this paper, we define logx = log2(x +2).
2As will be apparent from our results, in bounded universes this lower bound does not hold, and one can

achieve query times below it.
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be accessed individually. More precisely, let U = {0,1, . . . ,U −1} be the universe of possible
keys, and consider a static subset S = {s1, s2, . . . , sn} ⊆ U , where s1 < s2 < · · · < sn. Predecessor
searches in this context admit data structures with query times that are not only a function
of n, but also of U . For example, van Emde Boas trees [16] can answer predecessor queries
in time O(loglogU ).

A natural question—but one which has been basically unexplored—is how to com-
bine these two areas of study to consider biased searches in bounded universes. In this
setting, we have a probability distribution D = {p0,p1, . . . ,pU−1} over the universe U such
that the probability of receiving i ∈ U as a query is pi and

∑U−1
i=0 pi = 1. We wish to prepro-

cess U and S , given D, such that the time for a query is related to D.

The motivation for such a goal is the following. Let H =
∑U−1

i=0 pi log(1/pi) be the
entropy of the distribution D. Recall that the entropy of a U-element distribution is be-
tween 0 and logU . Therefore, if an expected query time of O(logH) can be achieved, this
for any distribution will be at most O(loglogU ), which matches the performance of van
Emde Boas trees [16]. However, for lower-entropy distributions, this will be faster—as a
concrete example, an exponential distribution (say, pi = Θ(1/2i)) has H = O(1) and will
yield support of queries in expected constant time. In other words, such a structure will
allow bias in the query sequence to be exploited for ordered dictionaries over bounded
universes. Hence, perhaps the most natural way to frame the line of research in this pa-
per is by analogy: the results here are to biased search trees as van Emde Boas trees (and
similar structures) are to binary search trees.

Our results. The results presented here can be divided into four categories. In the first
we give two variants of a data structure that obtains O(logH) query time but space that
is bounded in terms of U . In the second we give a solution that obtains space that is

linear in n but has query time O
(√

H
)

. In bounded universe problems, n is always smaller

than U (often substantially so), so these two categories can be seen as representing a time-
space trade-off. In the third we consider individual query times on universe elements with
general weights. In the fourth we consider query times related to the working-set number
(which is defined as the number of distinct predecessors reported since the last time a
particular predecessor was reported), so that the query distribution need not be known
in advance. Our methods use hashing and existing (unbiased) predecessor structures for
bounded universes [3, 17] as building blocks.

Organization. The rest of the paper is organized in the following way. We first complete
the current section by reviewing related work. In Section 2 we show how to obtain good
query times at the expense of large space. In Section 3 we show how to obtain good space
at the expense of larger query times. We conclude in Section 4 with a summary of the
results obtained and possible directions for future research.
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1.1 Related Work

It is a classical result that predecessor searches in bounded universes can be performed in
time O(loglogU ). This was first achieved by van Emde Boas trees [16], and later by y-fast
tries [17], and Mehlhorn and Näher [13]. Of these, van Emde Boas trees use O(U ) space,
while the other two structures use O(n) space.

These bounds can be improved to
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using nO(1) space [3]. By paying an additional O(loglogn) factor in the first half of this
bound, the space can be improved toO(n) [3]. Pătraşcu and Thorup later effectively settled
this line of research with a set of time-space trade-offs [14].

Departing the bounded universe model for a moment and considering only biased
search, perhaps the earliest such data structure is the optimum binary search tree [11],
which is constructed to be the best possible static binary search tree for a given distribu-
tion. Optimum binary search trees take a large amount of time to construct; in linear time,
however, it is possible to construct a binary search tree that answers queries in time that is
within a constant factor of optimal [12]. Even if the distribution is not known in advance,
it is still possible to achieve the latter result (e.g., [2, 15]).

Performing biased searches in a bounded universe is essentially unexplored, ex-
cept for the case where the elements of S are drawn from D rather than the queries [4].
In that result, D need not be known, but must satisfy certain smoothness constraints,
and a data structure is given that supports O(1) query time with high probability and

O
(
√

logn/ loglogn
)

worst-case query time, using O
(

n1+ǫ
)

bits of space, which can be re-

duced to O(n) space at the cost of a O(loglogn) query time (with high probability). It is
worth noting that this data structure is also dynamic.

A related notion is to try to support query times related to the distribution in a

less direct way. For example, finger searching can be supported in time O
(
√

logd/ loglogd
)

where d is the number of keys stored between a finger pointing at a stored key and the
query key [1]. There is also a data structure that supports such searches in expected time
O(loglogd) for a wide class of input distributions [10]. Finally, a query time ofO(loglog∆),
where ∆ is the difference between the element queried and the element returned, can also
be obtained [7].

Other problems in bounded universes can also be solved in similar ways. A priority
queue that supports insertion and deletion in time O(loglogd ′), where d ′ is the difference
between the successor and predecessor (in terms of priority) of the query, is known [9],
as well as a data structure for the temporal precedence problem, wherein the older of two
query elements must be determined, that supports query time O(loglogδ), where δ is the
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temporal distance between the given elements [8].

2 Supporting O(logH) Query Time

In this section, we describe how to achieve query timeO(logH) using space that is bounded
in terms of U .

2.1 Using O(n+Uǫ) Space

Let ǫ > 0. We place all elements i ∈ U with probability pi ≥ (1/U )ǫ into a hash table T , and
with each element we store a pointer to its predecessor in S (which never changes since
S is static). All elements of S are also placed into a y-fast trie over the universe U . Since
there are at mostUǫ elements with probability greater than (1/U )ǫ, it is clear that the hash
table requires O(Uǫ) space. Since the y-fast trie requires O(n) space, we have that the total
space used by this structure is O(n+Uǫ). To execute a search, we check the hash table
first. If the query (and thus the answer) is not stored there, then a search is performed in
the y-fast trie to answer the query.

The expected query time is thus

∑

i∈T
piO(1) +

∑

i∈U\T
piO(loglogU )

= O(1) +
∑

i∈U\T
piO(loglogU )

= O(1) +
∑

i∈U\T
piO

(

loglog
(

(Uǫ)1/ǫ
))

= O(1) +
∑

i∈U\T
piO(log((1/ǫ) logUǫ))

= O(1) +
∑

i∈U\T
piO(log(1/ǫ)) +

∑

i∈U\T
piO(loglogUǫ)

= O(1) +O(log(1/ǫ)) +
∑

i∈U\T
piO

(

loglog
1

1/Uǫ

)

≤ O(1) +O(log(1/ǫ)) +
∑

i∈U\T
piO(loglog(1/pi))

The last step here follows from the fact that, if i ∈ U \T , then pi ≤ (1/U )ǫ, and so 1/(1/U )ǫ ≤
1/pi . Recall Jensen’s inequality, which states that for concave functions f , E[f (X)] ≤
f (E[X]). Since the logarithm is a concave function, we therefore have

∑

i∈U\T
piO(loglog(1/pi)) ≤ log

∑

i∈U\T
piO(log(1/pi)) ≤O(logH)

therefore, the expected query time is O(log(1/ǫ)) +O(logH) =O(log(H/ǫ)).
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Theorem 1. Given a probability distribution with entropy H over the possible queries in a
universe of size U , it is possible to construct a data structure that performs predecessor searches
in expected time O(log(H/ǫ)) using O(n+Uǫ) space for any ǫ > 0.

Theorem 1 is a first step towards our goal. For ǫ = 1/2, for example, we achieve
O(logH) query time, as desired, and our space usage is O(n) + o(U ). This dependency on
U , while sublinear, is still undesirable. In the next section, we will see how to reduce this
further.

2.2 Using O
(

n+2log
ǫU

)

Space

To improve the space used by the data structure described in Theorem 1, one observation
is that we can more carefully select the threshold for “large probabilities” that we place
in the hash table. Instead of (1/U )ǫ, we can use (1/2)log

ǫU for some 0 < ǫ < 1. The space

used by the hash table is thus O
(

2log
ǫU

)

, which is o(Uǫ) for any ǫ > 0. The analysis of the
expected query times carries through as follows

∑

i∈T
piO(1) +

∑

i∈U\T
piO(loglogU ) = O(1) +

∑

i∈U\T
piO(loglogU )

= O(1) +
∑

i∈U\T
piǫ(1/ǫ)O(loglogU )

= O(1) +
∑

i∈U\T
pi(1/ǫ)O(log(logǫU ))

= O(1) +
∑

i∈U\T
pi(1/ǫ)O

(

loglog
(

2log
ǫU

))

≤ O(1) +
∑

i∈U\T
pi(1/ǫ)O(loglog(1/pi))

≤ O(1) + (1/ǫ)
∑

i∈U\T
piO(loglog(1/pi))

≤ O((1/ǫ) logH)

Theorem 2. Given a probability distribution with entropy H over the possible queries in a
universe of size U , it is possible to construct a data structure that performs predecessor searches

in expected time O((1/ǫ) logH) using O
(

n+2log
ǫU

)

space for any 0 < ǫ < 1.

2.3 Individual Query Times for Elements

Observe that part of the proof of Theorem 2 is to show that an individual query for an
element i ∈ U \T can be executed in timeO((1/ǫ) loglog1/pi) time. Since the query time of
elements in T is O(1), the same holds for these. More generally, the structure can support
arbitrarily weighted elements in U . Suppose each element i ∈ U has a real-valued weight
wi > 0 and let W =

∑U−1
i=0 wi . By assigning each element probability pi = wi /W , we achieve
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an individual query time of O((1/ǫ) loglog(W/wi)), which is analogous to the O(logW/wi )
query time of biased search trees [5]. Since the structure is static, we can use perfect
hashing for the hash tables involved (T as well as those in the y-fast trie), hence the search
time is worst-case.

Theorem 3. Given a positive real weight wi for each element i in a universe of size U , such that
the sum of all weights isW , it is possible to construct a data structure that performs a predecessor

search for item i in worst-case time O((1/ǫ) loglog(W/wi )) using O
(

n+2log
ǫU

)

space for any
0 < ǫ < 1.

3 Supporting O(n) Space

In this section, we describe how to achieve space O(n) by accepting a larger query time

O
(√

H
)

. We begin with a brief note concerning input entropy vs. output entropy.

Input vs. Output Distribution. Until now, we have discussed the input distribution, i.e.,
the probability pi that i ∈ U is the query. We could also discuss the output distribution,
i.e., the probability p∗i that i ∈ U is the answer to the query. This distribution is defined by

p∗i = 0 if i < S and p∗i =
∑sk+1−1

j=sk
pj if i ∈ S = {s1, s2, . . . , sn} with i = sk .

Suppose we can answer a predecessor query for i in timeO
(

loglog1/p∗
pred(i)

)

where

pred(i) is the predecessor of i. Then the expected query time is

∑

i∈U
piO

(

loglog1/p∗pred(i)
)

Since pi ≤ p∗pred(i) for all i, this is at most
∑

i∈U pi loglog1/pi , i.e., the entropy of the input

distribution. It therefore suffices to consider the output distribution.

Our data structure will use a series of data structures for predecessor search [3] that
increase doubly-exponentially in size in much the same way as the working-set structure
[2]. Recall from Section 1.1 that there exists a linear space data structure that is able to

execute predecessor search queries in time O
(

min
{

log logn·log logU
log loglogU ,

√

logn
loglogn

})

[3]. We will

maintain several such structuresD1,D2, . . ., where eachDj is over the universe U and stores

22
j
elements of S . In more detail, sorting the elements of S by probability into decreasing

order, we store the first 22
1
elements in D1, the next 2

22 elements in D2, etc. In general, Dj

contains the 22
j
elements of highest probability that are not contained in any Dk for k < j.

Note that here, “probability” refers to the output probability.

Searches are performed by doing a predecessor search in each ofD1,D2, . . . until the
answer is found. Along with each element we store a pointer to its successor in S . When
we receive the predecessor of the query inDj , we check its successor to see if that successor
is larger than the query. If so, the predecessor in Dj is also the real predecessor in S (i.e.,
the answer to the query), and we stop the process. Otherwise, the real predecessor in S is

6



somewhere between the predecessor in Dj and the query, and can be found by continuing
to Dj+1,Dj+2, . . .. This technique is known from [6].

We now consider the search time in this data structure. Suppose the process stops
by finding the correct predecessor of the query i in Dj where j > 1 (otherwise, the pre-

decessor was found in D1 in O(1) time). Dj−1 contains 22
j−1

elements all of which have
(output) probability at least p∗

pred(i)
. Since the sum of the probabilities of these elements

is at most one, it follows that p∗
pred(i)

≤ 1/22
j−1
. Equivalently, j is O

(

loglog1/p∗
pred(i)

)

. The

total time spent searching is bounded by

j
∑

k=1

√

log22
k

loglog22
k
=

j
∑

k=1

√

2k

k
=O

















√

2j

j

















=O
(
√

log1/p∗
pred(i)

)

(1)

The second equality above follows because the terms of the summation are exponentially
increasing and hence the last term dominates the entire sum. Therefore, since pi ≤ p∗pred(i)
for all i, the expected query time is

∑

i∈U
pi

√

log1/p∗pred(i) ≤
∑

i∈U
pi
√

log1/pi ≤
√
H

The final step above follows from Jensen’s inequality. To determine the space used by this
data structure, observe that every element stored in S is stored in exactly one Dj . Since
each Dj uses space linear in the number of elements stored in it, the total space usage is
O(n).

Theorem 4. Given a probability distribution with entropy H over the possible queries in a
universe of size U , it is possible to construct a data structure that performs predecessor searches

in expected time O
(√

H
)

using O(n) space.

Observe that we need not know the exact distribution D to achieve the result of
Theorem 4; it suffices to know the sorted order of the keys in terms of non-increasing
probabilities.

Also observe that like in Section 2.3, the structure here can support arbitrarily
weighted elements. Suppose each element i ∈ U has a real-valued weight wi > 0 and let
W =

∑U−1
i=0 wi . By assigning each element probability pi = wi /W , we see that (1) and the

fact that pi ≤ p∗
pred(i)

for all i give the following.

Theorem 5. Given a positive real weight wi for each element i in a bounded universe, such
that the sum of all weights is W , it is possible to construct a data structure that performs a

predecessor search for item i in worst-case time O
(
√

log(W/wi )
)

using O(n) space.

Furthermore, since the predecessor search structure used for the Dj ’s above is in
fact dynamic [3], we can even obtain a bound similar to the working-set property: a pre-

decessor search for item i can be answered in time O
(
√

logw(i)
)

where w(i) is the number
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of distinct predecessors reported since the last time the predecessor of i was reported.
This can be accomplished using known techniques [2], similar to the data structure of
Theorem 4, except that instead of ordering the elements of S by their probabilities, we
order them in increasing order of their working-set numbers w(i). Whenever an element
from Dj is reported, we move the element to D1 and for k = 1,2, . . . , j − 1 shift one element
from Dk to Dk+1 in order to fill the space left in Dj while keeping the ordering based on

w(i), just as in the working-set structure [2]. All 22
j−1

elements in Dj−1 have been reported
more recently than the current element reported from Dj , so an analysis similar to (1)

shows that queries are answered in O
(
√

logw(i)
)

time. The structure uses O(n) space.

Theorem 6. Let w(i) denote the number of distinct predecessors reported since the last time the
predecessor of i was reported, or n if the predecessor of i has not yet been reported. It is possible
to construct a data structure that performs a predecessor search for item i in worst-case time

O
(
√

logw(i)
)

using O(n) space.

4 Conclusion

In this paper, we have introduced the idea of biased predecessor search in bounded uni-
verses. Two different categories of data structures were considered: one with query times
that are logarithmic in the entropy of the query distribution (with space that is a function
of U ), and one with linear space (with query times larger than logarithmic in the entropy).
We also considered the cases of individual query times on universe elements with general
weights and of query times related to the working-set number.

Our results leave open several possible directions for future research:

1. Is it possible to achieve O(logH) query time and O(n) space?

2. The reason for desiring a O(logH) query time comes from the fact that H ≤ logU
and the fact that the usual data structures for predecessor searching have query
time O(loglogU ). Of course, this is not optimal: other results have since improved
this upper bound [3, 14]. Is it possible to achieve a query time of, for example,
O(logH/ loglogU )?

3. What lower bounds can be stated in terms of either the input or output entropies?
Clearly O(U ) space suffices for O(1) query time, and so such lower bounds must
place restrictions on space usage.
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