Biases in SPSS 12.0 Missing Value Analysis

Paul T. voN HIPPEL

In addition to SPSS Base software, SPSS Inc. sells a number
of add-on packages, including a package called Missing Value
Analysis (MVA). In version 12.0, MVA offers four general meth-
ods for analyzing data with missing values. Unfortunately, none
of these methods is wholly satisfactory when values are missing
atrandom. The first two methods, listwise and pairwise deletion,
are well known to be biased. The third method, regression impu-
tation, uses a regression model to impute missing values, but the
regression parameters are biased because they are derived using
pairwise deletion. The final method, expectation maximization
(EM), produces asymptotically unbiased estimates, but EM’s
implementation in MVA is limited to point estimates (without
standard errors) of means, variances, and covariances. MVA can
also impute values using the EM algorithm, but values are im-
puted without residual variation, so analyses that use the imputed
values can be biased.
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1. INTRODUCTION

In addition to SPSS Base software, SPSS Inc. sells a variety
of add-on packages, including SPSS Complex Samples, SPSS
Exact Tests, and SPSS Advanced Models. In this review, we fo-
cus on the add-on package called SPSS Missing Value Analysis
(MVA). MVA has received only passing mention in reviews of
missing-value packages (e.g., Horton and Lipsitz 2001), prob-
ably because it does not support the increasingly popular tech-
niques of multiple imputation. In an environment where SPSS is
used heavily, however, MVA might be tempting as a second-best
solution.

Unfortunately, the methods implemented in MVA are not sec-
ond best. In this review, we discuss MVA’s methods and demon-
strate their potential biases and limitations.

2. MISSING VALUE MECHANISMS

When a dataset has missing values, the difficulty of obtain-
ing valid parameter estimates depends on the mechanism that
causes values to be missing. A useful classification for missing-
value mechanisms was introduced by Rubin (1976); summaries
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appear in Little (1992) and Schafer (1997). Here we review the
essentials.

Informally, let missingness be the probability that a value is
missing rather than observed. If missingness depends on both
observed and missing values, then values are not missing at ran-
dom (NMAR). If missingness depends only on observed values
(and not on missing values), then values are missing at random
(MAR). And if missingness depends neither on observed nor on
missing values, then values are missing completely at random
(MCAR). The analyst can ignore the missing data mechanism
provided that values are MAR or MCAR. If values are NMAR,
however, then the mechanism cannot be ignored.

More formally, let Z be a data matrix representing n cases
of k£ random variables whose joint distribution depends on the
parameter vector 6. Z is only partially observed—that is, Z is
made up of observed values Z,,s and missing values Z,,;s. The
locations of the missing values are summarized by a matrix R
of the same dimension as Z. R contains dummy variables that
indicate whether each value in Z is observed or missing—that
is, R;; = 1if Z;; is missing, and R;; = 0 if Z;; is observed.

In general, the distribution of R is written

p(R|Zmi57 Zob57 d)) (13)

to show that missingness can depend on both missing and ob-
served Z values, and on a parameter vector ¢, which we assume
to be distinct from 6.

Values are NMAR if missingness depends on both observed
and missing values—that is, if the distribution in (1a) cannot be
written in simpler form.

Values are MAR if missingness depends on observed values
but not on missing values—that is, if the distribution of R can
be simplified to depend on Zs and ¢ but not on Zy;s:

p(R‘Zmisv Zobs; ¢) = p(R|ZObS7 ¢) (1b)

Finally, values are MCAR if missingness depends neither on
observed nor on missing values—that is, if the distribution of R
can be simplified to depend on ¢ but not on Z,ps or Z ;-

p(R‘Zmisy Zobsa d)) = p(R|¢)

Typically the analyst’s goal is to estimate the parameters 6
that govern the distribution of Z. If values are MCAR or MAR,
then the missing data mechanism is said to be ignorable, and
valid estimates can be obtained without an explicit model of the
missing data mechanism. If values are NMAR, then the miss-
ing value mechanism is nonignorable and a model of it must be
incorporated into the estimation process. This can be quite dif-
ficult in practice, because the missing data mechanism is rarely
known with much certainty.

(Ic)

2.1 Example

An example may help to illustrate patterns of missing data
and the methods used to analyze them. Let X and Y be standard
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normal variables with a correlation of p = 0.5. Then the first
two moments of X and Y are as follows:

A((3])-18
s ([¥))-[11]-

These moments are not hard to estimate if the data are complete,
but suppose that X is missing half of its values. Echoing a more
complicated example (Allison 2000; Horton and Lipsitz 2001),
we consider three different mechanisms that may govern the
missingness of X:
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MCAR: X is missing with probability 0.5;
MAR: X is missing if Y < 0;
NMAR: X is missing if X < 0.

If values are MCAR, estimates obtained from SPSS MVA soft-
ware will be unbiased. But this is not impressive, because the
observed values are a random sample from the population. If
values are NMAR, estimates from MVA may be biased. But
this bias is not surprising, because MVA has no provisions for
modeling the missing data mechanism.

In the ensuing discussion, we therefore focus on the MAR pat-
tern. When values are MAR, it is in principle possible to obtain
unbiased estimates without using a model of the missing data
mechanism. Nonetheless, most estimates obtained from MVA
are biased. We demonstrate MVA’s biases by closed-form cal-
culations, and by applying MVA to a large simulated dataset
that follows the MAR pattern above. The simulated data consist
of 50,000 observations from the joint distribution of X and Y,
where the value of X is missing whenever Y < 0.

3. ESTIMATION WITH MISSING VALUES

MVA can produce a tabular summary of the missing value
patterns in a dataset. In our simulated sample of 50,000 cases,
MVA’s summary shows us that 25,079 cases have values for both
X and Y, while the remaining 24,921 cases have values for Y’
but not for X.

MVA has also implemented Little’s (1988) test of the hypoth-
esis that values are MCAR. For our sample this hypothesis is
convincingly rejected (x?(1) = 31,809, p < 0.0005), which
is reassuring because values are MAR by design. (M VA rounds
the p value to three digits, reporting it as 0.000.)

Although the features above may be appealing, most analysts
will want to estimate parameters when values may be missing
at random. MVA offers four methods for this purpose. The first
two methods are based on deleting cases. The last two are based
on imputation and likelihood.

3.1 Deletion Methods

The first two methods are listwise deletion and pairwise dele-
tion, also known as complete-case and available-case analysis.
These methods are not really selling points for MVA, because
they are also implemented in SPSS Base software. In fact, the
implementation in SPSS Base software is more comprehensive,
since it provides listwise and pairwise estimates for a variety of
models including regression and factor analysis. MVA’s imple-

mentation, by contrast, can only give point estimates for means,
variances, and covariances.

We review MVA’s deletion methods below, partly for the sake
of completeness, and partly because they lead naturally into
MVA’s imputation and likelihood methods.

3.1.1 Listwise Deletion

In listwise deletion (LD), all cases with missing values are
deleted. Following deletion, conventional methods are used to
derive estimates from the remaining, complete cases. LD esti-
mates for the first two moments are represented by fip and
Y1D-

Unfortunately, LD can produce biased estimates when values
are MAR. In our MAR example, LD means deleting cases where
X is missing since Y < 0. But when we derive estimates from
the remaining cases, we are not estimating the unconditional
moments y and Y. Instead, we are estimating the moments con-
ditionally on Y > 0. It can be shown (Rose and Smith 2002, p.
226) that these conditional moments are

s([¥)ir=0)=y2[1]= [0
E(Sip) = varcov([ﬂ |Y20)

1 [ 720 (m—2)p] _ [0.841 0.182
(mr—2)p m—2 | ]0.182 0.363 |

7T
3)

which differ substantially from the unconditional moments x
and Y in (2). Table 1 shows that the LD estimates from our
simulated sample are quite close to their expectations F(jirp)
and F (2LD)'

3.1.2  Pairwise Deletion

In pairwise deletion (PD), each moment is estimated sepa-
rately using cases with values for the pertinent variables. In our
MAR example, E(Y") and var(Y") would be estimated using all
the cases, but £(X), var(X ), and cov(X, Y') would be estimated
using only the cases with values for X . PD estimates for the first
two moments are represented by jipp and prD.

Like LD estimates, PD estimates can be biased when values
are MAR. In our MAR example, the PD estimates of F(Y") and
var(Y) are unconditional, but the estimates of E(X), var(X),
and cov(X,Y") are conditional on Y > 0:

e o o

E(fipp) 0

cov(X,Y |Y > 0)
var(Y)
0.841 0.182
0.182 1

) B var(X | Y > 0)
E(Xpp) = [Cov(x,y |Y >0)

1 {w—sz (71'—2),0] N

T l(mr=2)p 7 ~

“4)

The PD estimates of E(X), var(X), and cov(X,Y") are biased,
with expectations quite different from the population values in
(2). Table 1 shows that the PD estimates from our simulated sam-
ple are quite close to their expectations E(fipp) and E(Xpp).
In addition to being biased, PD can yield “impossible” covari-
ance matrices that fail to be nonnegative definite. For example,
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Table 1. Means and Covariances for Bivariate Normal Variables X and Y. Simulated sample of 50,000 cases, with X missing whenever Y <0.
Population values Listwise deletion Pairwise deletion Regression imputation EM estimates EM imputation
Covariances Covariances Covariances Covariances Covariances Covariances
Means X Y Means X Y Means X Y Means X Y Means X Y Means X Y
X 0 1 0.397 0.841 0.397 0.841 0.325 0.837 —0.006 1.005 —0.006 0.633
Y 0 0.5 1 0.798 0.185 0.363 0.005 0.185 0.996 0.005 0.185 0.996 0.005 0.507 0.996 0.005 0.507 0.996

Arbuckle (1996) constructed a small dataset where the PD es-
timate for a correlation is an impossible —1.45. The absolute
correlation exceeds 1 because the absolute covariance exceeds
the product of the standard deviations. Such a configuration is
impossible when all moments are estimated from the same cases,
but quite possible in PD, where different cases may be used to
estimate the covariance and each standard deviation.

MVA actually implements two methods for PD estimation.
In the method described above, the mean and variance of Y are
estimated using all cases with values for Y. In the alternative
method, the mean and variance of Y would be estimated using
only cases where Y can be paired with an observed value of X . In
our simulated data, these alternative PD estimates are identical
to those obtained by LD. The alternative PD estimates play no
role in subsequent calculations, and will not be discussed further.

3.2 Imputation and Likelihood-Based Methods

As mentioned earlier, deletion methods are not a reason to
buy MVA, because deletion methods are available in SPSS Base
software. The selling points for MVA are its methods based on
imputation and likelihood. Although imputation and likelihood-
based methods have the potential to produce valid point esti-
mates and standard errors, their implementation in MVA is dis-
appointing. When values are MAR, only one of MVA’s method
(EM) produces valid results, and MVA’s implementation of that
method is limited to point estimates of means, variances, and
covariances.

3.2.1 Regression Imputation

In regression imputation (RI), a regression model is used to
impute (or fill in) all missing values. Following imputation, con-
ventional methods are used to derive estimates from the com-
plete and imputed cases together. RI estimates for the first two
moments are figy and fJRI.

RI poses some practical difficulties. One problem is that there
may be many possible regressors. To address this problem, MVA
can reduce the number of regressors using forward stepwise se-
lection. A second difficulty is that the regressors may themselves
have missing values. To address this problem, MVA estimates
several different regression equations—one for each pattern of
missing values—so that each missing value can be imputed us-
ing only the regressors that are observed for that case.

The difficulties are more modest in our MAR example, where
X is the only variable with missing values, and Y is the only
possible regressor. Applied to our simulated data, MVA imputes
the missing values of X using the following model:

e~ N(0,5pp)- (5)

Ximp = Gpp + BppY + €, where
Here the model is shown with normal residuals. MVA can also

impute values using ¢ residuals, resampled residuals, or no resid-
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uals at all. MVA can use the imputed data to estimate means,
variances, and covariances, or it can save the imputed data for
further analysis.

Regardless of the options that the user chooses, MVA’s RI
method has a fundamental flaw. The regression estimates &pp,
Bpp, and 631 are biased, because they are derived from the
biased moment estlmates fpp and EPD (SPSS Inc. 2002). Sub-
stituting jipp and EpD into the usual formulas for regression
estimates, we can show that app, /BpD, and O'PD converge in
probability to the following values

plim (4pp) = pv/2/7 — Bep0 ~ 0.399
. -2
plim (ﬁpD) _ =2 s
T
plim (63p) = (7 —2p* — BEpm)/m ~ 0.808,  (6)

which are rather different from the true regression parameters
a=0,5=0.5and 0% = 0.5.

Because the PD regression estimates are biased, the RI es-
timates figr and ﬁ?m are biased as well. To see this, split the
regression-imputed data Zg; into two parts, Zicomp and Zimp.
Zcomp consists of complete cases—cases where both X and Y
are observed because Y > 0. Z;p,, consists of imputed cases—
cases where X mustbe imputed because Y < 0. The moments of
Z ;omp are simply the moments of (X, Y) conditionalon Y > 0:

Heomp = E({‘;(} |y20) P\/;/i/:
Ycomp = varcov([;(} |Y20>

_ L[m—2p
o [ (m=2)p

We have already presented these, in (3), as the moments esti-
mated by listwise deletion. The moments of Ziy,,, are the mo-
ments of (Ximp, Y') conditional on Y < 0.If values are imputed
using model (5), the moments of Ziy,,, are

“ (] <o)

N

(7;—_22)/)]'

/Limp
B app + BepY +e
([ i
_ l:dPD_BPD\/2/7:|
—\/2/m
Yimp = varcov([ ‘mp] Y<O>

= Varcov<[d D+6PDY+6} |Y<0)



1 B%,DA(W —2)+ 621 Ppp(r —2) )
T Bpp(m —2) =2 ‘

Now the moments of Zgrj can be obtained by combining the
moments of Zgomp and Ziyp:

1
HRI = 3 (Mcomp + Mimp)

2
1
ZRI = 5 (Zcomp + Eimp)
1 1
+§ (,ucomp - Mimp) 5 (Mcomp - /f"imp)T . (9)

These moments pugy and Ygy are the expectations of the RI
estimators figr and Ski. If we plug in the probability limits for
app, BpD, and &%D, which we obtained in (6), we find that jir;
and Sg; converge in probability to the following limits:

o 0.326
plim (fir1) ~ [ 0 }
[0.836 0.182}

0182 1 (10)

phm (21{1) ~
These limits are close to the PD expectations E(fpp) and
E (prD) in (4), and far from the population parameters p and >
in (2). Table 1 shows that the RI estimates from our simulated
sample are quite close to their probability limits plim(/ir:) and
plim(ERI).

3.2.2 EM Algorithm

MVA’s final method is the expectation-maximization (EM)
algorithm (Dempster, Laird, and Rubin 1977). EM is based on
iterating the process of regression imputation. In our MAR ex-
ample, EM’s first step uses initial regression estimates ¢, BO to
impute X from Y:

Ximp = o + SoY. (11)
Any convenient values will do for &y, BO; MVA’s implementa-
tion uses the PD estimates &pp, Bpp (SPSS Inc. 2002). Note that
the imputations include no residual variation (SPSS Inc. 2002).
Imputed residuals would add noise to the algorithm, introducing
random variation that is not inherent in the data.

Using the complete and imputed cases together, EM re-
estimates the means, variances, and covariances, using a formula
that compensates for the lack of residual variation in the imputed
values of X (SPSS Inc. 2002). The newly estimated moments
i1, N imply new estimates &g, Bl of the regression parameters.
These new regression estimates are used to generate new impu-
tations of X, and the process iterates until convergence. (For
MVA’s convergence criterion, see SPSS Inc. 2002.) By default
MVA sets a limit of 25 iterations, but generates an error message
if that limit is not sufficient. In our MAR example, convergence
was achieved after 56 iterations.

The moments estimated in the final iteration are the EM es-
timates jign, f]EM Dempster et al. (1977) showed that EM es-
timates are maximum likelihood estimates. Because maximum
likelihood estimates are consistent, the EM estimates converge
in probability to the population parameters:

St

plim (figv) =

e o 191 1 05
phm(zEM) Z{pl}[O.S - } (12)

Table 1 shows that the EM estimates from our simulated sample
are quite close to their probability limits p and X.

3.2.3 EM Imputation

Although asymptotically unbiased, the EM estimates in Table
1 are of limited use. In most analyses, researchers are not inter-
ested in means, variances, and covariances, but in the parameters
of some causal or descriptive model. Sometimes these parame-
ters can be estimated by transforming the EM means, variances,
and covariances. More often, though, it would be convenient to
analyze the EM-imputed data in SPSS Base software or else-
where.

MVA can indeed save the EM-imputed data for further anal-
ysis. In our MAR example, missing X values would be imputed
using the following model,

Ximp = uMm + BemY, (13)
where &gy and ﬁEM are the regression estimates obtained in the
final iteration of the EM algorithm. Because the EM algorithm
converges to maximum likelihood estimates, &gy and ﬁEM are
consistent estimators of the true regression parameters « and 3.

Nevertheless, analyses that use the EM-imputed data can be
biased. The reason is that values imputed using model (13) lack
residual variation. The lack of imputed residuals means that anal-
yses using the imputed values will be biased by insufficient vari-
ation in Xjy,,. For example, let /ignr and f]EMI be the estimated
moments of the EM-imputed data. Calculations similar to those
in Section 3.2.1 show that the EM-imputed estimates converge
in probability to the following limits:

plim (i) = m

e 14+ p2)/2 625 0.
phm(zEMI) - {( +/f / /1)] = {006.555 015}(14)

It is clear that the variance of X is underestimated unless X is
perfectly correlated with Y —that is, unless |p| = 1. If |p| is
1, then the lack of imputed residuals is unimportant since the
residual variance is 0. As p gets closer to 0, however, the under-
estimation of var(X) gets more and more serious. In our MAR
example, p = 0.5, and var(X) is underestimated by 37.5%.
Table 1 shows that the EMI estimates from our simulated sam-
ple are quite close to their probability limits plim(/igmi) and
phm(ZEMI)

Note that residuals are not just omitted from the final iteration
of the EM algorithm. Earlier iterations omit residuals as well. As
noted earlier, the EM algorithm compensates for this omission
by using specialized formulas. Since such formulas are not built
into SPSS Base software (or other packages), it is inadvisable
to use the EM-imputed data outside the EM module.

3.3 Standard Errors

In our discussion, we have emphasized MVA’s point estimates
of means, variances, and covariances. We have shown that, ex-
cept for the EM algorithm, MVA’s point estimates can be biased
when values are missing at random.
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Point estimates, of course, are only part of the story. Usually
the analyst would also like to have good estimates of standard er-
rors, along with concomitant p values and confidence intervals.
When values are MAR or MCAR, valid standard errors can be
obtained using either maximum likelihood or multiple impu-
tation techniques (Little and Rubin 1987; Rubin 1987). These
techniques, however, are not implemented in MVA. Even MVA’s
implementation of the EM algorithm does not estimate standard
errors, though EM methods for estimating standard errors are
well known (McLachlan and Krishnan 1997).

4. CONCLUSION

When normally distributed values are missing at random, a
variety of software packages can produce asymptotically un-
biased estimates of distributional parameters. AMOS and other
software produce such estimates using maximum likelihood (Al-
lison 2002; Arbuckle 1996), and a growing number of packages
can do so using multiple imputation (Allison 2002; Horton and
Lipsitz 2001).

Unfortunately, most of the methods in SPSS Missing Value
Analysis fall short of this standard. When bivariate normal val-
ues are missing at random, MVA’s listwise and pairwise deletion
methods can produce biased estimates. MVA’s regression impu-
tation method can be biased as well, since it uses a regression
model whose parameters are obtained by pairwise deletion.

The one bright spot in MVA is its implementation of the EM
method, which can produce maximum likelihood point estimates
of means, variances, and covariances. The EM method can also
be used to impute missing values. Unfortunately, MVA imputes
these values without residual variation. Analyses based on the
EM imputations can therefore be biased.

MVA does not estimate standard errors, and does not support
the likelihood or multiple-imputation methods that can produce
valid standard error estimates.

Communication from SPSS technical support suggests that
the company has been aware of MVA’s problems for more than
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three years (e.g., Nichols 2000). We assume that SPSS is not
aware of how serious the biases can be, and we hope that the
present review helps draw attention to the issue.

[Received December 2003. Revised February 2004.]
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