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AB S TRACT

In hierarchical models of gravitational clustering, virialized haloes are biased tracers of the

matter distribution. As discussed by Mo &White, this bias is non-linear and stochastic. They

developed a model that allows one to write down analytic expressions for the mean of the bias

relation, in the initial Lagrangian, and the evolved, Eulerian, spaces. We provide analytic

expressions for the higher order moments as well.

In the initial Lagrangian space, each halo occupies a volume that is proportional to its mass.

Haloes cannot overlap initially, so this gives rise to volume exclusion effects which can have

important consequences for the halo distribution, particularly on scales smaller than that of a

typical halo. Our model allows one to include these volume exclusion effects explicitly when

computing the mean and higher order statistics of the Lagrangian space halo distribution. As a

result of dynamical evolution, the spatial distribution of haloes in the evolved Eulerian space is

likely to be different from that in the initial Lagrangian space. When combined with the Mo &

White spherical collapsemodel, themodel developed here allows one to quantify the evolution

of the mean and scatter of the bias relation. We also show how their approach can be extended

to compute the evolution, not just of the haloes, but of the dark matter distribution itself.

Biasing and its evolution depend on the initial power spectrum. Clustering from Poisson and

white-noise Gaussian initial conditions is treated in detail, since, in these cases, exact

analytical results are available. We conjecture that these results can be easily extended to

provide an approximate but accurate model for the biasing associated with clustering from

more general Gaussian initial conditions. For all initial power spectra studied here, the model

predictions for the Eulerian bias relation are in reasonable agreement with numerical

simulations of hierarchical gravitational clustering for haloes of a wide range of masses,

whereas the predictions for the corresponding Lagrangian space quantities are accurate only

for massive haloes.

Key words: methods: analytical ± galaxies: clusters: general ± galaxies: formation ±

cosmology: theory ± dark matter.

1 INTRODUCTION

In hierarchical models of gravitational clustering, it is possible to

use the statistical properties of the initial density ®eld, assumed to

be Gaussian, to compute good approximations to the average

number density of virialized objects at subsequent times (Press &

Schechter 1974). In this paper, the number density of virialized

objects will be called the unconstrained mass function. The statis-

tical properties of the initial dark matter distribution can also be

used to compute merger models which describe some aspects of

how virialized haloes at a late time were assembled by mergers of

smaller ones which, themselves, had virialized earlier (Bond et al.

1991). For example, the average number of M1 haloes identi®ed at

t1 that merged to form an M0 halo by time t0 can be computed

(Lacey & Cole 1993, 1994). In this paper, this quantity will be

called the constrained mass function. Associated with any given

object is a merger history tree which describes how the object was

assembled. An analytic model that describes the merger trees of

dark matter haloes has been developed only for the special case of

Poisson initial conditions (Sheth 1996). With some care, it can also

be used to describe the merger trees of haloes identi®ed in white-

noise initial conditions (Sheth & Pitman 1997; Sheth & Lemson

1999).

In all these analyses, the number density of haloes was computed,

but their spatial distribution was not. Recently, Mo &White (1996)
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described a model which uses the initial dark matter distribution to

estimate the initial Lagrangian space distribution of dark matter

haloes. Dynamical evolution is likely to modify this distribution, so

that the distribution in the ®nal Eulerian space is different from the

initial one. Mo &White also formulated a model for this evolution.

In their model, statistical quantities in the Eulerian space are

obtained by transforming the corresponding Lagrangian space

quantities appropriately. In their model, then, the problem is to

compute the Lagrangian space quantities, since, once these are

known, the corresponding Eulerian quantities follow trivially.

In the Mo & White model, haloes are biased tracers of the

underlying matter distribution, the bias between haloes and mass

being, in general, non-linear and stochastic. They showed that, on

average, the bias relation depends only on the constrained and

unconstrained mass functions, but that knowledge of the higher

order moments of the merger history tree is required to compute the

scatter around this mean correctly. Since they did not have an

analytic model for the merger history tree, they were able to obtain

analytic results for the scatter in the bias relation, or for the halo±

halo correlation function, only in the limit of large separations. In

this limit, the mean bias relation is linear, and the scatter around this

relation is Poisson.

Since a halo in the Lagrangian space occupies a volume that is

proportional to its mass, and since haloes do not overlap, the

Lagrangian space halo distribution is a particular case of a hard-

sphere model. As Mo & White discuss, the associated volume

exclusion effects will introduce anticorrelations on scales smaller

than that of a typical halo. On these scales, the scatter in the bias

relation may well be less than Poisson. This paper combines some

of the ideas contained in Mo & White (1996) with the analytic

merger model of Sheth (1996) to provide a description of the

evolution of the higher order moments of the halo distribution

that incorporates these exclusion effects explicitly. Thus, within the

context of the Mo & White model, the results presented here are

valid even on the small scales where the mean bias relation is non-

linear.

Although the analytic merger tree described by Sheth (1996) was

derived for the special case of Poisson initial conditions, it also

describes the trees associated with white-noise Gaussian initial

conditions (e.g. Sheth & Pitman 1997). Sheth & Lemson (1999)

showed that it could be used to derive reasonably accurate analytic

approximations to the higher order moments of the merger

tree distribution associated with more general Gaussian initial

conditions. When combined with the Mo & White model, this

allows us to write down analytic approximations for the

higher order moments of, e.g., the bias relation, for more general

Gaussian initial conditions, that should also be reasonably

accurate.

This paper is organized as follows. The Lagrangian space halo

distribution associated with white-noise initial conditions is

described in Section 2. This section also serves to set notation.

The white-noise results are extended to describe the Lagrangian

space halo distribution in more general Gaussian random ®elds in

Section 3. Section 4 contains a brief summary of the Mo & White

spherical collapse model for computing Eulerian space quantities,

given the corresponding Lagrangian ones. It also shows how the

model can be extended to compute the Eulerian space probability

distribution function of the matter as well as the haloes. Section 5

shows the results of comparing the model predictions with the

distribution of haloes identi®ed in numerical simulations of

gravitational clustering. This section also compares the model

predictions for the stochasticity of the bias relation with what is

measured in the simulations. A ®nal section summarizes our

results.

All the Lagrangian space results of this paper follow from results

originally derived for haloes which form from Poisson initial

conditions. Since these initial conditions are unfamiliar to most

readers, the description of clustering from Poisson initial conditions

is given in Appendix A. The Poisson case has the virtue that

everything can be worked out rigorously, so readers interested in

the various subtle issues involved in this approach are encouraged to

read it.

2 WHITE -NOISE IN IT IAL CONDIT IONS

This section provides a description of the initial halo distribution

when the initial matter distribution is a white-noise Gaussian

random ®eld. Sections 2.1±2.3 summarize various known results.

They are included to set notation, and to clarify the logic that leads

to the ®nal expressions. Section 2.4 provides analytic expressions

for the higher order moments of the Lagrangian space halo

distribution. These moments are related to the higher order

moments of the bias relation, and are the principal new results of

this paper.

2.1 Unconditional and conditional mass functions

To set notation, it is useful to summarize various known

results. Assume that the initial density ®eld d is Gaussian, with

power spectrum P�k�. If the ®eld is smoothed with a spherically

symmetric ®lter of size V , then the smoothed ®eld d�V� is also

Gaussian. This means that the one-point probability distribution

function is

p�d;V� dd �
1
��������

2pS
p exp ÿ

d2

2S

� �

dd; �1�

where S; hd�V�2i. That is,

S;
1

�2p�2

�

¥

0
4pk

2
P�k�W

2
�kR� dk; �2�

where W is the Fourier transform of the smoothing window, and

V ~ R
3, with the constant of proportionality depending on the shape

of the window. In this section we will mainly be concerned with a

window which is a top-hat in real space, for which W�x� �

�3=x3��sin�x� ÿ x cos�x��, and V � 4pR3
=3.

Let År denote the average background density. If P�k� ~ k
n, then

S ~ �ÅrV�ÿa
, where a � �n� 3�=3. If n � 0, the random ®eld is said

to be white noise. The mass contained within the ®lter is

M ; ÅrV�1� d�. Notice that when Sp 1, then jdjp 1 almost

surely. In this case, d < ÿ1 is extremely unlikely, so there is no

problem with de®ning the mass as was done above.

Wewill assume that Sp 1 in the initial conditions, which wewill

sometimes call the Lagrangian space. Then, in Lagrangian space,

jdjp 1, so to lowest order in d, M ; ÅrV , and S ~M
ÿa. We will

always be concerned with initial Gaussian ¯uctuation ®elds for

which the relation between S and V , and hence the relation between

S and M, is monotonic. Thus, in Lagrangian space, M, S and V are

all equivalent variables.

Most of the expressions associated with the excursion set

approach concern properties of Gaussian random ®elds when they

are smoothed on different scales. Here wewill assume that the ®lter

is a top-hat in real space, and that the initial Lagrangian space

distribution is Gaussian white noise. For white noise a � 1, so

S � �ÅrV�ÿ1, and the conditional probability that the ®eld has value
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d1 when smoothed on scale V1, given that it had value d0 when

smoothed on scale V0, is

p�d1;V1jd0;V0� �
1

������������������������

2p�S1 ÿ S0�
p exp ÿ

�d1 ÿ d0�
2

2�S1 ÿ S0�

� �

: �3�

Let q�d1; d0;V0� denote the probability that, when smoothed on

scale V0, the density is d0, and that it is less dense than d1 for all

V > V0. Then

q�d1; d0;V0� � p�d0;V0� 1ÿ exp ÿ
2d1�d1 ÿ d0�

S0

� �� �

; �4�

provided d1 > d0, and it is equal to 0 otherwise (e.g. Chandrasekhar

1943). Of course, this means that q < p, as expected.

In the excursion set approach, virialized dark matter haloes are

associated with isolated regions: these are those Lagrangian regions

that, when smoothed on some scale V , are denser than some critical

density and, when smoothed on still larger scales, are less dense

than this (Bond et al. 1991). All the mass contained within this

critically overdense isolated V is associated with a virialized halo.

This required critical density is a function of time, but not of

smoothing scale V . It decreases with increasing time: haloes that

virialize at late times are associated with less dense isolated regions

in Lagrangian space than haloes which virialize at early times. Let

dc�z� denote this critical density, and let f �M; dc� dM denote the

fraction of Lagrangian space that is taken up by volumesV that have

density dc�z� when smoothed on scale V , and are less dense on all

larger scales, so that each such isolatedV is associated with a halo of

mass M that has just virialized at the epoch labelled by z. In

Lagrangian space, S, the mass M and the associated volume V are

all equivalent variables, so f �M; dc� dM � f �S; dc� dS, and

f �S; dc� dS �
1
������

2p
p

dc

S3=2
exp ÿ

d2c
2S

� �

dS �5�

(Bond et al. 1991). The associated number density of such isolated

regions is the same as the number density of virialized objects, and

is given by

n�M; dc� dM �
År

M
f �S; dc� dS � År

f �M; dc� dM

M
: �6�

This is sometimes called the unconstrained, or universal mass

function (Press & Schechter 1974). Now, since S and M are

equivalent variables, the integral of f �S; d� over all S is the same

as the integral of f �M; d� over all M. Equation (5) shows that this

integral is unity. This can be interpretted as showing that

associated with any given epoch z is a partition of the total

Lagrangian volume into isolated regions of volume V and over-

density dc�z�; the mass in each region V ®rst virializes to form a halo

of mass M � ÅrV at z.

Now consider some d1 $ d0, where d1 is a convenient notation for

dc�z1�, where we have assumed that z1 > z0, so that z increases with

decreasing epoch. Restrict attention to Lagrangian regions V0 that

are associated with M0 haloes at the epoch z0, i.e., isolated regions

V0. Consider one such isolated region. Suppose that, when

smoothed on the scale V1 # V0, this region is denser than d1, and

that it is less dense than this for all larger smoothing scales. Then V1

is an isolated subregion within V0; this isolated Lagrangian sub-

region V1 within V0 can be associated with a subhaloM1 ofM0;M1

will ®rst virialize at the epoch z1. Let f �M1jM0� dM1 denote the

fraction of the mass of M0 that, at the epoch z1, is associated

with subclumps M1. Since S and M are equivalent variables,

f �M1jM0� dM1 � f �S1jS0� dS1, where

f �S1; d1jS0; d0� dS1 �
1
������

2p
p

�d1 ÿ d0�

�S1 ÿ S0�
3=2

´ exp ÿ
�d1 ÿ d0�

2

2�S1 ÿ S0�

� �

dS1

�7�

(Bond et al. 1991; Lacey & Cole 1993). Integrating this over the

range 0#M1 #M0 gives unity: all the mass of M0 was in

subclumps of some smaller mass at the earlier epoch z1 > z0. This

fraction can be converted into a mean number of M1 haloes within

an M0 halo:

N �M1; d1jM0; d0� �
M0

M1

f �M1; d1jM0; d0�: �8�

SinceM0 � ÅrV0, we should divideN �1j0� by V0 to express it as a

number density. Then comparison with equation (6) shows why this

expression is sometimes called the constrained mass function.

Equation (8) can also be understood as follows. For any given

z1 > z0, themassM0 contained within an isolated Lagrangian region

V0 within which the average density is d0, so that the region ®rst

virializes at z0, can be thought of as being partitioned into isolated

subregions, each of slightly higher density d1.

2.2 The ®rst moment of the Lagrangian space halo

distribution

The previous expressions mean that the mean number of �M1; d1�

haloes that are in randomly placed Lagrangian cells of size V0 is

n�M1; d1�V0. Let ÅN�M1; d1jd0;V0� denote the average number of

�M1; d1� haloes in a Lagrangian cell V0 that has overdensity d0.

Then, by de®nition,

n�M1; d1�V0 �

�

¥

ÿ¥

ÅN�M1; d1jd0;V0� p�d0;V0� dd0: �9�

Since mass and volume are equivalent variables, we will assume

that ÅN�1j0� � 0 if M1 > M0. Below, we show that when M1 #M0,

then ÅN�1j0� is related toN �1j0�, and that equation (9) is consistent

with the results of the previous subsection.

Classify all cells V0 by the overdensity within them. Each cell

with density d0 is either isolated or not. By de®nition, cells with

d0 > d1 are not isolated. For cells that are not isolated, ÅN�1j0� � 0.

Since there is no contribution from cells that are not isolated, to

compute the average number of �M1; d1� haloes, we now need to

sum up the contribution from cells that are isolated.

If isolated, a cell can be partitioned into isolated subregions that

are identi®ed with d1 haloes. Label each such partition m, where m

lists the mass associated with each subregion. Let p�m� denote the

set of all such partitions, and let p�mjM0� denote the probability of

having the particular partitionm (we have not written explicitly that

this probability will also depend on d1 and d0). We must integrate

over all partitions m of �M0; d0� haloes, sum up the number

n�M1jm;M0� of �M1; d1� haloes in each partition, weight by the

probability p�mjM0� that that partition occurred, and then integrate

over all values of d0, weighting by the probability that V0 with

density d0 is isolated. The sum over partitions gives the average

number of equation (8):

ÅN�1j0� �

�

p�m�

n�M1jm;M0� p�mjM0� � N �1j0�; �10�

where the ®nal equality follows because the integral is over all

partitions m of M, so it is the de®nition of N �1j0�. This means
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that

n�M1; d1�V0 �

�d1

ÿ¥

N �1j0� q�d1; d0;V0� dd0; �11�

where the fact that only isolated cells give a non-zero contribution

to the integral in equation (9) means that the upper limit in the

integral over d0 must be d1, and that we must replace p�d0;V0�with

q�d1; d0;V0�, the fraction of cells of density d0 that are isolated.

Simple algebra shows that equations (8) and (4), when substituted

into the right-hand side of this expression, do satisfy this relation.

The main reason for writing this out explicitly is that it shows

how one might begin to quantify the extent to which virialized

haloes are biased tracers of the underlying matter distribution. We

do this in the next section.

2.3 The mean bias relation and the cross-correlation between

haloes and mass

Let

D
m
�1j0� �

n�M1jm;M0�

n�M1; d1�V0

ÿ 1 �12�

denote the average overdensity ofM1 haloes within anM0 halo that

is known to be partitioned into the haloesm. Integrating this over all

partitions gives

dLh �1j0�;

�

p�m�

dD
m
D
m
�1j0� p�mjM0�

�
N �M1; d1jM0; d0�

n�M1d1�V0

ÿ 1:

�13�

This gives the mean overdensity of �M1; d1� haloes that are within

�M0; d0� haloes. It can also be understood as themean overdensity of

isolated �M1; d1� regions that are within isolated �M0; d0� regions in

the Lagrangian space. In regions that are not isolated, (e.g., if

d0 > d1) dLh � ÿ1. Thus, dLh �1j0� is the same as the mean bias

relation of equation (12) in Mo & White (1996). The peak back-

ground split (their equation 13) is obtained in the limit in which the

cell size V0 is much larger than the Lagrangian size of an M1 halo

(e.g. Bardeen et al. 1986),

dLh �1j0�!
n21 ÿ 1

d1
d0 ; B�1j0� d0; �14�

where n21 � d21=S1, and the ®nal equality de®nes B�1j0�.

Notice that the mean overdensity of the halo distribution is a

linear function of the mass overdensity only in the limit of

equation (14). Equation (13) shows that, in general, this mean

bias relation is non-linear. Just as the mean bias relation depends on

the mean number of haloes in Lagrangian cells �M0; d0�, the higher

order moments of the Lagrangian bias relation depend on the higher

order moments of the Lagrangian space halo distribution. We will

compute these higher order moments in the next subsection. If these

higher order moments are non-zero, then there will be some scatter

around this mean bias relation: in addition to being non-linear, the

bias will be stochastic.

Before doing so, we will ®rst calculate the Lagrangian space

cross-correlation between haloes and mass, averaged over all

randomly placed Lagrangian cells V0. This is

ÅyLhm�M1; d1jV0�;
ÅN�1j0�

n�M1; d1�V0

ÿ 1

� �

d0

� �

�

�

¥

ÿ¥

ÅN�1j0�

n�M1; d1�V0

d0 p�d0;V0� dd0:

�15�

In the ®rst line, the integral is over all Lagrangian cells, so the

second equality follows, since hd0i; 0. This integral is the sum of

two terms, the ®rst due to those Lagrangian cells that are isolated,

and the second due to those that are not. However, ÅN�1j0� � 0 for

cells that are not isolated. For isolated cells, the contribution is

computed by a double average, one over all values of d0 with the

substitution p�d0�! q�d0�, and the other over all partitions of m.

The integral over partitions gives ÅN�1j0� � N �1j0�, so

ÅyLhm�M1; d1jV0� �

�d1

ÿ¥

N �1j0�

n�M1; d1�V0

d0 q�d1; d0;V0� dd0: �16�

This expression for the cross-correlation between haloes and mass

is the same as equation (15) in Mo & White (1996), but with a

difference in interpretation. As we have shown, the average is to be

understood as being over all randomly placed Lagrangian cells V0,

not just those that are less dense than d1.

The integral in equation (16) can be done analytically:

ÅyLhm�1j0�

S0
�

d1
S0

ÿ
�n210 � 1�

d1
erf

n10
���

2
p

 !

ÿ

���������

2n210
p

r

eÿn210=2

d1
;

where n210 �
d21 �S1 ÿ S0�

S0S1
:

�17�

When S0p 1, then the error function tends to unity and the third

term tends to zero. Thus

ÅyLhm�1j0�

S0
!

1

d1

d21
S0

ÿ n210 ÿ 1

� �

� B�1j0�: �18�

This is consistent with using equation (14) for dLh �1j0� in

equation (13) and substituting in (15).

2.4 Higher order moments of the bias relation and halo±halo

correlations

Suppose that there are n M1 haloes within an M0 halo. The

Lagrangian volume associated with these haloes is n V1. The

average overdensity of the remaining volume is

1� d�n� �
M0 ÿ nM1

V0 ÿ nV1

; where d�0� � d0: �19�

Since M1 � V1�1� d1�,

d1 ÿ d�n� � �d1 ÿ d0�
M0

M0 ÿ nM1

�20�

to lowest order in the d terms. With this de®nition, the ith factorial

moment is

fi�M1; d1jM0; d0� �
Y

iÿ1

n�0

N

h

M1; d1jM0 ÿ nM1; d
�n�
i

; �21�

provided iM1 #M0, and it is zero otherwise. This formula is

essentially a reworking of results originally in Sheth (1996). See

Appendix A of this paper or Sheth & Lemson (1999) for details.

Following the same logic as for the mean (the case i � 1), the ith

factorial moment of the corresponding halo counts-in-cells

distribution is
�d1

ÿ¥

fi�M1; d1jM0; d0� q�d1; d0;V0� dd0

;

h

n�M1; d1�V0

iih

1� Yi�M1; d1;V0�

i

;

�22�

where the ®nal equality de®nes Yi�M1; d1;V0�. If the scatter of halo

counts were Poisson, then Yi � 0. For i > 1, equation (22) can be

solved analytically. For example, when i is even, then it reduces to a
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sum of incomplete gamma functions. Thus it is possible to show

explicitly that the scatter is not Poisson.

Recall that the scatter in the bias relation is related to the higher

order moments of the halo distribution. For example, the variance in

the bias relation is essentially the same as the variance in the halo

distribution. In general, this variance is neither zero, nor is it the

same as the mean. In other words, the mean bias is non-linear; it is

stochastic, and the rms scatter around the mean is not the canonical

square-root-of-the-mean value that is typical of a Poisson distribu-

tion. To see why, we turn now to a more detailed study of the halo±

halo correlation functions.

De®ne

q;
nrem
2s0

; where nrem ; 1ÿ
S�M0�

S�iM1�
and

1

s0
;

d21
S0

; �23�

with S0 ; S�M0�. These two parameters have simple physical

interpretations. An �M1; d1�-halo occupies a volume V1 in the initial

Lagrangian space, and, by assumption, all the mass within V1 is

associated with M1. That is, haloes are spatially exclusive; they do

not overlap with other. If a randomly placed V0 contains i haloes,

each of initial size V1, then nrem is related to the fraction of V0 that is

not occupied by these haloes. Since M0 ~ V0, s0 expresses the

cell size V0 in units of the (Lagrangian) size of typical haloes at

time d1, since the usual de®nition of a typical M� halo is that

d2=S� ; d2=S�M��; 1.

For white noise, Yi�M1; d1;V0� is not a function ofM1, d1 and V0

individually, but only of nrem and s0. Thus Yi�M1; d1;V0� has a self-

similar form; for haloes de®ned at a given d1, it depends only on the

cell size relative to the size of typical objects with the same d1, and

on the size of the objects beingmeasured relative to the cell size. Let
ÅyLhh�11j0�; Y2�M1; d1;V0�. Note that this means that ÅyLhh�11j0�

denotes the volume average of the halo±halo correlation function.

It is related to yLhh itself by the relation

ÅyLhh�11j0� �
3

R3
0

�R0

0

yLhh�r� r
2 dr:

This volume average is the variance of halo counts in Lagrangian

cells of size V0 divided by the square of the mean number of halo

counts, minus the shot-noise contribution, 1=M0, which accounts for

the fact that the haloes are discrete objects. Equation (22) implies

that

1� ÅyLhh�11j0� �
2s0
����

p

p

���

q
p

eÿq
� �q� 0:5� g 0:5;q� �

h i

: �24�

If c�M1;M2; d1jM0; d0� denotes the cross-correlation betweenM1

andM2 haloes, each with initial overdensity d1, that are both within

the same M0 halo of initial overdensity d0, then the same logic that

led to equation (21) implies that

c�M1;M2; d1jM0; d0�;

N �M1; d1jM0; d0� N �M2; d1jM0 ÿM1; d
�1�
�;

�25�

where d�1� was de®ned earlier (equation 20). The volume-averaged

cross-correlation function is got by averaging c�12j0� over all

isolated volumes V0:

1� ÅyLhh�12j0� �

�d1

ÿ¥

c�M1;M2; d1jM0; d0�

n�M1; d1�V0 n�M2; d1�V0

q�d1; d0;V0� dd0:
�26�

Thus ÅyLhh�12j0� is given by an expression that is exactly like

equation (24), except that now nrem � �S12 ÿ S0�=S12, with

S12 � S�M1 �M2�. For white noise, the actual values of S1 and S2
are unimportant, and only S12 matters; given M < M0,
ÅyLhh�M1;M ÿM1; d1jV0� is the same for all values of M1 < M.

This suggests that when ÅyLhh�12j0� differs from zero, it is because

of volume exclusion effects only.

Fig. 1 shows ÅyLhh�11j0� as a function of cell sizeV0 for white-noise

initial conditions. The different curves show a range of choices of

the halomassm1. Masses and scales are in units of the characteristic

massM� and scale V� � M�=År, respectively. For white-noise initial

conditions, this is also a plot of the average cross-correlation

between haloes whose mass sums to 2m1.

The shapes of these curves are easily understood. Consider

haloes that have the same mass M. Given this mass, there are

three scales in the problem: the Lagrangian scale of each halo, V ,

the initial mean separation between such haloes, R, and the

Lagrangian scale associated with a typical M� halo, V�. Let

m;M=M�, v; V=V�, W ~ R
3 and w;W=V�. Equation (6)

shows that the number density of less massive (mp 1) haloes is

~m
ÿ3=2

=V�. The mean separation volumeW is the inverse of this, so

w < 1. The number density of massive haloes (mq 1) decreases

exponentially. For these haloes w > 1.

Now, by de®nition, all haloes are anticorrelated on scales smaller

than that which they occupy (since it takes two haloes to make a

pair, this scale is 2V). Massive haloes have w > 1. Since the mean

separation between such haloes is large, they are not affected by the

fact that some of the volume is excluded. Suppose that, on scales

larger than 2V , these haloes were uncorrelated with each other.

Then yLhh � ÿ1 on small scales, and yLhh � 0 on larger scales, so that

on large scales the volume average is ÅyLhh�mjV0� ~ÿ2V=V0. This

gives approximately the same qualitative behaviour as the limiting

relation (27). Namely, ÅyLhh is always negative, and it becomes less

negative with increasing scale V0.

Less massive haloes have w < 1. These haloes are affected by the

excluded volume, since a large fraction of the volume they could

have occupied is now excluded. This means that they must all be

crowded into the remaining volume, so over a range of scales, they

will appear to be correlated with each other. Thus, for white-noise

initial conditions, volume exclusion produces two effects. First, all

haloes are anticorrelated on scales smaller than that which they

Biasing and the distribution of dark matter haloes 771
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Figure 1. The volume average of the halo±halo correlation function,
ÅyLhh�11j0�, given by equation (24), as a function of cell size V0, for white-

noise initial conditions. The different curves are for haloes of mass

m1 � 1=64; 1=16; 1=4; 1; 4 and 16, respectively. For white-noise initial con-

ditions, this is also a plot of the average cross-correlation between haloes

whose mass sums to 2m1.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
4
/4

/7
6
7
/1

0
4
7
2
5
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



occupy. Secondly, less massive haloes are positively correlated on

intermediate scales, whereas more massive haloes are essentially

uncorrelated on all scales larger than those which they occupy.

Thus, on small scales, and for less massive haloes, volume

exclusion gives rise to effects which are in the opposite sense to

the commonly held view that less massive haloes are also less

correlated.

2.5 The large-volume limit

Before moving on to consider more general initial conditions than

white-noise, it is useful to write down the large-scale limits of the

Lagrangian space halo±halo correlation functions.

When M0q �M1 �M2� and d0 < d1, then use of the asymptotic

expansion of the error function reduces equation (24) to

ÅyLhh�12j0�! B�1j0�B�2j0� ÿ
n21 n

2
2

d21

� �

S0; �27�

where n22 and B�2j0� are de®ned similarly to n21 and B�1j0� (cf.

equation 14). Since the factor �n1n2=d1�
2 is not necessarily small,

this limiting form shows that volume exclusion effects are

important, even on large scales, for massive haloes. In fact, in this

limit ÅyLhh�12j0�=S0 ! �1ÿ n21 ÿ n22�=d
2
1, so massive haloes are less

clustered than less massive haloes on all scales.

For n > 2, de®ne

Hn ;

Åyn
Åynÿ1
2

; where Åy2 ; ÅyLhh; �28�

and Åyn denotes the volume average of the n-point Lagrangian space

correlation function of haloes that have the same mass. It is usual to

use Sn to denote the corresponding ratios of the mass correlation

functions; for a Gaussian random ®eld, Sn � 0. In the large-volume

limit, Åy2 � �S0=d
2
1� �1ÿ 2n2�, where n is related to the halo mass

(equation 14). In this limit, equation (22) with the asymptotic

expansion of the error function yields

H3 !
9n2 �n2 ÿ 1�

�1ÿ 2n2�2
;

H4 !
4n2 �ÿ3� 24n2 ÿ 16n4�

�1ÿ 2n2�3
;

H5 !
125n4 �3ÿ 10n2 � 5n4�

�1ÿ 2n2�4
:

�29�

For massive haloes in this large-cell limit

Hn ! �n=2�nÿ1 when nq 1: �30�

These values are smaller than those associated with high peaks in a

Gaussian random ®eld, for whichHn � n
nÿ2. This is a consequence

of volume exclusion. (For volume exclusion effects associated with

peaks, see Coles 1986 and Lumsden, Heavens & Peacock 1989.)

It is interesting that these values are just those associated with the

Poisson limit of the Generalized Poisson distribution (see, e.g.,

Saslaw & Sheth 1993). Thus equation (30) shows that, when

smoothed on large scales, the Lagrangian space distribution of

massive haloes is Poisson.

3 GENERIC GAUSS IAN INIT IAL

CONDITIONS

Section 2 provided expressions for the constrained and uncon-

strained halo mass functions, and for the moments of the halo

counts-in-cells distribution, for the special case of white-noise

initial conditions. It is known that for more general Gaussian initial

conditions [i.e., the initial power spectrum differs from P�k� ~ k
0
�,

the constrained and unconstrained mass functions have the same

form as the white-noise functions, provided that all quantities are

written in terms of the variance, de®ned by equation (2). That is, the

unconditional and conditional mass functions for different initial

power spectra differ only because the transformation from variance

to mass depends on the initial power spectrum. For example, if

P�k� ~ k
n, then S�M� ~ R

ÿ�n�3�
~M

ÿ�n�3�=3, wherewe have used the

additional fact that in Lagrangian space M and V are equivalent

variables. Recall that white noise has n � 0, so in the previous

section S ~ 1=M.

This section assumes that what works for the mass functions

works for the counts-in-cells distributions also. That is, expressions

for the moments of halo distribution, when written in terms of the

variance, are assumed to have the same form for all power spectra.

There is no compelling reason why this should be so. For example,

the form of equation (21) follows from the mutual independence of

disconnected subvolumes.While this is a reasonable assumption for

white-noise initial conditions, it is almost certainly wrong for other

power spectra. Nevertheless, the hope is that those correlations

between neighbouring volumes which are ignored when using

equation (21) to estimate halo±halo correlations will not make a

crucial difference to the ®nal answer, for reasons discussed by

Bower (1991). Moreover, Sheth & Lemson (1999) showed that this

simple model for the higher order moments associated with the

forest of merger history trees is in reasonably good agreement with

the results of numerical simulations, even when the initial distribu-

tion is quite different fromwhite noise. Since it is these same higher

order moments that one uses to estimate halo±halo correlations,

their results suggest that this simple model should be reasonably

accurate here as well.

Another way to see why this conjecture should be accurate is the

following. The correlation function of haloes of two different

masses is the product of the mean number of haloes of each of

the two mass ranges times one plus the halo±halo correlation

function. In principle, all three terms depend on power spectrum,

although we know this dependence only for the two mean terms,

and not for the correlation function. In the white-noise case, were it

not for volume exclusion, this correlation term would be zero. For

other initial power spectra, our conjecture means that we adjust the

two mean terms correctly, and assume that most of the contribution

to the correlation term comes from volume exclusion effects. This

means that our conjecture does correctly account for some, if not

most, of the dependence of the correlation function and other higher

order moments on the initial power spectrum.

The integral (equation 26) for the cross-correlation between

haloes of mass M1 and M2 that one obtains by ignoring these

correlations can be solved analytically. The ®nal expression is

lengthy, so we have not written it out below. In the limit of large

cells, i.e., M0q �M1 �M2�,

ÅyLhh�12j0�! B�1j0�B�2j0� S0 � correction terms; �31�

provided d1 > d0. In general, the correction terms are not as simple

as in the white-noise case, so we have not written them down

explicitly.

In general, the full expression for halo±halo correlations differs

from the white-noise expression in three signi®cant ways. First,

N �2j10�N �1j0� � N �1j20�N �2j0� only when M0 is much

greater than either M1 or M2. This implies that, in general,

equation (25) should be replaced with either c�2j10� �

N �2j10�N �1j0�, or c�1j20�, where N �2j10� is understood as the

772 R. K. Sheth and G. Lemson
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average number ofM2 haloes within thoseM0 haloes that are known

to have an M1 halo in their central volume element. The lack of

spatial correlations for a white-noise spectrum meant that there this

restriction was irrelevant. Here, however, this means that ÅyLhh�12j0�

and ÅyLhh�21j0� computed using equation (26) are no longer

equivalent.

Secondly, the halo±halo correlations depend on the masses of the

haloes themselves, rather than just their sum. This suggests that

volume exclusion effects are not the sole cause of halo correlations.

Thirdly, provided S varies as some inverse power of scale, then, in

the limit of large separations, suf®ciently high-mass haloes are

more correlated than low-mass haloes. The correlation function of

peaks in Gaussian random ®elds is known to depend exponentially

on peak height (e.g. Bardeen et al. 1986; Jensen & Szalay 1986;

Lumsden et al. 1989; RegoÈs & Szalay 1995). If high-mass haloes

correspond to high peaks in the initial density ®eld, then this result

is qualitatively similar to that for peaks. The agreement with the

peaks results is only qualitative. For example, just as in the white-

noise case, the higher order moments of the spatial distribution of

massive haloes are different from those of high peaks.

Figs 2 and 3 show the volume average of the halo±halo correla-

tion function (equation 26) as a function of scale, when the initial

power spectrum has slope n � ÿ1 andÿ2, respectively. A range of

choices of halomass are shown. On scales smaller than 2 v1, volume

exclusion effects mean that ÅyLhh � ÿ1. As a result of halo exclusion

effects, haloes less massive than M� are positively correlated on

intermediate scales, and on scales larger than about 4 v1,
ÅyLhh�11j0�=s0 < constant. On suf®ciently large scales, haloes that are

moremassive than,M� aremore correlated than lessmassive haloes.

4 THE HALO DISTRIBUTION IN EULERIAN

SPACE

The previous sections showed how to quantify the difference

between the halo and matter distributions in Lagrangian space.

Dynamical evolution changes these distributions, so the bias

between haloes and mass in Eulerian space is likely to be different

from the initial one.

Mo & White (1996) argued that the bias relation in Eulerian

space, i.e., the mean overdensity of d1-haloes that are in spheres

with comoving volume V which contain mass M0 at z, so that they

have Eulerian overdensity

D; 1� d;M0=ÅrV ; �32�

should be

dEh �1j0� �
N �M1; d1jM0; d0�

Ån�M1; d1�V
ÿ 1; �33�

whereN �1j0� is given by the (Lagrangian) equation (8), but with

d0
1� z

� 1:686ÿ
1:35

D2=3
�

0:788

D0:587
ÿ

1:124

D1=2
: �34�

Therefore, in their model, expressions for the higher order moments

of the bias relation in the Eulerian space can be obtained by

transforming the corresponding Lagrangian expressions similarly.

We will use this fact below.

Let p�M0jV ; z� dM0 denote the probability that an Eulerian cell V

contains mass in the range dM0 ofM0 at z. We will sometimes call

this the Eulerian probability distribution function. Of course,

p�M0jV ; z� dM0 � p�DjV ; z� dD and
�

¥

0
p�DjV ; z� dD �

�

¥

0
D p�DjV ; z� dD � 1: �35�

Let ÅN�M1; d1jM0;V ; z� denote the average number of �M1; d1�-

haloes in such a cell. Then the average number of haloes in Eulerian

cells of size V is

n�M1; d1�V ;

�

¥

0

ÅN�M1; d1jM0;V� p�M0jV� dM0; �36�

where we have not bothered to write the dependence on z explicitly.

This is the analogue of the Lagrangian relation (11). Suppose we

assume that

ÅN�M1; d1jM0;V ; z� � N �M1; d1jM0; d0�; �37�

where d0 is given by equation (34). That is, the average number of

haloes in Eulerian cells of size V that contain massM0 is assumed to

be the same as the average number of haloes in Lagrangian cellsM0

that, because they originally had overdensity d0�D�, have size V at z.

Then equation (36) implies that

f �M1; d1� �

�

¥

M1

f �M1; d1jM0; d0� D p�M0jV� dM0; �38�

where d0 is given by equation (34), and again we have not written
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Figure 2. The volume average of the halo±halo correlation function,
ÅyLhh�11j0�, given by equation (26), as a function of cell size V0, when the

initial power spectrum has slope n � ÿ1. The different curves are for

haloes with mass m1 � s
ÿ3=2
1 , and s1 � 24; 22:66; 21:33; 1; 2ÿ1:33 and 2ÿ2:66,

respectively.

Figure 3. The volume average of the halo±halo correlation function,
ÅyLhh�11j0�, given by equation (26), as a function of cell size V0, when the

initial power spectrum has slope n � ÿ2. The different curves are for

haloes with mass m1 � s
ÿ3
1 , and s1 � 2

2:25
; 2

1:5
; 2

0:75
; 1; 2

ÿ0:75
and 2

ÿ1:5
,

respectively.
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the z dependence explicitly. The lower limit of the integral has been

set to M1 since, in the spherical collapse model which gives

equation (34), the Eulerian radius of a collapsed halo is zero. This

means that if an Eulerian cell V contains an �M1; d1�-halo, then it

must contain all of the halo's mass, so it must have M0 $M1.

Equation (38) is interesting for the following reason. The term on

the left-hand side, f �M1; d1� is known. If the Eulerian cell size V

is given, then f �M1; d1jM0; d0� is also known, for all M0. Only

the Eulerian probability distribution p�M0jV� is not known.

Equation (38) is therefore an integral equation of the ®rst kind, so

it can be solved numerically to yield p�M0jV� dM0.

That is, for any Eulerian cell size V , the assumption (37) allows

one to solve for the Eulerian probability distribution function that is

associated with the spherical collapse model as parametrized by

equation (34). Once p�M0jV� is known, repeated use of the

assumption (37) allows one to compute

ÅyEhm�M1; d1jV�;
D

dEh �1j0� d
E

�

�

¥

0

dEh �1j0� d p�M0jV� dM0;

�39�

where �1� d�;M0=ÅrV . Notice that this resembles the Lagrangian

relation (16). Similarly,

1� ÅyEhh�M1;M2; d1jV� �
�

¥

0

c�M1;M2; d1jM0; d0�

n�M1; d1�V n�M2; d1�V
p�M0jV� dM0;

�40�

where c�12j0� � N �1j0�N �2j10� is the Lagrangian relation (25),

with d0 given by equation (34).

Our approach extends that of Mo & White (1996). They wrote

down equations (39) and (40), although they did not have an

expression for c�12j0�. However, they did not write down

equation (36), so they did not know how to solve for the Eulerian

p�M0jV�. They therefore assumed that they could use the one

measured in their simulations. Strictly speaking, this is not per-

mitted, since there is no guarantee that equation (36) is then

satis®ed, as it should be. Indeed, if one substitutes the lognormal

distribution for p�M0jV� (asMo&White did) into this formula, then

one ®nds that, in general, this normalization requirement is not

satis®ed (although Mo &White do not mention this). Nevertheless,

if the spherical model is a good approximation to what actually

happens in the simulations, then there is some hope that using the

actual p�M0jV� distribution measured in the simulations will,

indeed, give the correct normalization. (Also see Sheth 1998 for

more discussion of this point.)

Below, when we compare our results with simulations, we will

show that the Mo &White approach is reasonably well normalized

on large scales. So, although we should ®rst determine the Eulerian

p�M0jV� using the integral equation (38), and then use it to compute
ÅyEhm and ÅyEhh self-consistently, in what follows we will not do this.

Mo & White considered mainly the case in which the time at

which the haloes ®rst virialized, a1, and that when their spatial

distribution was studied, a0, were the same. They also studied the

spatial distribution of haloes at epochs later than those at which the

haloes had virialized (a0 $ a1). In both these cases, the previous

formulae are correct if d1 � 1:68647 �a0=a1� and d0 is given by

equation (34) with z � 0. Thus d1 $ d0 is always satis®ed.

In principle, it should also be possible to use the spherical model

to describe the distribution of the haloes at high redshift, prior to

virialization. The spatial distribution at some early time zi of haloes

that will virialize at the present z � 0 is described by the previous

expressions, but with the appropriate value of z � zi in

equation (34). This means that we need to know the Eulerian

distribution function as a function of z. For example, for haloes

that virialize at z � 0, d1 � 1:68647, so it is possible that d0 > d1. In

the language of the previous sections, such Eulerian cells are not

isolated. So, in principle, we need to be able to compute the

probability that an Eulerian cell is isolated. In general, this is

dif®cult. Fortunately, things simplify when zq 1: in this limit,

Sp 1, most ¯uctuations are small �jdjp 1�, and the Eulerian

distribution function tends to a Gaussian. So, in this limit, this

procedure reduces to the Lagrangian description of the previous

sections. It is also reassuring that, in this limit, the spherical model

expressions reduce to those expected using linear theory (section 19

in Peebles 1980). We will use this fact below.

5 COMPARISON WITH SIMULATIONS

This section shows the results of comparing the model predictions

obtained in the previous sections to the halo distributions measured

in numerical simulations of clustering. This is done in two steps.

First, the theoretical bias relation, dh�1j0�, and the scatter around

this relation, are compared with those found in the simulations.

Then the theoretical halo±mass and halo±halo correlation func-

tions are compared with those in the simulations, since these are

essentially weighted integrals over the bias relations. We do this in

Lagrangian space, and then in Eulerian space.

The simulations used here are the same as those used by Mo &

White (1996), where they are described in more detail. They follow

the evolution of 106 identical particles in a cubic box with periodic

boundary conditions. If the volume L3 of the box, the mass m per

particle, and the initial expansion factor a are all set to unity, then

the simulations are normalized so that S�M� � M
ÿ�n�3�=3 initially,

where n is the initial slope of the power spectrum. The characteristic

massM��a� at the expansion time a is given by S�M�� � �dc=a�
2, for

some dc which is determined by ®tting the unconditional mass

function of equation (6) to the mass function of bound objects

identi®ed in the simulations. The group identi®cation algorithm

used here is the same friends-of-friends algorithm as that used by

Mo & White, as are the methods for assigning Lagrangian and

Eulerian positions to a group identi®ed at any given time. As for the

simulations studied by Lacey & Cole (1994), the mass function of

bound objects in these simulations is ®tted, to within a factor of 2 or

so, by equation (6) with dc � 1:7. This value is used to compute all

the theoretical curves shown below.

The main complication in comparing the theory to simulations is

that of the ®nite mass resolution in the simulations. This means that,

in practice, correlations between haloes are measured for a range of

masses. This has an important consequence, since now the distribu-

tion of isolated regions is different from that of the centre-of-mass

distribution of collapsed haloes (this is a subtle point that is

discussed more fully in Appendix A6). This is unfortunate, since,

to account for this fact, we must make some assumption about the

nature of the Lagrangian space volume elements associated with

halo centres-of-mass. In the Poisson and white-noise cases,

Section A6 argues that we could simply assume that this volume

element is just a randomly chosen one of the volume elements of a

halo. This assumption is almost certainly wrong if the initial

distribution differs from white noise. Nevertheless, for reasons

discussed in Section A6, wewill assume that this is indeed the case.

This means that the mean bias relation is

dh�>mj0� �
N �>m; d1jM0; d0�

n�>m; d1�V0

ÿ 1; �41�
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where

n�>m; d1� �

�

¥

m

n�M1; d1� dM1;

and

N �>m; d1jM0; d0� �

�

¥

m

N �M1; d1jM0; d0� dM1;

providedM1 #M0 and d1 $ d0. In the Eulerian space,M0 and d0 are

obtained from V and d as described in Section 4.

This quantity depends only on the ®rst moment of the subclump

distribution. Although it could have been computed byMo&White

(1996), they did not show it. The scatter in this relation depends on

the second-order moment, so, although they were unable to com-

pute it, we can.

There are additional reasons why it is not entirely straightforward

to compare the theory with simulations. For example, the average

number density of haloes (the unconditional mass function) and the

average number of subhaloes within haloes (the conditional mass

function) in the simulations are, typically, described by the theory

only to within a factor of 2 or so. Also, on small scales in particular,

the initial particle distribution in the simulations is not particularly

Gaussian when the initial power on large scales is signi®cant (see

Fig. 4). Since the bias relations are essentially the ratio of the

conditional to the unconditional mass functions, they are sensitive

to the ®rst of these discrepancies. The integralswhich de®ne ÅyLhm and
ÅyLhh are also sensitive to the shape of the initial probability distribu-

tion function, so they are sensitive to both these discrepancies.

Finally, there is some uncertainty regarding how the initial

particle load in the simulations should be treated. This freedom

arises because the initial particle distribution is not the true

Lagrangian distribution, but a linearly evolved version of it. This

means that, when comparing the Lagrangian theory with the

simulations, we must account for the fact that cell sizes in the

initial distribution are not the same as the associated Lagrangian

size. Although they do not say so in their paper, Mo&White (1996)

treated this problem as follows (private communication). They used

equation (32) to rescale the size of each cell in the simulations, and

then used this rescaled size in the denominator that de®nes dLh , but

nowhere else. They then used this value of dLh when averaging over

all cells to determine what they called the Lagrangian ÅyLhm.

We have chosen the following procedure. We treat the initial

particle distribution no differently from any other output time in the

simulations. This means that we plot the simulation results exactly

as measured, with no rescaling. We then compare these to our

theoretical Eulerian expressions, transformed according to the

spherical model to the appropriate redshift. Recall that, in the

limit of small initial ¯uctuations, this is the same as using linear

theory to make the necessary corrections (section 19 of Peebles

1980). The complication is that, in this case, the associated p�d�

distribution is no longer Gaussian, so the distribution corresponding

to q is no longer known. Nevertheless, if p�d� is suf®ciently close to

Gaussian, then using q should be a good approximation. We ®nd

that the Generalized Inverse Gaussian distributions (described in

Section 5.3 below) provide reasonable ®ts to the counts-in-cells

distributions measured in the simulations for a wide range of scales

and output times, so we use them for p�d�.

5.1 Biasing in Lagrangian space

This subsection compares the bias relation between haloes andmass

measured in the simulations in the Lagrangian space with the

theoretical model developed in the previous sections.

Figs 5±9 show the bias relation for haloes containing more than

m particles, identi®ed in simulations with initial power spectra
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Figure 4. The Lagrangian space probability distribution function p�d� as a

function of overdensity d. Each panel shows four choices of scaleR=L � 0:02

(broadest curves), 0:4, 0:8 and 0:16 (narrowest curves). Histograms show the

distribution measured in the simulations; thin dashed curves show Gaussian

distributions, and thicker solid curves show Generalized Inverse Gaussian

®tting functions (equation 44) that have the same variance.

Figure 5. The Lagrangian space bias relation for haloes which contain more

thanm � 32 particles that form fromwhite-noise initial conditions. The plot

shows the mean overdensity of haloes dh�>mjV� as a function of the

overdensity of mass dm in spherical cells of radius R, as well as the scatter

around the mean. Symbols show quantities measured in the simulations:

large ®lled circles show the mean, smaller ®lled circles show the rms scatter,

and open circles show the scatter if the halo counts were Poisson. Solid

curves show the model predictions; dashed curves show the Poisson scatter

corresponding to the theoretical mean. Haloes were identi®ed at an expan-

sion factor of a � 6:1; the bias relation was computed from the halo-centre-

of-mass and mass distributions at the initial time a � 1. The histograms that

rise from left to right in each panel show the cumulative counts-in-cells

distribution. The simulations provide a good test of the theory only in the

range where this cumulative curve is steep.
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having slope n at an expansion factor a since the initial time, and for

four representative choices of the spherical cell radius: R=L � 0:02,

0:04, 0:08 and 0:16. For each cell size, statistics were averaged over

27 000 spherical cells. The histogram which rises from the bottom

left to the top right of each panel shows the cumulative distribution

function of the matter ¯uctuation dm. This curve is intended to show

the range of dm over which the simulations are able to provide a

good test of the theory. The thin dashed line through each histogram

shows the corresponding cumulative distribution for a Gaussian

with the same variance; the thin solid line through each histogram

shows the corresponding Generalized Inverse Gaussian. The large

®lled circles show the mean bias relation measured in the simula-

tions, smaller ®lled circles show the rms ¯uctuations around this

mean, and the open circles show the expected Poisson ¯uctuation

given the mean. In most cases, the rms ¯uctuations are smaller than

the Poisson value; this shows that volume exclusion effects are

important. The thick solid curve shows the mean bias relation

predicted by the model, the thin solid curves show the theoretical

rms ¯uctuation around this mean, and the dashed curves show the

value if the ¯uctuations were Poisson.

Fig. 5 is extremely encouraging. The theory is able to describe the

mean bias relation, hdhjdmi, as well as the scatter in this relation

well, even when the scatter is less than Poisson (although, for haloes

of this mass range, the difference from Poisson scatter is small).

That is, the theory appears to describe the effects of volume

exclusion on the halo distribution well. Figs 6 and 7 are intended

to show that the theory must be used with some caution. These

®gures show the bias relation associated with haloes identi®ed at a

later time than those in Fig. 5. Since M� ; �a=dc�
2 for white noise,

M� < 13 for the haloes in Fig. 5, whereas M� < 470 for the haloes
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Figure 6. The same as the Fig. 5, i.e., n � 0 and m � 32, but now a � 36:9.

Figure 7. The same as Fig. 6, i.e., n � 0 and a � 36:9, but now m � 256.

Figure 8. The same as Fig. 7, but for n � ÿ1:5, m � 32 and a � 6:07.

Figure 9.The same as Fig. 8, i.e., n � ÿ1:5 and a � 6:07, but nowm � 256.
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in Figs 6 and 7. At the later output time, the theory gets the mean of

the Lagrangian bias relation wrong, although the scatter around the

mean is still qualitatively correct when the minimummassm � 32.

For haloes more massive than m � 256, however, the theory is

accurate, in the mean, and for the scatter.

Thus these ®gures show that the theory is relatively accurate

when describing the distribution of haloes more massive than,M�,

but not of less massive haloes. This suggests that the spherical

model is a good description of the collapse of massive haloes, but

that the formation and evolution of less massive haloesmay bemore

complicated.

Figs 8 and 9 show that the theory works even when the initial

conditions are different from white noise. These ®gures were

constructed from haloes identi®ed at an expansion factor a � 6:1

in a simulation in which the initial power spectrum had slope

n � ÿ1:5. So, for these ®gures, M� < 163. Again the bias relation

associated with massive haloes is well described by the theory

(Fig. 9), whereas that of the less massive haloes is not (Fig. 8).

Before concluding this subsection, it is worth noting that the

theoretical curves for the mean bias relation become increasingly

different from the simulation results as R decreases. Although the

mean relation on these smaller scales is different, the predicted

scatter around the mean shows the same qualitative behaviour as

that measured. We have not shown curves for smaller R here, since

on these smaller scales it is not clear howmuch of the discrepancy in

the mean is due to limitations associated with the ®nite number of

particles in the numerical simulations.

5.2 Lagrangian space halo correlation functions

The cross-correlation between haloes and mass is essentially a

weighted integral over the bias relations shown in the previous

subsection. In this sense, Åyhm is a slightly less fundamental quantity

than hdhjdmi. The cross-correlation between haloes withmass larger

than m, whose centres-of-mass are within a cell V0, and the mass

within that cell is

Åyhm�>mj0� �

�

¥

m

n�M1; d1�

n�>m; d1�
Åyhm�1j0� dM1

� d1

�

¥

m

n�M1; d1�

n�>m; d1�
dM1

�42�

where n�M1; d1� and Åyhm�1j0�were de®ned earlier, m �max�m;M0�,

and the convention is that, in the ®rst term, Åyhm�1j0� � 0 if

M1 > M0. The second term accounts for the difference between

counting haloes instead of isolated regions. This is the analogue of

equation (A67). In general, these integrals over the range of halo

masses must be done numerically.

Fig. 10 shows equation (42) for white-noise initial conditions, for

haloes identi®ed at a range of output times, and minimummass cut-

offs, as a function of scale. The plots are for the Lagrangian space

distribution of haloes identi®ed at the epoch a, and the four curves

in each plot are (from bottom to top) for m � 32; 64; 128 and 256

particles, respectively. The ®gure actually shows Åyhm=Åym, where
Åym ; a

2
=M

a
, and S��a�; d2c , with dc � 1:7 as required by the

spherical model. The two panels show the difference between

averaging over all Lagrangian cells (right) and averaging only

over those Lagrangian cells which are not too overdense (left).

Thus the panels on the left show the same quantity as that computed

by Mo & White (1996).

Typically, the ®ts in the panels on the left are better than those

shown in the panels on the right, and, typically, the ®t is usually

better on larger than on smaller scales. (On large scales, the number

of cells in the two panels is almost the same anyway.) This suggests

that the way in which the model assigns haloes to Lagrangian cells

that are not isolated is not quite correct. In the panels on the right,

the model systematically underestimates Åyhm�> mjV� on small

scales. Comparison with Fig. 11 shows that the discrepancy

increases as the initial power on large scales increases (n becomes

more negative). This is not unexpected. The assumption that the

centre-of-mass particle is a random one of a halo's particles is likely

to be less accurate as n becomes more negative. On the other hand,

some of the discrepancy on small scales may be spurious. These are
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Figure 10. The volume average of the Lagrangian space halo±mass cross-

correlation function, Åyhm�>mjR�, equation (42), as a function of cell size R,

when the initial power spectrum has slope n, for haloes identi®ed at a range

of output times, labelled by the expansion factor a. Panels on the left show

the result of computing the average by using only those cells whose initial

density was less than dc=a. Panels on the right show the result of averaging

over all Lagrangian cells, whatever their density. Symbols show this quantity

measured in the simulations; curves show themodel predictions (made using

the value of dc shown). From bottom to top in each panel, the different curves

are for haloes with m � 32 (circles), 64 (triangles), 128 (squares) and 256

(stars) particles.

Figure 11. The same as Fig 10, but now n � ÿ1:5. The theory describes the

simulation results reasonably well for massive haloes, and rather poorly for

less massive haloes, where massive and less massive are de®ned relative to

M��a�.
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measurements in Lagrangian space, and the initial interparticle

spacing was on the order of R=L, 0:01, so it is not clear that

differences on these small scales are signi®cant. Moreover, recall

that when n � ÿ1:5, then the initial particle distribution on small

scales is far from Gaussian (Fig. 4).

Figs 10 and 11 appear to show that the theory describes the

simulation results better for small values of the expansion factor a.

This is a consequence of one of the results of the previous

subsection; when the mass of a halo identi®ed at time a is expressed

in units of M��a�, then the theory describes the distribution of

massive haloes better than less massive ones. At some small a,

haloes with more than, say, 64 particles are larger relative to anM�

halo at that time than they are at some later time. So, in Figs 10

and 11, the theory appears to work better at small a than at large a.

Before considering the halo±halo correlation function, we think

it worth remarking that some of the agreement between theory and

simulation is a consequence of showing the ratio Åyhm=Åym, rather than
Åyhm and Åym themselves. On small scales Åymq 1, so the ratio tends

to zero. Had we shown Åyhm only, then the theory and the simulation

curves can look quite different, particularly on small scales. Again

this suggests that the theory should be used with caution.

The correlation function between haloes with mass greater than

m, averaged over Lagrangian cells of size V0, is

1� Åyhh�>mj0� �

�

¥

m

dM1

�

¥

m

dM2

n�M1; d1� n�M2; d1�

n2�>m; d1�

´

h

1� Åyhh�12j0�
i

;

�43�

where Åyhh�12j0� is given by equation (26), and the convention is that
Åyhh�12j0� � ÿ1 if M1 �M2 > M0. This is the analogue of

equation (A72).

Figs 1±3 show that, as a result of volume exclusion effects,
Åyhh�>mj0� is likely to be negative for all except large values of V0.

Since halo correlations increase as n decreases, this effect will be

weaker as n becomes more negative. Thus, when n, 0, then
Åyhh�> m� will almost always be negative. Only when n,ÿ1 or

so will it become positive, and then only when m is large compared

to M��z�. The distribution of haloes measured in the simulations

show that this is true.

Fig. 12 shows equation (43), for a range of output times and

minimummass cut-offs, as a function of scale. The plots are for the

Lagrangian space distribution of the same haloes as those used to

produce Fig. 10. Notice that more massive haloes are always less

clustered than less massive haloes, in agreement with the white-

noise result (equation 27). This would not have been expected from

the Mo & White (1996) formulae. Again this suggests that our

model for halo exclusion effects is reasonably accurate. Fig. 13

shows that our model is also reasonably accurate when the initial

conditions differ from white noise.

There are, of course, some systematic differences. The theore-

tical curves ®t the data in the panels on the left better than the data

shown on the right, and the discrepancy is more obvious for

n � ÿ1:5 than for n � 0. This simply re¯ects the fact that our

model, in which the centre-of-mass particle of a halo is a random

one of its constituent particles is not very realistic (although it is a

better approximation in thewhite-noise case). Also, on small scales,

the simulation haloes are systematically less anticorrelated than the

model predictions, suggesting that they are affected less strongly by

volume exclusion effects than in the model. This is a consequence

of at least two facts. The ®rst is that, in the simulations, small haloes

in particular are not necessarily spherical, so the excluded volume

associated with them is not necessarily spherical. Thus, in the

simulations, it is possible for two centre-of-mass particles, asso-

ciated with haloes of massM1 andM2, to fall in the same spherical

Lagrangian region M0, even if M1 �M2 > M0, since not all their

associated particles actually fall in M0. In the model this never

happens. The second fact is that the number density of haloes

described by the model (the denominator in equation 43) is, in

general, only within a factor of 2 or so of the actual number density

of haloes measured in the simulations. Since the halo±halo correla-

tion function is normalized by the square of this number density,

this relatively minor discrepancy may still be important. Finally,

recall that when n � ÿ1:5, the initial distribution on small scales

was not particularly Gaussian (Fig. 4).

5.3 The Eulerian probability distribution function

We argued (Section 4) that, in principle, the Mo & White (1996)
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Figure 12. The volume average of the Lagrangian space halo±halo

correlation function, Åyhh�>mjR�, equation (43), as a function of cell size

R, for the same haloes as were used to make Fig. 10. Panels on the left show

the result of computing the average by using only those cells whose initial

density was less than dc=a. Panels on the right show the result of averaging

over all Lagrangian cells, whatever their density. Symbols show this quantity

measured in the simulations; curves show the model predictions with the

value of dc shown.

Figure 13. The same as Fig. 12, but now n � ÿ1:5.
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model for transforming Lagrangian space statistics into Eulerian

space ones can be used to derive the Eulerian space dark matter

distribution function. To do so, we showed that one must solve the

integral equation (38). However, not only must the resulting

distribution be correctly normalized (to unity), but hDi � 1 as

well (cf. equation 35). There is no guarantee that, in general, the

solution to the integral equation will meet both normalization

conditions. We have therefore chosen to stick with the approach

used by Mo & White. Namely, when the Eulerian distribution

function is required, we will simply use the one measured in the

simulations, since it is guaranteed to satisfy equation (35). When-

ever we do so, we will also show the extent to which this is self-

consistent by showing the ratio of the left-hand side to the right-

hand side of equation (36).

Figs 14 and 15 show the Eulerian space probability distribution

function for a range of cell sizes. The histograms show the p�d�

distribution measured in the simulations. Solid curves show Gen-

eralized Inverse Gaussian distributions (e.g. Sheth 1998) that have

the same variance:

p�d� dd �
s
ÿl

2Kl�q�
eÿ

q
2
�s�s

ÿ1
� ds

s
; �44�

where s � 1=�1� d��n�3�=3, Kl�q� is a modi®ed Bessel function of

the third kind, and l � ÿ3=�2�n� 3�� if the initial power spectrum

had slope n. The parameter q is related to the variance by the

relation

h�1� d�2i; 1� Åym � K3l�q�=Kl�q� �45�

(since hdi � 0, and Kl � Kÿl). For the curves shown, the values of
Åym are as follows: when n � 0 and a � 6:1, then Åym � 0:62, 0.1,

0.01 and 0.002 for R=L � 0:02, 0.04, 0.08 and 0.16, respectively.

When n � 0 and a � 37, then the corresponding values of Åym have

grown to 10.9, 2.1, 0.4 and 0.07.When n � ÿ1:5 and a � 6:07, then
Åym � 14, 3.6, 0.98 and 0.26. Thus, on small scales, the clustering is

reasonably well evolved. The ®gures show that the analytic for-

mulae provide a reasonably good, but by no means perfect, ®t to the

simulation data on all scales. The ®t appears better on a log scale

than on a linear scale. Nevertheless, they will be used as convenient

®tting functions to the Eulerian space distributions when they are

used in Section 5.6.

5.4 Biasing in Eulerian space

This subsection compares the bias relation between haloes andmass

measured in the simulations in the Eulerian space with the theore-

tical model developed in the previous sections. The theoretical

model combines the Lagrangian expressions derived in Sections 2

and 3 with the Mo & White (1996) model of Eulerian evolution

discussed in Section 4. However, it is independent of the Eulerian

space dark matter distribution function.

Figs 16±18 show the bias relation for the same haloes as in

previous ®gures, but now the mean and the scatter are measured in

Eulerian space. The histograms show the cumulative Eulerian space

distribution function, and the solid lines through the histograms

show the cumulative Generalized Inverse Gaussians that have the

same variance. As in the Lagrangian case, these cumulative curves

are included to show the range over which the simulations provide a

good test of the theory; this range is where the cumulative curves are

steep. The ®gures show that the theoretical curves for the mean

Eulerian bias ®t the corresponding quantities measured in the

simulations very well. This agreement has already been shown by

Mo&White (1996).What is new here is that our expressions for the

scatter around the mean bias relation appear to describe that

measured in the simulations very well also. The agreement at

small R is particularly gratifying, since there the scatter is sig-

ni®cantly less than Poisson. This shows that our model is able to

account correctly for volume exclusion effects. The agreement

between theory and simulation when n � ÿ1:5 is also encouraging.

It suggests that our simple analytic model for quantifying the effects

of volume exclusion is reasonably accurate even when the initial

conditions are signi®cantly different from white noise.

5.5 Dependence of the mass function on local overdensity

There is another way to show that the Mo &White (1996) Eulerian

space bias model is reasonably accurate. Equation (36) shows that

the unconditional, universal mass function n�M� is simply related to

the conditional mass functionN�Mjd� of haloes that are known to be

in Eulerian cells V which have overdensity d averaged over all values

of d. In the Mo &White model, N�Mjd� is given by equation (37); in

general, it is different from �1� d� n�M�V . In particular, in themodel,

the shape of the mass function depends on the Eulerian overdensity:

the ratio of massive haloes to less massive haloes is larger in dense

regions than in less dense regions. Figs 19 and 20 show that this is

consistent with what is measured in the simulations.
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Figure 14. The Eulerian space probability distribution function p�d� as a

function of overdensity d, for clustering from white-noise initial conditions.

Each panel shows four choices of scale, R=L � 0:02 (broadest curves), 0:4,

0:8 and 0:16 (narrowest curves). Histograms show the distribution measured

in the simulations; thicker, smoother curves show Generalized Inverse

Gaussian distributions that have the same variance.

Figure 15. Same as Fig. 14, but for clustering from n � ÿ1:5 initial

conditions.
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These ®gures are similar to Fig. 1 of Lemson & Kauffmann

(1999). They show the conditional mass functionN�Mjd� for haloes

in Eulerian cells V that have overdensity d, for a range of choices of

d and V . The top left panel shows the range ÿ0:8# d#ÿ0:4, the

top right panel shows ÿ0:5# d#ÿ0:1, the bottom left panel

shows 0:3# d# 0:7, and the bottom right panel shows

1:2# d# 1:8. The three sets of curves in each panel show different

cell sizes:R=L � 0:04 (bottom), 0:08 and 0:16 (top). The histograms

show �1� d� times the largest cell volume V times the uncondi-

tional mass function measured in the simulations. The associated

dashed curves show �1� d�V times the Press±Schechter formula

for the universal unconditional mass function with dc � 1:7. The

dashed curves provide good but not perfect ®ts to the histograms.

Changing the cell size on a log±log plot simply changes the

amplitude of the curves, so for smaller cell sizes we show only

the analytical formula. The solid symbols show the actual con-

ditional mass function measured in the simulations, and the bold

curves show the conditional mass function of equation (37). The

symbols differ from the histograms in the same way that the solid

curves differ from the dashed curves. (The bottom right panel has

only two sets of symbols, because there were no large cells with the

given range in d.) This shows explicitly that, just as the Press±

Schechter formula provides a reasonable ®t to the unconditional

mass function averaged over all Eulerian cells, the Mo & White

model provides a reasonable ®t to themass function if only cells of a

certain density range are used when computing the average.

The data points show the mean number of haloes in cells V that

are known to have overdensity d. Since not all cells have the same

number of haloes, there is some scatter around this mean. Our

extension of the Mo & White model allows us to predict the rms

`error bars' on the data points. We have not shown them here.

5.6 Eulerian space halo correlation functions

This subsection compares the Eulerian space halo±mass and halo±

halo correlations measured in the simulations with the theoretical

model developed in the previous sections. To do this requires

knowledge of the distribution function of the probability that a

randomly placed Eulerian cell of size V contains massM. Although

Section 4 discussed how the Mo & White (1996) approach can be

extended to derive this distribution self-consistently, here we

simply follow the approach used by Mo & White. Namely, we

will use the Eulerian probability distribution functions measured in

780 R. K. Sheth and G. Lemson
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Figure 16. The Eulerian space bias relation for haloes containing more than

m � 32 particles that form from white-noise initial conditions. Symbols

show quantities measured in the simulations: large ®lled circles show the

mean, smaller ®lled circles show the rms scatter, and open circles show the

scatter if the halo counts were Poisson. Curves show the model predictions.

Haloes were identi®ed at an expansion factor of a � 6:1; the bias relation

was computed from the halo-centre-of-mass and mass distributions at that

time. The histograms that rise from left to right in each panel show the

cumulative counts-in-cells distribution. The simulations provide a good test

of the theory only in the range where these curves are steep. The solid lines

through the histograms show the cumulative Generalized Inverse Gaussian

distribution ®tting functions.

Figure 17. The same as Fig. 16, i.e., n � 0 and m � 32, but here a � 36:9.

Figure 18. The same as Fig. 17, but for n � ÿ1:5, m � 32, and a � 6:07.
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the simulations themselves (and, in fact, we will use the General-

ized Inverse Gaussian ®ts to these distributions), rather than the

ones required by self-consistency. Recall that this means that there

is no longer any guarantee that the model gives the correct number

density of haloes. Below, we will show explicitly that the model is

not self-consistent on small scales.

Figs 21±23 show the result of comparing the Mo &White model

with the Eulerian space distributions measured in the simulations.

The top panels in each ®gure show N�>mjV�=n�>m�V, the middle

panels show Åyhm�>mjV�=Åym�V�, and the bottom panels show
Åyhh�>mjV�=Åym�V� as a function of Eulerian scale. The symbols

show the quantities measured in the simulations, and are coded

similarly to those in the corresponding Lagrangian space plots. The

solid curves show the theoretical quantities.

If the Mo & White model were self-consistent, then the theore-

tical curves in the top panels of each ®gure would be unity on all

scales. Thus the ®gures show that the Mo & White model is

inconsistent on small scales. The middle panels show that, despite

this inconsistency, the model provides a good ®t to the Eulerian

space cross-correlation between haloes and mass. This is primarily

a consequence of the fact that the mean Eulerian bias is well

reproduced by the Mo & White model (Figs 16±18). These

curves are similar to those shown in ®g. 4 of Mo & White (1996).

The bottom panels should be compared with ®g. 5 of Mo & White

Biasing and the distribution of dark matter haloes 781
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Figure 19. The mass function of haloes that are in Eulerian cells V which

have overdensity d. Haloeswere identi®ed at an expansion factor of a � 36:9

in the simulations with white-noise initial conditions. The three sets of

curves in each panel show results for three cell sizes: R=L � 0:04 (bottom),

0:08 and 0:16 (top). Filled symbols show the average number of haloes in

those Eulerian cells that have overdensity d. The histogram shows �1� d�

times the universal mass function times the largest cell size. On a log±log

plot, it has the same shape but a different amplitude for the other cell sizes.

The dashed curves show the corresponding theoretical curves: �1� d�V

times the universal mass function. The solid curves show the mass function

computed using the Mo & White bias model of equation (37).

Figure 20. Same as Fig. 19, but for n � ÿ1:5 initial conditions, and an

expansion factor of 6:1.

Figure 21. Various Eulerian space quantities as a function of Eulerian cell

size. The top panel shows N�>mjV�=n�>m�V , the middle panel shows
Åyhm�>mjV�=Åym, and the bottom panel shows Åyhh�>mjV�=Åym. Filled circles,

triangles, squares and stars show results for haloes in the simulations that

contain more than 32, 64, 128 and 256 particles, respectively. Solid curves

show the model predictions.

Figure 22. Same as Fig. 21, but for haloes identi®ed at a later output time.
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(1996). Whereas their model curves increase as R=L decreases, ours

do not. Thus our model for the volume-averaged halo±halo correla-

tion function works signi®cantly better than the one they used. This

is to be expected, since our model explicitly takes account of

volume exclusion effects, whereas theirs did not. The bottom

panels also show that, on suf®ciently large scales, one consequence

of dynamical evolution is to make massive haloes more strongly

clustered than less massive ones. This is in agreement with earlier

predictions (Cole &Kaiser 1989;Mo&White 1996) as well as with

the model developed here.

6 D ISCUSS ION

Numerical simulations show that haloes are biased tracers of the

matter distribution. This bias depends non-linearly on scale and on

halo mass, and the bias on any given scale is stochastic. This paper

describes an analytic model that describes this non-linear, stochas-

tic biasing, as well as its evolution, reasonably accurately.

The model is consistent with the assumption that disconnected

volumes in the initial Lagrangian space may be treated as being

mutually independent. This assumption allows one to use quantities

associated with the merger histories of dark haloes to estimate

the Lagrangian space correlation functions of these haloes. The

assumption of independence is most likely to be accurate if

the initial distribution was Poisson or Gaussian white noise. The

Poisson model is described in detail in Appendix 7, where various

subtle issues involved in this approach are discussed rigorously. In

the limit of small ¯uctuations and large numbers of particles,

statements about clustering from Poisson initial conditions are

easily related to those that describe clustering from white-noise

initial conditions (Sheth 1995, 1996).

Section 2 showed these expressions for the mean and higher

order moments of the halo distribution, for white-noise initial

conditions. The ®nal expressions complement and extend those

derived by Mo & White (1996). In particular, the results of this

section allow one to account for volume exclusion effects, which

arise from the fact that haloes initially occupy a volume that is

proportional to their mass. These effects were described, but not

quanti®ed, by Mo & White. Our results also include the effects of

the scatter among different formation histories of individual regions

in the initial conditions on the statistics of the halo distribution in

space ± another effect that was described, but not quanti®ed, byMo

& White.

Whereas disconnected volumes are mutually independent in the

white-noise case, this is not true for more general Gaussian initial

conditions. However, Sheth & Lemson (1999) showed that it is

possible to provide a good approximate description of the forest of

merger history trees associated with haloes which form from initial

conditions with large-scale correlations by simply ignoring these

correlations. In the Mo & White model, knowledge of the merger

history trees is equivalent to knowledge of the spatial distribution of

dark haloes. Section 3 used this fact to argue that the white-noise

results could be used to provide simple analytic approximations for

the higher order moments of the Lagrangian space halo distribution

even when the initial power on large scales is substantial. The Sheth

& Lemson merger tree results suggest that these analytic approxi-

mations should also be reasonably accurate.

As a result of dynamical evolution, the evolved halo distribution

is different from that in the initial Lagrangian space. To describe

the evolved distribution, we used the spherical model, in the way

suggested by Mo & White, to relate the initial halo distribution

described above to the ®nal evolved one.We showed that in addition

to allowing one to estimate the evolved halo±mass and halo±halo

correlation functions, the Mo &White model could have been used

to compute the Eulerian space probability distribution function of

the dark matter itself. This is a potentially useful extension of their

model.

Once the model had been fully speci®ed, we compared it with

numerical simulations of hierarchical gravitational clustering.

Comparison with the halo distribution in the simulations

(Section 5) showed that while the Mo & White bias model is

reasonably accurate when describing the mean Lagrangian space

bias relation of massive haloes, it predicts the wrong mean value for

less massive objects. Our extension of the Mo & White model

allows us to compute the higher order moments of the bias relation.

For massive objects (those for which the Mo & White mean is

accurate), it describes the scatter around the mean well. For less

massive objects, when the Mo &White model gets the mean value

wrong, our model for the scatter around the mean is still in

qualitative agreement with the simulations.

Results for the halo distribution in Eulerian space were more

encouraging. TheMo&White model describes themean properties

of the bias relation in Eulerian space well, for a larger range of

masses than in the Lagrangian space, and our extension of the

model is able to describe the scatter around this mean well. Our

model works even on scales where volume exclusion effects are

important. This is very encouraging, since our model provides

simple, analytic expressions for these higher order moments.

Although our simulations do not have the dynamic range to

investigate a large mass range, those of Jing (1998) do. Jing ®nds

that on large scales where ÅyEhh=Åym is constant, the Eulerian space

low-mass halo distribution is more clustered than the Mo & White

model predicts. In other words, he ®nds that the large-scale mean

bias relation between low-mass haloes and the mass is larger than

the mean bias relation that the Mo & White model predicts. It is

interesting that this is the same trend as we found in our study of

the Lagrangian space halo distribution. This has an important

consequence.

The Mo &White model has two parts: the ®rst is a model of the

initial number density and spatial distribution of haloes, and the

second models their subsequent dynamical evolution. Given only

Jing's result, one might have thought that the Mo & White model

fails only in the second step, and that using the spherical model to

782 R. K. Sheth and G. Lemson
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Figure 23. Same as Fig. 22, but for initial conditions with a power spectrum

with slope n � ÿ1:5.
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translate from Lagrangian to Eulerian space is inaccurate. If so, one

might have thought that the Zel'dovich approximation, or variants

of it, could be combined with the initial distribution described here

to derive accurate estimates of the evolution of the spatial distribu-

tion of massive as well as less massive haloes. This is the sort of

approach taken by Catelan, Mataresse & Porciani (1998). To date,

they have studied the halo distribution only on scales larger than

that of a typical halo, since their approach does not allow them to

account for the effects of volume exclusion. Since we are able to

account for volume exclusion, it may be interesting to combine

some of the results presented here with their work.

However, our results show that the Mo & White model fails in

Lagrangian space: it does not describe the initial spatial distribu-

tion of low-mass haloes correctly. This is not so surprising, since

it is well known that the spherical model for the collapse of

haloes, on which the ®rst step of the Mo & White model is based,

is more likely to be accurate for massive objects than for less

massive ones (e.g. Bernardeau 1994). If it is not so much the

spherical model of the evolution of the halo distribution, but

rather the spherical collapse model for the formation of low-mass

haloes itself that is wrong, then we expect the discrepancy Jing

measures for the Eulerian space distribution of the haloes in his

simulations to be re¯ected in the shape of the unconditional mass

function. The mass function in the simulations does indeed differ

from the Press±Schechter function, and this difference is in the

correct sense: whereas the theory predicts approximately the

correct number of massive haloes, there are fewer low-mass

haloes in the simulations than the Press±Schechter formula

predicts. Quantifying this relation between the unconditional

mass function and the large-scale bias relation is the subject of

ongoing work.

In this paper, we have gone to a fair amount of trouble to derive

a realistic, accurate, analytic model for the scatter in the halo-to-

mass bias relation. This is because knowledge of this scatter

allows one to address a number of interesting problems, some of

which we list brie¯y below. To relate these results to the observed

distribution of galaxies is complicated. Galaxies are thought to

form inside dark matter haloes (White & Rees 1978; White &

Frenk 1991). Semi-analytic models of this galaxy formation

process (e.g. Kauffmann, White & Guiderdoni 1993) show that

the number of galaxies which form in a given dark matter halo is

stochastic. Lemson & Kauffmann (1999) showed that most of the

physical parameters of a dark matter halo on which galaxy

formation processes are expected to depend, while they may

depend on the halo mass, are independent of the halo's environ-

ment. Thus their results suggest that quantities like the average

number, or the scatter in this number, of galaxies in a dark matter

halo ultimately depend on the halo mass. So it should be possible

to provide semi-analytic estimates of the mean galaxy-number-to-

halo-mass bias relation, as well as the scatter in this relation.

When combined with our results for the mean and higher order

moments of the bias between dark matter haloes and the under-

lying matter distribution, such a relation would allow one to relate

the observed galaxy distribution to that of the underlying dark

matter distribution. Thus our expressions for the scatter in the

halo±dark matter bias relation can be used to extend the results of

Kauffmann, Nusser & Steinmetz (1997) to smaller scales. In

addition, combining the galaxy number to halo mass bias relation

with the dark halo to dark matter bias relation may allow one to

compute estimates of the expected scatter in the Tully±Fisher

relation, to study the bias associated with estimating Q0 from

redshift distortions (Pen 1998; Dekel & Lahav 1999), to evaluate

the compatibility between observations of the number density

and correlation functions of objects at high redshift and various

cosmological models (Mo, Mao &White 1999), and to model the

evolution of the cluster±cluster correlation function in different

cosmological models (Mo, Jing & White 1997).

This paper has dealt primarily with the problem of quanti-

fying the mean and higher order moments of the halo bias given

the matter ¯uctuation ®eld (e.g. hdhjdmi). The inverse problem is

equally, if not more, interesting. The problem of estimating the

mean and higher order moments of the matter ¯uctuation ®eld,

given the halo distribution (e.g. hdmjdhi), is the subject of ongoing

work.
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APPENDIX A: POISSON INIT IAL

CONDITIONS

In this appendix, the excursion set approach is used to derive

expressions for the unconstrained mass function, and then for the

constrained mass function and associated merger probabilities. The

approach follows and extends that of Epstein (1983) and Sheth

(1995) in the following way. These earlier analyses considered

spherical collapse around particles in the initial Poisson distribu-

tion. However, in this paper we want to compute averages over all

randomly placed cells in the initial distribution, not just those that

are centred on particles. So, in the next few subsections, we derive

expressions for the constrained and unconstrained mass functions

where the restriction to volumes centred on particles has been

dropped. It turns out that the modi®cation to the previously derived

expressions is trivial. Therefore the ®rst two subsections may seem

a little pedagogical ± we have included them to set notation.

Readers familiar with the Poisson excursion set analysis may

prefer to skip directly to Section A3.

The spatial distribution of these haloes, in the initial Lagrangian

space, is described in Sections A3±A5. Comparison of these results

with numerical simulations is often done for haloes having a range

of masses. There is some subtlety in doing this correctly ± this is

discussed in Section A6. That all these Poisson results are easily

extended to describe clustering from white-noise initial conditions

is shown in Section A7. Essentially, those statements about cluster-

ing from white-noise initial conditions which are known (e.g., the

conditional and unconditional mass functions, and the mean bias

relation) can be derived by taking appropriate limits of the corre-

sponding Poisson statements. The same limiting procedure can be

used to derive statements about the higher order moments of the

Lagrangian space halo distribution. It is these expressions that are

presented in the main text.

A1 The unconstrained mass function

Consider a Poisson distribution of particles with mean density Ån.

This means that a volume of size V placed at a random position in

this distribution will contain exactly N particles with probability

p�N;V� �
�ÅnV�N eÿ

ÅnV

N!
: �A1�

Furthermore, if it is known that there are N particles in V2, then the

probability that there are j particles inV1 placed randomlywithinV2

is

p�j;V1jN;V2� �
p�j;V1� p�N ÿ j;V2 ÿ V1�

p�N;V2�

�
N

j

� �

V1

V2

� �j

1ÿ
V1

V2

� �Nÿj

:

�A2�

Now choose a random position in the distribution, and compute

the density within concentric spheres centred on this position. Call

the curve traced out by the number of particles contained within a

sphere V centred on this point, as a function of the sphere size V , a

trajectory. Then each position in the Poisson distribution has its

associated trajectory. Let f e�d1� denote the probability that, for all

concentric spheres centred on a randomly chosen position, the

density never exceeds the threshold value Ån�1� d1�. One way to

compute this probability is to compute the fraction of trajectories

for whichN�V� < ÅnV�1� d1� for allV , whereN�V� is the number of

particles within V . This quantity can be computed as follows.

Start with an arbitrarily small sphere centred at the chosen

position, and consider successively larger concentric spheres. As

the volume increases by an in®nitesimal amount, the number of

particles contained within the current sphere either remains the

same, or increases by one. (Strictly speaking, the probability that

the number of particles increases by one is an in®nitesimal, the

probability that the number increases by 2 is an in®nitesimal of

higher order, an increase by three particles is an in®nitesimal of still

higher order, and so on.) Therefore a given value of d1 de®nes a

series of volumes V1 < V2 < . . . for which

j=Vj � Ån�1� d1�; Ån=b1: �A3�

The ®nal equality de®nes b1 � 1=�1� d1�, a parameter which will

be useful later. The quantity of interest, f e�d1�, is one minus the

probability that Vj is the largest sphere centred at the chosen

position that has density Ån�1� d1�, summed over all Vj. That is,

1ÿ f
e
�d1� �

X

¥

j�1

p�j;Vj� f
e
�d1jj;Vj�; �A4�

where the ®rst term in the sum is the probability that Vj contains

exactly j particles, and the second term expresses the probability

that, given that Vj contains exactly j particles, no concentric sphere

larger than Vj is denser than it. Epstein (1983) shows that

f
e
�d1jj;Vj� �

d1
1� d1

� 1ÿ b1; �A5�

and he discusses why it is independent of j. Thus

1ÿ f
e
�d1� � �1ÿ b1�

X

¥

j�1

p�j;Vj� � b1; �A6�

where the sum is simpli®ed by recognizing that it is b1 times the ®rst

moment of the Borel distribution (Borel 1942). This shows that

f
e
�d1� � 1ÿ b1, so that it is the same as f e�d1jj;Vj�. This is simply a

consequence of the fact that, since the distribution is Poisson, the

probability that all larger volumes containing a given volume are

less dense than a given value depends only on the density within the

volume, and not on the number or the distribution of the particles

within it.

The expression above implies that the probability that at least one

sphere centred on a randomly chosen position in a Poisson dis-

tribution is denser than Ån�1� d1� is b1. In other words, of the in®nity

of spatial positions in a Poisson distribution, and of the in®nity of

associated trajectories, only a fraction b1 are at the centre of at least

one sphere that is denser than Ån�1� d1�. That is, only a fraction b1 of

the trajectories ever have N�V�$ ÅnV�1� d1� for at least one value

of V .

Let F�j; b1� denote the fraction of trajectories for which

N�Vj� � j, and for which N�Vk� < k for all Vk > Vj. Then

F�j; b1� � p�j;Vj� f
e
�d1jj;Vj�; �A7�

where the ®rst term gives the probability that a trajectory has

N�Vj� � j, and the second term gives the probability that Vj is the

largest volume at which the trajectory exceeds the threshold

Ån�1� d1�.

There is a useful relation between equations (A1), (A2) and (A7).

Let 2Vk ; kb2=Ån. Then

p�j;V� �
X

¥

k�j

p�j;Vjk; 2Vk�F�k; b2�; �A8�

provided j=V $ Ån, and b2 # b1 ; ÅnV=j. To see this, note that the left-

hand side includes all trajectories that have value j at V . Suppose

that each trajectory is labelled by the value of k for which 2Vk is the

largest volume at which that trajectory crossed the line Ån�1� d2�.
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Trajectories which cross the line for the ®nal time with value less

than j cannot also pass through V with value j. Therefore the sum on

the right-hand side is only over those trajectories that cross the line

Ån�1� d2� for the ®nal time with k$ j, and also pass through V with

value j. Clearly, the left-hand side must equal the right-hand side.

Direct substitution shows that equations (A1), (A2) and (A7) do

satisfy this relation. The normalization and ®rst moment of

Consul's (1989) generalized Poisson distribution aid in proving

this result.

De®ne an isolated region as a spherical region within which the

average density is Ån�1� d1�, and for which the average density

within all larger concentric spheres is less than this. Then F�j; b1�

denotes the fraction of space that is associated with isolated �j; b1�-

volumes. If N�j; b1� denotes the number of such volumes, and VU

denotes the total volume, then

F�j; b1� � N�j; b1�
Vj

VU

�
N�j; b1�

VU

jb1

Ån
;

so that the number density Ån�j; b1� of such isolated volumes is

Ån�j; b1�;
Ån

jb1
F�j; b1�

� Ån�1ÿ b1�
�jb1�

jÿ1eÿjb1

j!

� Ån�1ÿ b1� h�j; b1�;

�A9�

where h�j; b1� is the Borel�b1� distribution. Thus the Borel �b1�

distribution gives the probability that an isolated region contains

exactly j particles [since
P

j h�j; b1� � 1, and
P

j j h�j; b1� �

1=�1ÿ b1�].

Following Bond et al. (1991), it will be convenient to associate

these isolated regions with collapsed haloes. Then equation (A9) is

the unconditional mass function, since it gives the number density

of collapsed objects that contain exactly j particles.

It is interesting to compare equations (A7) and (A9) with the

results of Epstein (1983). In his analysis, Epstein considered only

those trajectories that were certainly centred on particles of the

Poisson distribution. Here, that restriction has been dropped. Let

f �j; b1� denote the fraction of trajectories that are centred on

particles and are associated with isolated regions containing exactly

j particles. Epstein's expression for f �j; b1� implies that

F�j; b1� � b1 f �j; b1�: �A10�

Thus the effect of considering the set of all trajectories, rather than

the subset that are centred on particles, is simply to introduce the b1
term. This is sensible. In the limit in which the threshold d1 ! ¥,

b1 ! 0. In this limit, the only trajectories that ever exceed the

threshold are those that are centred on particles, and they exceed the

threshold only when the volume is vanishingly small. In this limit,

f �j; b1� � 1 if j � 1, and it is zero otherwise. On the other hand, the

subset of trajectories that are centred on particles is a vanishingly

small fraction of the set of all trajectories, so that, as d1 ! ¥, the

fraction of all trajectories that ever exceed d1 tends to zero. So, in

this limit, F�j; b1�! 0 for all j.

A2 The constrained mass function

The probability that a randomly placed volume 1Vj contains exactly

j particles and has density Ån�1� d1�, and that the larger volume

2Vk > 1Vj including 1Vj contains exactly k particles, has density

Ån�1� d2�, and is isolated, is

p�j; 1Vj� p�k ÿ j; 2Vk ÿ 1Vj� f
e
�d2jk;2Vk�:

Equation (A5) shows that f
e
�d2jk;2Vk� � �1ÿ b2�. The probability

F�j; b1jk; b2� that 1Vj is itself isolated within the isolated region 2Vk

[that is, the average density within all volumes V that include 1Vj

and are within 2Vk is less than Ån�1� d1�] satis®es a recursion

relation:

F�j; b1jk; b2� �
p�j; 1Vj; k; 2Vk� f

e
�d2jk;2Vk�

F�k; b2�

ÿ
X

k

m>j

F�m; b1jk; b2� p�j; 1Vjjm; 1Vm�:

�A11�

The numerator in the ®rst term on the right is the joint probability

above, in which 1Vj is not necessarily isolated. The denominator is

included, since it is known that 2Vk is isolated. From this ®rst term,

we must subtract the probability that a volume 1Vm containing 1Vj

was itself the largest isolated region within 2Vk. This is just the

product of the probability F�m; b1jk; b2� times the probability

p�j; 1Vjjm; 1Vm� that there were exactly j particles within 1Vj, given

that they were within the isolated region 1Vm, summed over all m

larger than j. Now,

p�j; 1Vjjm; 1Vm�;
p�j; 1Vj� p�mÿ j; 1Vm ÿ 1Vj�

p�m; 1Vm�

�
m

j

� �

1Vj

1Vm

� �j

1ÿ
1Vj

1Vm

� �mÿj

�
mÿ 1

jÿ 1

� �

j

m

� �jÿ1

1ÿ
j

m

� �mÿj

�A12�

since 1Vk � kb1=Ån. This binomial-like term is necessary, because not

all con®gurations of particles that contribute to F�m; b1jk; b2� will

have had exactly j particles within 1Vj. Appendix B shows that

F�j; b1jk; b2� �k 1ÿ
b1

b2

� �

k

j

� �

j
j

kk

´

b1

b2

� �j

k ÿ j
b1

b2

� �kÿjÿ1
�A13�

satis®es the recursion relation given above.

Let f �j; b1jk; b2� denote the corresponding expression for

volumes 1Vj that are known to certainly be centred on a particle.

Then f �j; b1jk; b2� is given by equation (40) of Sheth (1995), and

F�j; b1jk; b2� � �b1=b2� f �j; b1jk; b2�: �A14�

Thus, as with the statements F�j; b1�, the expressions for randomly

placed volumes are easily related to those for volumes that are

centred on particles. The �b1=b2� factor here plays the same role as

the factor b1 in equation (A10). It simply re¯ects the fact that, for a

Poisson distribution, the particles within 2Vk are distributed as

though they are part of a Poisson distribution with average density

Ån�1� d2�, rather than Ån. Moreover, the discussion in the ®nal

paragraph of Section A1 applies to the limiting behaviour of

F�j; b1jkb2� as d1 ! ¥, i.e., as b1 ! 0, just as it did for the limiting

behaviour of F�j; b1�.

The similarity between F�j� and F�jjk� can be made still more

striking. Suppose there are k particles in the volume 2Vk, and j# k

particles in the subvolume 1Vj within it. Then Ån�1� d0� �

Ån �k ÿ j�=�kb2 ÿ jb1� is the density in the remaining volume

2Vk ÿ 1Vj, and

F�j; b1jk; b2� �
d1 ÿ d0

1� d1

� �

p�j; 1Vjjk; 2Vk�; �A15�

where p�jjk� is given by equation (A2). Equation (A7) shows that

F�k; b1� is given by an analogous expression; there the remaining
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volume is in®nite, so that the overdensity in it, d0, is 0 by de®nition.

Thus F�jjk� is related to p�jjk� in the sameway that F�j� is related to

p�j�.

Recall that, although F�j; b1� differed from f �j; b1�, the ®nal

expression for the number density of isolated �j; b1� volumes was

the same for randomly placed volumes as for volumes centred on a

particle (equation A9). The same is true here. If N �j; b1jk; b2�

denotes the average number of isolated �j; b1�-volumes within a

randomly placed �k; b2�-volume, then

F�j; b1jk; b2� � N �j; b1jk; b2�
1Vj

2Vk

� N �j; b1jk; b2�
jb1

kb2
;

so that

N �j; b1jk; b2� �
kb2

jb1
F�j; b1jk; b2� �

k

j
f �j; b1jk; b2�: �A16�

The ®nal expression is the same as equation (45) of Sheth (1995).

Thus equation (A16) shows that the average number of �j; b1�-

volumes that are within a �k; b2�-volume is the same when 2Vk is

placed randomly in the Poisson distribution as when it is centred on

a particle. In terms of collapsed haloes, this expression is similar to

equation (A9), except that here the �j; b1�-halo is constrained to be

within a �k; b2�-halo. Thus this expression gives the conditional

mass function.

Notice that

N �j; b1jk; b2�! �k=j� f �j; b1=b2� when kq j: �A17�

Comparisonwith equation (A9) shows that, in this limit, the number

density of �j; b1�-volumes that are within a �k; b2�-volume is the

same as in the unconstrained case; the only difference is that

b! b1=b2, which re¯ects the fact that the background density

within 2Vk is Ån�1� d2�, rather than Ån.

All the arguments above were phrased entirely in terms of

volumes that were concentric spheres. This was done with a view

to improving the clarity of the presentation ± the entire analysis

applies unchanged for arbitrarily shaped volumes. This is because

the underlying distribution is Poisson, so that all statements depend

only onvolumesV and not their shapes, and all volumes can be broken

up into mutually independent subvolumes. This is also why the

dimensionality of the point distribution does not enter into the analysis

anywhere. Appendix C here shows this explicitly. In this respect, the

statements above are obtained by an averaging process that is similar

in spirit to that described in the Appendix of Bower (1991).

A3 Clustering of haloes in Lagrangian space: the mean

number of haloes

This section derives the ®rst moment of the distribution of halo

counts in randomly placed cells. The following sections describe

the distribution of haloes in randomly placed cells when the halo

mass is speci®ed, and Section A6 considers the distribution for a

range of masses.

To compute the mean number of haloes in randomly placed cells,

it is useful to consider another way of computing F�j; b1�. This

alternative method also shows that dropping the Epstein (1983) and

Sheth (1995) restriction (to only those volumes that are centred on

particles) makes only a trivial difference to the ®nal expression for

F�j; b1�.

Let f I�N;V0� denote the probability that there are exactly N

particles within the sphere V0, given that V0 is centred on a

randomly chosen particle in the Poisson distribution. Then

f
I
�N;V0� � p�N ÿ 1;V0�; �A18�

where p�k;V0� is given by equation (A1). The probability that there

are j particles in the sphere Vj centred on the chosen particle, and all

concentric spheres V satisfying Vj < V < V0 are less dense than Vj,

given that there are N particles in the concentric sphere V0 > Vj is

f �j; b1jN; b0�, where 1# j# N, b1 was de®ned above, and

b0 ; ÅnV0=N.

Let N01 denote the largest integer less than ÅnV0=b1; it is the

maximum number of particles that may be in V0, if V0 is to be

concentric to and less dense than Vj. Also, let f
e
�b1jN;V0� denote

the probability that no sphere V > V0 is concentric to and denser

than the sphere Vj, given that there are exactly 1# N # N01

particles within V0. This quantity is just one minus the probability

that there exists a sphere Vk > V0 which is the largest sphere

concentric to and having the same density as Vj, given that there

are N particles within V0. Then

f
e
�b1jN;V0� � 1ÿ

X

¥

k>N01

p�k ÿ N;Vk ÿ V0�f
e
�b1jk;Vk�; �A19�

and equation (A5) shows that we can replace f
e
�b1jk;Vk� with

�1ÿ b1�. De®ne

Q�b1;N;V0�; p�N;V0� f
e
�b1jN;V0�: �A20�

Equations (A2), (A7) and (A19) imply that

Q�b1;N;V0� � p�N;V0� ÿ
X

¥

k>N01

p�N;V0jk;Vk�F�k; b2�: �A21�

This, with equation (A8), shows that Q � 0 when N > N01.

In terms of these quantities,

f �j; b1� �
X

N01

N�j

f �j; b1jN; b0� f
I
�N;V0� f

e
�b1jN;V0�: �A22�

Now, equation (A3) implies that b0 � ÅnV0=N, so this sum expresses

f �j; b1� in terms of volumes V0 that are certainly centred on a

particle. However, equations (A1) and (A18) show that

f
I
�N;V0� � p�N ÿ 1;V0� �

N

ÅnV0

p�N;V0� � p�N;V0�=b0;

so

F�j; b1� �
X

N01

N�j

F�j; b1jN; b0� p�N;V0� f
e
�b1jN;V0�: �A23�

This ®nal expression is written entirely in terms of randomly placed

volumes, since f e�b1jN;V0� depends only on the fact that there are

exactlyN particles withinV0, and not on whether or not one of those

particles is at the centre. Straightforward but tedious algebra shows

that this sum is consistent with the expressions for f �j; b1� and

F�j; b1� derived earlier.

This calculation can be easily manipulated to give the average

number of isolated �j; b1�-volumes that are in randomly placed cells

of size V0. It is

Ån�j; b1�V0 ;

X

N01

N�j

N �j; b1jN; b0�Q�b1;N;V0�: �A24�

The sum on the right is �ÅnV0=jb1� times the one in equation (A23), so

it is equal to ÅnV0 f �j; b1�=j. Comparison with equation (A9) shows

explicitly that the mean number of isolated �j; b1�-volumes that are

in randomly placed cells of sizeV0 isV0 times the average density of

these haloes, as required.

A4 Cross-correlation between haloes and mass

It is also straightforward to compute ameasure of the cross-correlation
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between �j; b1�-haloes and the total number of particles that are in

randomly placed cells of size V0.

Recall thatN �j; b1jN; b0� denotes the average number of �j; b1�-

haloes within an �N; b0�-halo. This expression also represents the

average number of �j; b1� isolated regions that are within isolated

regions V0 which each have density N=V0. Since these regions are

isolated, they are different from a random region of size V0

containing N particles; recall that only a fraction f
e
�b1jN;V0� of

such random regions may contain a b1-halo (and, of course, the

number of particles in the b1-halo may not exceed N). The average

number of �j; b1�-haloes in the remainingV0 cells (those that contain

exactly N > j particles and are not isolated) is zero.

Thus the average overabundance of �j; b1�-haloes within the

fraction f
e
�b1;N;V0� of randomly placed V0s that are isolated is

dLh �j; b1jN; b0� �
N �j; b1jN; b0�

Ån�j; b1�V0

ÿ 1 �A25�

(Mo & White 1996), and dLh � ÿ1 in the remaining V0s. The

superscript L represents the fact that this expression de®nes a bias

relation that is associated with randomly placed regions V0 in the

initial Lagrangian space. As Mo &White note, in general, dynami-

cal evolution will result in a bias relation in Eulerian space that is

different from this one in the Lagrangian space. Notice that, because

dLh is the average overabundance of haloes, it depends only on the

®rst moment of the halo distribution. To compute the rms scatter

around this mean value requires knowledge of the higher order

moments of the halo distribution. We will compute this scatter later

in this paper.

When Nq j, f �j; b1jN; b0�! f �j; b1=b0� (Appendix B in Sheth

1996), and f
e
�b1jN;V0�! 1, so

dLh �j; b1jN; b0�!
N

ÅnV0

f �j; b1=b0�

f �j; b1�
ÿ 1: �A26�

This relation will be useful later.

De®ne

ÅyLhm�j; b1jV0�; dLh �1j0� d0

 �

�A27�

where dLh �1j0� is given by equation (A25),

d0 �
N

ÅnV0

ÿ 1;

and the average above is over all randomly placed V0. Writing all

the terms out explicitly gives

ÅyLhm�j; b1jV0� �
N �1j0�

Ån�j; b1�V0

N

ÅnV0

� �

ÿ
N

ÅnV0

� �

ÿ
N �1j0�

Ån�j; b1�V0

� �

� 1;

�A28�

where Ån�j; b1� is given by equation (A9), and N �1j0� by

equation (A16). The second term in this expression is

�N=ÅnV0� p�N;V0�, summed over all N, so it is unity, and it cancels

the fourth term. The ®rst and third terms have N �1j0� � 0 if they

are not isolated, so they only recieve a non-zero contribution from

the fraction f
e
�b1jN;V0� of cells that are isolated. Writing the sum

which gives the average explicitly, and then using equation (A29),

shows that

ÅyLhm�j; b1jV0� �
X

N01

N�j

d0
N �1j0�

Ån�j; b1�V0

Q�b1;N;V0�: �A29�

The upper limit on the sum comes from the fact that, if a randomly

placed V0 were to contain more particles, then it would be denser

than b1, so the �j; b1�-regions inside it would not be isolated, and

N �1j0� � 0. This ®nal expression is the cross-correlation

between �j; b1�-haloes and mass, averaged over all randomly

placed Lagrangian cells V0.

A5 The higher order moments of the halo distribution

Previous subsections computed the mean number of isolated �j; b1�-

regions, i.e., the mean number of �j; b1�-haloes that are in randomly

placed cells of size V0. This subsection computes the higher order

moments of the distribution. To do so, it is necessary to examine the

expression for N �j; b1jN; b0� in more detail.

Let p�n; b1jN; b0�, where n � �n1; ; nN� and b0 $ b1, denote the

probability that the volume V0 � 0VN is composed of m isolated

subvolumes, of which there are nj isolated �j; b1�-volumes (each of

size 1Vj), and 1# j# N. Thus
PN

j�1 nj � m, and mass conservation

requires that
PN

j�1 j nj � N. Sheth (1996) describes a model, based

on the Poisson distribution, in which

p�n; b1jN; b0� �
�Nb01�

mÿ1eÿNb01

h�N; b0�

Y

N

j�1

h�j; b1�
nj

nj!
; �A30�

where b01 � �b0 ÿ b1�, andNb0 � ÅnV0. See Sheth & Pitman (1997)

and Sheth & Lemson (1999) for other interpretations of this

partition formula.

For thismodel, the average number of isolated regions containing

exactly j particles, each with average density parametrized by b1,

that are within spheres of size V0 containing exactly N particles is

given by

hnj; b1jN; b0i �
X

p�n�

nj p�n; b1jN; b0�

�
N

j
f �j; b1jN; b0�

� N �j; b1jN; b0�;

�A31�

where p�n� denotes the set of all distinct ordered partitions of N

(Appendix B in Sheth 1996).

To set notation, it is useful to rewrite some of the expressions

derived earlier. Let nj�b1; n;N; b0� denote the number of �j; b1�-

haloes in the partition n ofN. (In the formula above, this was simply

written as nj.) Then

N �j; b1jN; b0�;
X

p�n�

nj�b1; n;N; b0� p�n; b1jN; b0�:

De®ne

Dj�b1; n;N; b0�;
nj�b1; n;N; b0�

Ån�j; b1�V0

ÿ 1; �A32�

where Nb0 ; ÅnV0. This is the overdensity of �j; b1�-haloes in the

partition n ofN, relative to the average density of such haloes. This,

averaged over all partitions, gives the average bias relation of

equation (A25):

dLh �j; b1jN; b0�;
X

p�n�

Dj�b1; n;N; b0� p�n; b1jN; b0�: �A33�

The variance in this bias relation is

Var�Dj� �

D

D2
j �b1; n;N; b0�

E

ÿ

D

Dj�b1; n;N; b0�
E2

; �A34�

where the average is over all partitions n of N. This is the same as

Var�Dj� �

D

n
2
j �b1; n;N; b0�

E

�Ån�j; b1�V0�
2

ÿ

D

nj�b1;n;N; b0�
E2

�Ån�j; b1�V0�
2

;

where the averages are over all partitions n ofN. The ®rst term is the
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second moment of the distribution of �j; b1�-subhaloes within

�N; b0�-haloes. The rms scatter around the mean bias relation is

the square root of Var�Dj�. So, to compute the scatter in the bias

relation requires knowledge of the second moment of the halo

distribution. Fortunately, for the model described by equation

(A30), all such higher order moments are known.

The factorial moment of order a, of the distribution of �j; b1�-

haloes within �N; b0�-haloes, is

ma�j; b1jN; b0�;
nj!

�nj ÿ a�!
; b1

�

�

�

�

�

N; b0

* +

�

h

N�b0 ÿ b1�
ia ha�j; b1� h�m;B�

h�N; b0�
;

�A35�

where

mB; �N ÿ aj�B � Nb2 ÿ ajb1 �A36�

(AppendixB of Sheth 1996). Similarly, cross-moments are given by

ni!

�ni ÿ a�!

nj!

�nj ÿ b�!
; b1

�

�

�

�

�

N; b0

* +

�

h

N�b0 ÿ b1�
ia�b ha�i; b1� h

b
�j; b1� h�m;B�

h�N; b0�
;

�A37�

where

mB; �N ÿ aiÿ bj�B � Nb0 ÿ aib1 ÿ bjb1: �A38�

These formulae for the higher order moments were obtained after

using equation (A30) for the partition formula. Sheth & Lemson

(1999) show that this formula arises naturally as a consequence of

the fact that disconnected volumes in a Poisson distribution are

mutually independent. This allows a simple interpretation of

equation (A37).

De®ne

c�i; j; b1jk; b0�;N �j; b1jk; b0� N �i; b1jk ÿ j; b
0
�

� hnj; b1jk; b0i hni; b1jk ÿ j; b
0
i;

�A39�

where

Ån

b0
;

k ÿ j

0Vk ÿ 1Vj

; Ån�1� d0�: �A40�

The halo containing j particles can be thought of as occupying 1Vj of

the total volume 0Vk. Thus b
0 parametrizes the density in the

remaining volume 0Vk ÿ 1Vj, which contains �k ÿ j� particles.

Also, c�ijjk� is the product of the mean number of �j; b1�-haloes

within the volume associated with the �k; b0�-halo and the mean

number of �i; b1�-haloes in the remaining volume, given that there is

a �j; b1�-halo within 0Vk. Now, equation (A31) implies that

c�i; j; b1jk; b0� �
k

j
f �j; b1jk; b0�

�k ÿ j�

i
f �i; b1jk ÿ j; b

0
�

� k�b0 ÿ b1�
h�j; b1� h�k ÿ j; b

0
�

h�k; b0�

´ �k ÿ j��b
0
ÿ b1�

´

h�i; b1� h�k ÿ jÿ i; b
00
�

h�k ÿ j; b0�
;

�A41�

where b00 is de®ned similarly to b
0. That is,

Ån

b00
�

k ÿ jÿ i

0Vk ÿ 1Vj ÿ 1Vi

: �A42�

However,

�k ÿ j� �b
0
ÿ b1� � �kb0 ÿ jb1� ÿ �k ÿ j�b1 � k�b0 ÿ b1�; �A43�

so that

c�i; j; b1jk; b0� �
�k�b0 ÿ b1��

2

h�k; b0�
h�j; b1�h�i; b1�h�k ÿ jÿ i; b

00
�:

This expression is symmetric in i and j, and it is easy to see that it is

the same as

c�i; j; b1jk; b0� � N �i; b1jk; b0� N �j; b1jk ÿ i; b
0
�; �A44�

with the appropriate rede®nition of b0. Simple algebra shows that

c�i; j; b1jk; b0� �



ni nj; b1jk; b0
�

; �A45�

where the right-hand side is equation (A37) with a � b � 1. This

shows explicitly that



ni nj; b1jk; b0
�

�



nj; b1jk; b0
�

ni; b1jk ÿ j; b
0


 �

; �A46�

and that it was obtained by treating the volumes 1Vj and 0Vk ÿ1Vj as

being disconnected from, and independent of, each other.

This argument can be generalized to the higher order moments.

For example, if

�k ÿ nj� b
�n�

� kb0 ÿ njb1; with b
�0�

� b0; �A47�

then

�k ÿ nj� �b
�n�

ÿ b1� � k�b0 ÿ b1�: �A48�

So equation (A35) is also equal to

ma�j; b1jN; b0� �
Y

aÿ1

n�0

D

nj; b1jk ÿ nj; b
�n�
E

�
Y

aÿ1

n�0

N

h

j; b1jk ÿ nj; b
�n�
i

:

�A49�

Thus the higher order moments described by equation (A35) are

consistent with the fact that disconnected volumes in a Poisson

distribution are mutually independent. The cross-correlation

moments of equation (A37) can be interpretted similarly. Thus,

for example, the variance in the bias relation above is

Var�Dj� �
c�j; j; b1jN; b0� �N �j; b1jN; b0�

�Ån�j; b1�V0�
2

ÿ
N �j; b1jN; b0�

2

�Ån�j; b1�V0�
2

:

�A50�

Equation (A31) in (A24) implies that

Ån�j; b1�V0 �
X

N01

N�j

hnj; b1jN; b0i Q�b1;N;V0�: �A51�

This shows how the average number of isolated regions, each with

average internal density Ån�1� d1� and each containing j particles,

that are within randomly placed volumes V0, can be obtained from

the partition formula of equation (A30). The main reason for

writing this expression explicitly is that it shows clearly how to

compute the higher order moments associated with the model of

equation (A30).

LetMa�j; b1� denote the ath factorial moment of the distribution

of �j; b1�-regions that are within spheres of size V0. It is obtained by

a similar average to that for the mean:

Ma�j; b1jV0� �
X

N01

N�aj

ma�j; b1jN; b0� Q�b1;N;V0�: �A52�

When a � 1, this is the same as equation (A51).
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Let ÅyLhh�ijj0� denote the correlation between isolated �i; b1�- and

�j; b1�-regions, averaged over Lagrangian cells of size V0. Then

M2�j; b1jV0� �

h

Ån�j; b1�V0

i2h

1� ÅyLhh�jjj0�
i

: �A53�

Similarly, when the b1-isolated regions do not have the same

number of particles,

1� ÅyLhh�ijj0� �
X

N01

N�i�j

c�i; j; b1jN; b0�

Ån�i; b1�V0 Ån�j; b1�V0

Q�b1;N;V0�; �A54�

with the understanding that c�ijjN� � 0 if �i� j� > N, so that
ÅyLhh�ijj0� � ÿ1 if �i� j� > N01.

Suppose that each isolated b1-region within V0 is represented by

(a randomly chosen) one of its constituent particles. This de®nes a

point process, for which statistics such as the distribution of halo

counts-in-cells can be computed. Since �j; b1�-regions are associ-

ated with �j; b1�-haloes, it is convenient to call the randomly

chosen representative point of such a halo its centre-of-mass. The

expressions above give the higher order moments of the distribution

of counts of haloes in randomly placed cells V0. Halo±halo

correlations can be computed from these moments. For example,

equation (A54) gives the volume-averaged correlation function of

�i; b1�- and �j; b1�-haloes. All the necessary sums can be evaluated

analytically.

A6 Statistics for a range of halo masses

The previous subsections considered the halo distribution when the

halo mass was speci®ed. This subsection shows how to compute

correlations between haloes that have a range of masses. This is

necessary, since comparison with simulations is typically done by

considering averages over a range of masses, and, as we discuss

below, the transition to considering a range of masses is not

completely straightforward. That is, simply integrating the previous

expressions over the relevant mass range, weighted by the uncon-

ditional mass function, is not entirely correct. It turns out that, over a

large range of scales, the correct expression yields only a minor

correction to the naive expression, so readers interested only in

results may prefer to skip this section.

So far, the distribution of isolated regions and that of the centre-

of-mass distribution of collapsed haloes were assumed to be the

same. However, there is an important difference between haloes and

isolated regions. Namely, by de®nition, a Lagrangian volume V0

with overdensity d0 cannot contain an isolated V1 < V0 region of

overdensity d1 < d0, nor can it contain an isolated region of density

d1 # d0 if its size is V1 > V0. Thus the number of such isolated

regions within an overdense or non-isolated cell V0 is zero.

However, since a collapsed halo is represented only by the

volume element associated with its centre-of-mass, haloes are

said to lie within a cell if their centre-of-mass does. Thus an M1

halomaywell liewithin aV0 cell, even ifM1 > M0. Moreover, in the

model, a region V0 of density d0 $ d1 is certainly a subregion of an

isolated d1 region, with V1 > V0. Such an overdense V0 is said to

contain the M1 halo only if the volume element that represents the

centre-of-mass of the halo falls inside it; in themodel, the centre-of-

mass is a randomly chosen volume element, so this happens with

probability �V0=V1�. Thus a cell V0 that is either overdense or not

isolated may contain a halo, whereas, by de®nition, it cannot

contain an isolated region. Previously, this difference between

haloes and isolated regions was unimportant. Now, however,

since we must integrate over a range of halo masses, it can be

important.

Consider the set of V0 cells placed randomly in the Lagrangian

space. Supposewewish to count up the number of b1-haloes that are

more massive than m, that are in such cells. Given a value of b1,

these cells can be divided into two classes: those that are isolated

and those that are not. Those that are isolated can be classi®ed by the

number N of particles within the cell. All isolated cells that contain

N particles can be further classi®ed by the way in which the N

particles are divided into b1-haloes. Consider an isolated cellV0 that

is known to contain exactly N particles which are partitioned into

b1-haloes. As before, denote the particular partition by the vector n.

LetNh�j; b1jn; b0� denote the number of �j; b1�-haloes that arewithin

such a cell. The number of b1-haloes more massive than m that are

within such cells is

Nisol�>m; b1jn;V0� �
X

N

j>m

Nh�j; b1jn; b0�: �A55�

Equation (A31) shows that this quantity, averaged over all partitions

of N, is

X

p�n�

Nisol�>m; b1jn;V0� p�n; b1jN; b0� �
X

N

j>m




nj; b1jN; b0
�

:

This, averaged over all values of N, is

ÅNisol�>m; b1jV0� �
X

N

Q�b1;N;V0�
X

N

j>m




nj; b1jN; b0
�

; �A56�

since Q�b1;N;V0� denotes the fraction of the total number of cells

that are isolated. This sum is zero when N # m, because if the cell

V0 is isolated, then all the particles associated with a halo within V0

must be contained in V0, and we are counting only haloes more

massive than m. The de®nition of Q (equation A29) insures that the

sum is also zerowhenN > N01. This is because, whenN > N01, then

the cell is denser than b1, so it is not isolated on the scale V0. The

order of the sums above can be interchanged to yield

ÅNisol�>m; b1jV0� �
X

N01

j>m

X

N01

N�j

Q�b1;N;V0� N �j; b1jN; b0�

�
X

N01

j>m

Ån�j; b1�V0;

�A57�

where the ®nal equality follows from equation (A24).

Cells that are not isolated on scale V0 can be classi®ed by the

scale 1Vj > V0 at which they ®rst become isolated. They can be

further classi®ed by the number of particles N < j they actually

contain on scale V0. The probability that a cell ®rst becomes

isolated on scale 1Vj, given that it contains N particles on scale

V0 < 1Vj, is

P�j; b1jN;V0�;
p�N;V0jj; 1Vj� F�j; b1�

p�N;V0�
: �A58�

Recall that F�j; b1� is the probability that a randomly placed cell is

isolated on the scale 1Vj � jb1=Ån, so the expression above follows

from Bayes's rule. The region V0 is a subregion within the isolated

region 1Vj. Since 1Vj is isolated, it can be thought of as a �j; b1�-

halo. The subregion V0 is said to contain this �j; b1�-halo only if

it contains the randomly chosen centre-of-mass particle of the

halo. This happens with probability V0=1Vj. Therefore the average

number of b1-haloes that are in cells which are not isolated on scale

V0 is

ÅNother�>m; b1jV0� �
X

¥

N�0

p�N;V0�
X

¥

j�jmin

V0

1Vj

P�j; b1jN;V0�; �A59�
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where jmin � �m� 1� if m > N01. Otherwise, jmin � �N01 � 1�.

Since V0 < 1Vj, p�N;V0jj; 1Vj� � 0 if N > j. With this in mind, the

order of the sums can be interchanged:

ÅNother �
X

¥

j�jmin

�V0=1Vj�F�j; b1�
X

j

N�0

p�N;V0jj; 1Vj�:

The sum over N is unity, so the average number of b1-haloes more

massive than m that are within such V0 cells is

ÅNother �
X

¥

j�jmin

V0

1Vj

F�j; b1� �
X

¥

j�jmin

Ån�j; b1�V0: �A60�

The ®nal equality follows from equation (A9).

On average, the number of b1-haloes that are more massive than

m, that are within randomly placed V0 cells, is given by adding the

contribution from the two types of cells ± those that are isolated on

scale V0 and those that are not. Thus, when m < N01, then the

average over all V0 cells, ÅNisol � ÅNother, is

Ån�>m; b1�V0 ;

X

¥

j>m

Ån�j; b1�V0: �A61�

If m > N01, then ÅNisol�>m; b1jV0� � 0, and the average is simply
ÅNother�>m; b1jV0�, which is the same as the expression above.

As before, de®ne

Dh�>m; b1jn;V0�;
Nh�>m; b1jn;V0�

Ån�>m; b1�V0

ÿ 1: �A62�

The cross-correlation between haloes and mass, averaged over all

cells V0, is

ÅyLhm�>m; b1jV0�;



Dh�>m; b1jn;V0� d0
�

�




Nh�>m; b1jn;V0� d0
�

Ån�>m; b1�V0

;

�A63�

since d0 � �N ÿ ÅN0�= ÅN0.

For isolated cells, this average can be computed in two steps. The

®rst is to average over all partitions p�n� of N. The second is to

average over all values of N. Ifm# N01, then the contribution from

isolated cells is




Nisol d0
�

�
X

N01

j>m

X

N01

N�j

d0 Q�b1;N;V0� N �j; b1jN; b0�

�
X

N01

j>m

Ån�j; b1�V0
ÅyLhm�j; b1jV0�;

�A64�

where the ®rst equality arises from the average over partitions of N

(equation A56), and the second equality follows from using

equation (A29). The contribution from the other cells is




Nother d0
�

�
X

¥

j>N01

V0

1Vj

F�j; b1�
X

j

N�0

d0 p�N;V0jj; 1Vj�: �A65�

Since d0 � �N ÿ ÅN�= ÅN0, the sum over N is

j

ÅN0

V0

1Vj

ÿ 1 �
1ÿ b1

b1
� d1;

so the contribution from these other cells is




Nother d0
�

� d1
X

¥

j>N01

Ån�j; b1�V0: �A66�

The cross-correlation function averaged over all cells is the sum of

these two terms divided by Ån�>m; b1�V0:

ÅyLhm�>m; b1jV0� �
X

N01

j>m

Ån�j; b1�V0
ÅyLhm�j; b1jV0�

Ån�>m; b1�V0

� d1
X

¥

j>N01

Ån�j; b1�V0

Ån�>m; b1�V0

:

�A67�

There is no contribution from isolated cells, and the remaining cells

yield

ÅyLhm�>m; b1jV0� � d1; if m > N01:

Autocorrelations between haloes can be computed similarly.

De®ne

ÅyLhh�>m; b1jV0�;



D2
h�>m; b1jn;V0�

�

ÿ
1

Ån�>m; b1�V0

: �A68�

The second term is the shot-noise term. It accounts for the fact that

the halo distribution is discrete.

First, consider the case when m# N01, so isolated cells may

contain more than one halo in the mass range of interest. For

isolated cells, correlations arise as a result of two averages. The ®rst

is over all partitions ofN. The second is over all values ofN. Given a

partition n of N,

N
2
isol � �nm�1 � � nN�

2
�
X

N

i>m

X

N

j>m

ni nj:

Equations (A35) and (A37) show how to compute these averages

over the set of partitions p�n�. Notice that when i � j, then (A37)

for hni nji, is the same as (A35) for hni �ni ÿ 1�i. Therefore, if we

use (A37) even when i � j, and write it using (A45), then the

average over N is

N
2
isol


 �

�
X

N

Q�b1;N;V0�
X

N01

i>m

X

N01

j>m

c�i; j; b1jN; b0�

�
X

N

Q�b1;N;V0�
X

N01

j>m




nj; b1jN; b0
�

;

�A69�

where c�ijjN� � hni njjNi � 0 if �i� j� > N. Equation (A57) shows

that the second term is just ÅNisol�>m; b1jV0�.

Cells V0 that are not isolated either contain one or no haloes. So

the contribution from these cells is just ÅNother�>m; b1jV0� of

equation (A59). The contribution from these cells, plus the

second term from the isolated cells, equals Ån�>m; b1�V0. Together,

they cancel the shot-noise term in the de®nition of ÅyLhh. The order

of the sums in the remaining ®rst term of (A69) can be rearranged to

yield

1� ÅyLhh�>m; b1jV0� �
X

N01

i>m

X

N01

j>m

Ån�i; b1�V0 Ån�j; b1�V0

Ån2�>m; b1�V
2
0

´

X

N01

N�i�j

c�i; j; b1jN; b0�

Ån�i; b1�V0 Ån�j; b1�V0

Q�b1;N;V0�;

�A70�

where c�i; jjN� � 0 if �i� j� > N. If m > N01, there are no isolated

cells which contain haloes in the mass range of interest. All other

cells either contain one or no haloes, so for these cells

N
2
h �>m; b1jV0� � Ån�>m; b1�V0. This term cancels the shot-noise

term, so that

ÅyLhh�>m; b1jV0� � ÿ1; if m > N01: �A71�
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Comparison with equation (A54) shows that

1� ÅyLhh�>m; b1jV0� �
X

N01

i>m

X

N01

j>m

Ån�i; b1�V0 Ån�j; b1�V0

Ån2�>m; b1�V
2
0

´

�

1� ÅyLhh�i; j; b1jV0�
�

;

�A72�

with the convention that 1� ÅyLhh�ijj0� � 0 if �i� j� > N01.

A7 Clustering from white noise as a limit of the Poisson

model

This subsection shows explicitly that, in the limit of small ¯uctua-

tions and large numbers of particles, all the statements about

clustering from white-noise initial conditions presented in the

main text can be derived from the Poisson statements derived

above by using Stirling's approximation for all the factorials, and

writing all expressions to lowest order in d.

Let N � ÅnV�1� d�, and let S; hd2i � 1=ÅnV denote the mean

square ¯uctuation of d � �N ÿ ÅnV�=ÅnV in cells of size V . Then

dN=dd � ÅnV , and, when dp 1, the use of Stirling's approximation

for the factorial reduces equation (A1) for p�M;V� to equation (1).

Similarly, equation (A2) tends to equation (3). Furthermore,

f �M; b�! f �S; d� jdS=dMj dM of equation (5) (e.g. Epstein 1983)

and f �M1; b1jM0; b0�! f �S1; d1jS0; d0� jdS1=dM1j dM1 of equation

(7) (Sheth 1995), since b � 1=�1� d�< �1ÿ d�, and 1ÿ �b1=b2� <

�d1 ÿ d2�. Simple algebra shows that equations (3) and (7) satisfy a

recursion relation that is similar to the one in the discrete Poisson

case (and solved in Appendix B). Namely,

p�S1; d1jS0; d0� �

�

S1

S0

f �S
0
; d1jS0; d0� p�S1; d1jS

0
; d1� dS

0
: �A73�

By considering the statistics of trajectories that are analogous to

those considered in the Poisson case, Bond et al. (1991) have shown

that these expressions can be derived directly from the white-noise

®eld itself.

The virtue of using the trajectory description is that it allows one

to see the correctness of many statements that are otherwise tedious

to compute. For example, suppose we label each trajectory by the

value S
0
, which is the smallest value of S at which it has overdensity

density d0. If d$ d0 $ 0, then

p�S; d� �

�

S

0

p�S; djS0; d0� f �S0; d0� dS0: �A74�

The left-hand side of this expression is the set of all trajectories that

pass through d at S. The right-hand side is the set of all trajectories

that ®rst pass through d0 # d at S0 < S, and then pass through d at S,

summed over all S
0
# S, since trajectories that ®rst pass through d0

on scale S
0
> S have certainly not passed through d$ d0 at S.

Clearly, the left-hand side equals the right-hand side. When

d � d0, then direct substitution shows that this is correct. Otherwise,

direct substitution is not the easiest way to see that this must be

correct. This equation is the analogue of equation (A8).

Notice that

d

dd
p�S; d� � f �S; d�; �A75�

and

d

dd
p�S; djS0; d0� � f �S; djS0; d0�: �A76�

These relations, with equation (A74), imply that

d p�S; d�

d d
�

d

dd

�

S

0

p�S; djS0; d0� f �S0; d0� dS0

�

�

S

0

f �S; djS0; d0� f �S0; d0� dS0

� f �S; d�;

�A77�

as required by equation (A75).

The number density of M1 haloes, that is, the unconstrained

mass function, is Årf �M1; d1�=M1, which is the same as

equation (6). Similarly, the conditional mass distribution is

�M0=M1� f �M1; d1jM0; d0�, which is the same as equation (8).

These are the analogues of equations (A9) and (A16).

The limit of equation (A20) is

Q�b1;M0;V0�! q�d1; d0;V0�

; p�S0; d0� ÿ

�S0

0

p�S0; d0jS1; d1� f �S1; d1� dS1:

�A78�

If d0 $ d1, then equation (A74) shows that q � 0. When d0 < d1,

then the integral above can be solved to yield equation (4). Bond et

al. (1991) discuss Chandrasekhar's derivation of q�d1; d0;V0�. Their

discussion of excursion set trajectories associated with Gaussian

random ®elds shows, with no calculation, that the expression above

is correct.

The excursion set approach of Bond et al. (1991) also shows why

equation (11) must be correct. Consider the set of all excursion set

trajectories, and label each trajectory by its value of d�V0�; d0 on

scale V0. Now, q�d1; d0;V0� gives the probability that such a

trajectory lies below d1 for all V > V0, and f �M1; d1jM0; d0� of

equation (7) gives the fraction of trajectories that ®rst cross the

value d1 on scale V1, given that they have value d0 on scale V0.

Integrating the product of these two expressions over all d0 # d1
gives the fraction of trajectories that ®rst cross the value d1 on the

scale V1, which is the same as equation (5). The extra factor of

M0=M1 on the left-hand side above is ÅrV0=M1 when written on the

right-hand side, which is consistent with equation (6).

Expressions for the mean bias between haloes and mass can be

obtained by taking similar limits. A little algebra shows that the

peak background split of equation (14) could have been obtained

directly from the corresponding Poisson limit, equation (A26).

Expressions for the cross-correlation between haloes and mass,

as well as for the higher order moments of the halo distribution, all

transform similarly. For example, equation (21) could have been

derived by taking the limit of equation (A49), etc.

APPENDIX B : SOLUTION TO THE RECURSION

RELATION

This appendix shows, by direct substitution, that equation (A13) for

F�jjk� in the main text solves the recursion relation given in

equation (A11).

Equation (A11) can be rearranged to read

X

k

m>j

F�m; b1jk; b2� p�j; 1Vjjm; 1Vm�

�
p�j; 1Vj; k; 2Vk� f

e
�d2jk;Vk�

F�k; b2�
ÿ F�j; b1jk; b2�:

�B1�
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Equation (A7) shows that the right-hand side of this expression is

RHS �
p�j; 1Vj� p�k ÿ j; 2Vk ÿ 1Vj�

p�k; 2Vk�
ÿ F�j; b1jk; b2�; �B2�

where all the p�n;V�s are Poisson, so they are given by

equation (A1). If equation (A13) for F�jjk� is correct, then

RHS � �k ÿ j�
k

j

� �

j
j

kk
b1

b2

� �j�1

k ÿ j
b1

b2

� �kÿjÿ1

: �B3�

Substituting equation (A12) for p�j; 1Vjjm; 1Vm� in the left-hand side

gives

k 1ÿ
b1

b2

� �

k

m

� �

m
m

kk
b1

b2

� �m

k ÿ m
b1

b2

� �kÿmÿ1

´

mÿ 1

jÿ 1

� �

j

m

� �jÿ1

1ÿ
j

m

� �mÿj
�B4�

summed over all j < m# k. This reduces to

�k ÿ j�
k

j

� �

j
j

kk
b1

b2

� �j�1

k 1ÿ
b1

b2

� �

´

X

N

n�0

N

n

� �

b1

b2
� n

b1

b2

� �n

k ÿ �j� 1�
b1

b2
ÿ n

b1

b2

� �Nÿnÿ1
�B5�

where N � �k ÿ jÿ 1�. Abel's generalization of the binomial

theorem

�x� y�
N
�
X

N

m�0

N

m

� �

x �xÿ mz�
mÿ1

�y� mz�
Nÿm

; �B6�

with m � N ÿ n, x � k�b2 ÿ b1�=b2, y � �k ÿ j��b1=b2�, and

z � ÿ�b1=b2�, reduces this to equation (B3).

A similar recursion relation is satis®ed by f �j; b1jk; b2�. Namely,

X

k

m>j

f �m; b1jk; b2� p�j; 1Vjjm; 1Vm�

�
p�j; 1Vj; k; 2Vk� f

e
�d2jk;Vk�

f �k; b2�
ÿ f �j; b1jk; b2�:

�B7�

Since now trajectories are known to be centred on particles,

p�j; 1Vj; k; 2Vk� � p�jÿ 1; 1Vj� p�k ÿ j; 2Vk ÿ 1Vj�

�
p�j; 1Vj�

b1
p�k ÿ j; 2Vk ÿ 1Vj�:

�B8�

Since F�k; b2� � b2 f �k; b2� (equation A10), the right-hand side of

equation (B7) is �b2=b1� times that in equation (B1).

Similarly, since now trajectories are centred on particles,

p�j; 1Vjjm; 1Vm� �
p�jÿ 1; 1Vj� p�mÿ j; 1Vm ÿ 1Vj�

p�mÿ 1; 1Vm�
: �B9�

This is the same as equation (A12). Therefore, if the left-hand side

of equation (B7) is to equal �b2=b1� times the left-hand side of

equation (B1), then it must be that f �j; b1jk; b2� �

�b2=b1�F�j; b1jk; b2�. This is just what is required by

equation (A14). Thus, if f �jjk� is given by equation (A14), then it

satis®es the recursion relation (B7).

APPENDIX C : AVERAGING OVER ALL

VOLUMES

This appendix shows that the expressions for the conditional and

unconditional mass functions are obtained by an averaging process

envisaged by Bower (1991). Namely, the averaging is over all

possible subvolumes, not necessarily connected, that are contained

entirely within a parent volume.

Suppose space is divided up into a large number C of in®nite-

simally small cells, each of volume v. The cells are suf®ciently

small that each cell is either empty, or it contains one and only one

particle. Suppose that there are N particles distributed in this space.

This means thatN of theC cells are occupied. Now choose c cells in

random order without replacement from the total set of C cells. The

probability that n of these c cells are occupied is

p�n; c� �
c

n

� �

´

N�N ÿ 1� �N ÿ n� 1�

C�C ÿ 1� �C ÿ n� 1�

´

�C ÿ N� �C ÿ N ÿ �cÿ n� � 1�

�C ÿ n� �C ÿ c� 1�

�

N

n

� �

C ÿ N

cÿ n

� �

C

c

� � :

�C1�

When Cq cq Nq n, Stirling's approximation for all the factor-

ials except n! reduces this to

p�n; c�!
1

n!

cN

C

� �n

eÿcN=C
:

Now, Cv is the total volume, so �N=Cv� is the average number

density of particles; denote it by Ån. The parameter cv is the size of

the cell made of c in®nitesimal cells; set cv; V . Then

�cN=C� � ÅnV , and this expression is the same as equation (A1).

This shows explicitly how the Poisson distribution is obtained by

choosing, in random order without replacement, a series of volume

elements of the total space, and weighting each series of choices

with the probability that it occurs. SinceF�j; b� is simply the product

of p�j;Vj�with a quantity that depends on b but not V , the argument

above applies to F�j; b� also. In particular, since the volume

elements c are chosen at random from the full space, there is no

requirement that they be adjacent.

A similar argument can be used to derive equation (A2). Namely,

suppose V2, containing exactly N particles is divided up into a large

number C of small volumes v. Then the probability that in c

volumes, chosen randomly without replacement from C, there are

exactly n occupied volumes, when it is known that there are exactly

N occupied volumes in C, is given by the same expression (C1) as

before. When Cq cq N $ n, Stirling's approximation for all the

factorials except the N
n

ÿ �

term reduces this to

p�n; cjN;C�!
N

n

� �

c

C

� �

1ÿ
c

C

� �Nÿn

: �C2�

With cv; V1, this is the same as equation (A2), since Cv; V2.

Again the only constraint on the volume elements c is that they lie

entirely within V2. There is no requirement that they be adjacent.

What remains to be shown is that F�jjk� is also obtained by a

sampling process in which the different volume elements which

make up 1Vj are chosen randomly without replacement from 2Vk, so,

in particular, they are not necessarily adjacent to each other. This

follows from the original derivation, or from the fact that the

derivative of p�jjk� is so easily related to F�jjk�, or from the

derivation of f �jjk� given in Sheth (1995).

This paper has been typeset from a TEX=L
A
TEX ®le prepared by the author.
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